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NOX2 inhibition enables
retention of the circadian
clock in BV2 microglia and
primary macrophages
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1Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States,
2Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United
States, 3Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
Introduction: Sustainedneuroinflammation is amajor contributor to theprogression

ofneurodegenerativediseases suchasAlzheimer’s (AD)andParkinson’s (PD)diseases.

Neuroinflammation, like other cellular processes, is affected by the circadian clock.

Microglia, the resident immune cells in the brain, act as major contributors to

neuroinflammation and are under the influence of the circadian clock. Microglial

responses such as activation, recruitment, and cytokine expression are rhythmic in

their response to various stimuli. While the link between circadian rhythms and

neuroinflammation is clear, significant gaps remain in our understanding of this

complex relationship. To gain a greater understanding of this relationship, the

interaction between the microglial circadian clock and the enzyme NADPH Oxidase

Isoform2 (NOX2)was studied;NOX2 isessential for theproductionof reactiveoxygen

species (ROS) in oxidative stress, an integral characteristic of neuroinflammation.

Methods: BV2 microglia were examined over circadian time, demonstrating

oscillations of the clock genes Per2 and Bmal1 and the NOX2 subunits gp91phox

and p47phox.

Results: The BV2 microglial clock exerted significant control over NOX2

expression and inhibition of NOX2 enabled the microglia to retain a functional

circadian clock while reducing levels of ROS and inflammatory cytokines. These

trends were mirrored in mouse bone marrow-derived primary macrophages.

Conclusions: NOX2 plays a crucial role in the interaction between the circadian

clock and the activation of microglia/macrophages into their pro-inflammatory

state, which has important implications in the control of neuroinflammation.

KEYWORDS

NOX2, neuroinflammation, oxidative stress, BV2 microglia, primary macrophages,
circadian rhythm
Abbreviations: AD, Alzheimer’s Disease; PD, Parkinson’s Disease; Apo, Apocynin; BMDMs, Bone Marrow

Derived Macrophages; CT, Circadian Time; DPI, Diphenyleneiodonium chloride; GSK, GSK2795039; HPS,

Hours Post Serum Shock; IFN-g, Interferon Gamma; TNF-a, Tumor Necrosis Factor Alpha; IL-6, Interleukin 6;

IL-4, Interleukin 4; NADPH, Nicotinamide Adenine Dinucleotide Phosphate; NOX2, NADPHOxidase Isoform

2; ROS, Reactive Oxygen Species; TTFL, Transcriptional-Translational Feedback Loop.
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Introduction

Microglia, the innate immune cells of the central nervous system,

are involved in inflammation and the immune response, and play a

significant role in contributing to neuroinflammation associated with

neurodegenerative diseases (1). Like macrophages, microglia display

multiple phenotypes based on external stimuli, and are normally

distinguished into resting and activated states in the brain (2). In their

resting state, microglia carry out continuous surveillance of the

central nervous system to maintain homeostasis (2). The activated

microglial state is itself an oversimplification and comprises multiple

phenotypes (3, 4), broadly differentiated into pro-inflammatory and

anti-inflammatory states (3, 4). The pro-inflammatory phenotype is

associated with the release of mediators that lead to inflammation

(5–7), whereas the anti-inflammatory phenotype is associated with

the release of mediators that promote wound healing and debris

clearance (4, 8, 9). Under normal healthy conditions, there is a fine

balance between these phenotypes, which ensures homeostasis.

However, in the case of various neurodegenerative diseases, the

intricate balance among microglial phenotypes is lost and there

is sustained activation of microglia into a pro-inflammatory

state, resulting in neuroinflammation (4, 10). Such chronic

neuroinflammation has been associated with the progression of various

neurodegenerative diseases such as Alzheimer’s (AD) and Parkinson’s

(PD) diseases, among others, making neuroinflammation a potential

target for therapeutic intervention.

A predominant aspect of the microglial pro-inflammatory

response is the release of reactive oxygen species (ROS), which is

facilitated by the enzyme NADPH oxidase isoform 2 (NOX2) (11).

ROS generated by NOX2 is normally under tight control of various

protective enzymes, including catalases, superoxide dismutases, and

glutathione peroxidases, as well as small molecule antioxidants (12).

When such regulatory processes fail, the cell enters a state of oxidative

stress (13). The overproduction of ROS combined with the reduced

activity of ROS scavenging enzymes results in oxidative damage of

biomolecules and neurons (12, 14, 15), making NOX2 an attractive

target to combat chronic neuroinflammation (16, 17).

The immune responses, including neuroinflammatory responses,

are tightly controlled by the circadian clock (18). Circadian clocks are

broadly present in organisms that live in the photic zone and ensure

efficient synchronization between physiologic functions and the 24 h

structure of the day (19). This time-based regulation by the circadian

clock is facilitated through a transcriptional-translational negative

feedback loop (TTFL) orchestrated by a pair of transcriptional

activators/repressors (20). Through this intricate feedback loop, the

circadian clock ensures the oscillation of a broad array of genes and

proteins to time cellular physiology. At the cellular level, macrophages

and monocytes have robust circadian clocks with high amplitude

oscillations of their core clock genes and proteins (21, 22). This strong

influence of the circadian clock over immune cell physiology results in

24 h rhythms in levels of cytokines, recruitment of macrophages and

monocytes to tissues, phagocytosis, and response of pattern

recognition receptors (18). Paralleling what is observed in

macrophages, microglia also display high amplitude rhythms in

circadian clock genes and inflammatory cytokines (23, 24).
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Disruption of the circadian clock has been associated with

increased risk for, and progression of, disease states, particularly

diseases with inflammatory components (19, 25–28), including

neurodegenerative diseases (28, 29). Mouse models have shown that

impairment of the microglial clock results in increased levels of

inflammation and worsening of AD symptoms (30). In parallel,

activation of macrophages into pro- and anti-inflammatory

phenotypes directly modulates the function of the circadian clock

(31), indicating the complex relationship between inflammatory

responses, the circadian clock, and disease states. Although

the fields of circadian biology and neuroinflammation have

advanced exponentially in recent years, there remain significant

gaps in our understanding of the interrelationship between

circadian rhythms and neuroinflammation. Gaining a mechanistic

insight into this intricate relationship may advance the development

of interventional therapies that mitigate circadian disruption

thereby preventing neuroinflammation associated with various

neurodegenerative diseases.

The strong dependence of neuroinflammation on NOX2

activation (14, 32–34) and circadian disruption (18, 21, 35, 36) has

been studied individually, but the correlation between NOX2

activation and circadian disruption has yet to be explored in depth.

In the current study, the influence of the circadian clock in a BV2

microglial cell line has been investigated, specifically with respect to

NOX2 expression. Activation of BV2 microglia into pro- or anti-

inflammatory phenotypes resulted in distinct effects similar to those

observed in macrophages, with the clock losing its rhythm under pro-

inflammatory activation and retaining its rhythm under anti-

inflammatory activation (31). Furthermore, the circadian clock in

BV2 microglia exerted strong control over the expression of various

NOX2 enzyme subunits. Inhibition of NOX2 in a pro-inflammatory

state resulted in retention of a functional circadian clock, suggesting

that NOX2 plays an important role in the connection between

neuroinflammation and circadian disruption in the context of

neurodegenerative diseases. Finally, we found the link between the

clock and NOX2 in BV2 cells consistent with data from primary bone

marrow-derived mouse macrophages, indicating a conserved

connection between NOX2 and the clock in cells involved in the

inflammatory response.
Materials and methods

Materials

The BV2 mouse microglial cell line was obtained from Banca

Cellule ICLC, Genova, Italy. Lipopolysaccharide (LPS) 500X was

obtained from Invitrogen (Waltham, MA). Murine IL-4 was

obtained from Peprotech Inc. (Rocky Hill, NJ). NOX2 inhibitors

apocynin and GSK2795039 (GSK) were purchased from Millipore

Sigma (Burlington, MA) and MedChemExpress (Monmouth

Junction, NJ), respectively. Primary antibodies against phospho-

p47phox (Ser 370), PER2, and BMAL1, and goat anti-rabbit

secondary antibody were obtained from Invitrogen. Phosphate

buffered saline (PBS) and trypsin-EDTA for cell culture were
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obtained from Gibco, ThermoFisher Scientific (Waltham, MA). The

Amido Black stain was obtained from ThermoFisher Scientific.
BV2 cell culture and synchronization

BV2 cells were cultured in RPMI-1640 medium (ThermoFisher

Scientific) with L-glutamine (2 mM) and supplemented with 10%

heat-inactivated FBS (ThermoFisher Scientific). All circadian studies

used a serum-shock method to synchronize the cells (22). The cells

were plated in normal growth media (RPMI + 10% FBS) at a density

of 105 cells/mL in 6-well plates and allowed to reach 90% confluence.

Culture media was then replaced with starvation media (RPMI) for

24 h. Following media starvation, the cells were subjected to serum-

shock using 50% FBS for 2 h to synchronize their clock (22, 37–39).

Post-serum shock, normal growth media was used, and the cells were

allowed to recover for 16 h from the serum-shock and attain

homeostasis. Samples were collected every 2 h for 24 h, starting at

16 h post serum-shock (Hours Post Serum Shock 16 or HPS16), and

processed for RT-qPCR and Western blotting.
Bone marrow derived macrophage
extraction and synchronization

Bone marrow was extracted from the tibias and femurs of 3-6

month old male Per2:Luc (C57BL/6J) mice. The bone marrow

progenitor cells plated on 35 mm cell culture plates, were

differentiated with DMEM supplemented with M-CSF and 10%FBS

as mentioned in a previous protocol (22, 39). After 7 days, the

differentiated macrophages were synchronized by a 24 h starve in

serum-free media followed by a 2 h serum-shock with 50% FBS as

mentioned previously (22, 39). Post serum-shock synchronization,

cultures were sealed with grease and glass cover slips and

luminescence was measured over a period of 5 days using

LumiCycle32 (Actimetrics, Wilmette, IL) with cells plated in

Leibovitz media containing Luciferin and 10% FBS (22, 39).
Quantitative real-time PCR

The High Pure RNA Isolation Kit from Roche Molecular Systems,

Inc. (Branchburg, NJ) was used for RNA extraction and purification.

Purified RNA was reverse-transcribed using the High-Capacity

cDNA Reverse Transcription Kit (ThermoFisher Scientific). mRNA

abundance was determined by quantitative PCR using TaqMan Gene

Expression Master Mix (Applied Biosystems, Waltham, MA) and the

following pre-designed TaqMan primer assays: Per2 (Assay ID:

Mm00478099_m1), Bmal1 (Assay ID: Mm00500223_m1), Hprt1

(A s s a y ID : Mm03024 0 7 5 _m1 ) , p 4 7 p h o x (A s s a y ID :

Mm00447921_m1) and gp91phox (Assay ID: Mm01287743_m1).

Hprt1 was used as the reference gene for all RT-qPCR experiments.

Data obtained from RT-qPCR was then input into the ECHO

software (see Supplementary Information) for analysis of oscillation

of gene expression (40).
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Western blotting

Western blotting was used to investigate the oscillation of PER2

and BMAL1 clock proteins, and for quantification of phosphorylated-

p47phox levels in BV2 microglia. Time course samples were collected

from synchronized BV2 cells as described above. For measurement of

phospho-p47phox levels, BV2 cells were plated in 6-well plates at a

density of 105 cells/mL and allowed to reach 90% confluence. At

confluence, cells were treated with LPS (1 mg/mL), or LPS (1 mg/mL) +

apocynin (100 mM), or LPS (1 mg/mL) + GSK2795039 (25 mM) for

24 h. BV2 cells with no additives were used as a control. For all

samples, cells were washed with ice-cold PBS and lysed with RIPA

lysis buffer (Millipore Sigma, Burlington, MA) containing the Halt

Protease Inhibitor Cocktail (ThermoFischer Scientific). Protein

concentrations were measured using the Pierce BCA Protein Assay

Kit (Pierce, Waltham, MA). Samples were loaded at 25 mg of total

protein per lane, resolved by SDS-PAGE (BioRad, Hercules, CA), and

transferred onto nitrocellulose membranes (Bio-Rad). Following

blocking with 5% skim milk in PBST (137 mM NaCl, 2.7 mM KCl,

10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4, 0.2% Tween-20) for 2 h

at room temperature, the membranes were incubated with primary

antibodies against PER2 (1:1000, Invitrogen, Waltham, MA), BMAL1

(1:1000, Invitrogen), and phospho-p47phox (Ser 370) (1:1000,

Invitrogen) at 40C in 1% skim milk in PBST overnight. Post-

overnight incubation, the membranes were washed six times with

PBST and incubated with secondary antibody (1:10,000) for 1 h. The

membranes were then washed with PBST, and the protein bands were

detected using SuperSignal West Pico Chemiluminescent Substrate

(Pierce). Amido black staining (see below) was used to normalize

protein loading. Protein bands were detected using the BioRad

ChemiDoc XRS+ Imager (BioRad). Quantification of detected

protein bands was performed with the ImageLab 6.0.1 software

(Life Science, Waltham, MA).
Amido Black staining

Amido Black staining was used to measure total protein loaded in

a lane as the internal loading-control for Western blots. Following

detection of protein bands, membranes were washed three times in DI

water. The membranes were then stained for 1 min using a staining

solution containing 0.1% amido black reagent in 10% acetic acid

solution. The membranes were then washed twice for 1 min with a de-

staining solution containing 5% acetic acid. Post de-staining, the

membranes were washed two times for 10 min each in DI water. The

membranes were then air-dried and visualized using a Bio-Rad

ChemiDoc XRS+ Imager. Quantification of amido black stained

membranes was done using the ImageLab 6.0.1 software.
ECHO analysis

ECHO version 4.1 was used to analyze all transcriptional and

protein data obtained from the time-course experiments (40). All data

was free run with the ‘smooth data’ and ‘linear detrend’ options

selected. For transcriptional data, the ‘normalize data’ option was also

selected. Data obtained from ECHO analysis was then transferred and
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re-plotted on GraphPad Prism 7 (GraphPad Software, CA, USA).

Details about the ECHO software and ECHO data for all

transcriptome and proteome oscillations are available in the

Additional File 6: Table S1.
ROS determination

ROS released by BV2 in the presence of LPS (1 mg/mL) and NOX2

inhibitors apocynin (100 mM) and GSK2795039 (25 mM) was

measured using two different assays. The DCFDA/H2DCFDA

Cellular ROS Assay Kit (Abcam, MA) was used to measure the

levels of intracellular superoxide produced and the Amplex Red

Hydrogen Peroxide/Peroxidase Assay kit (Invitrogen) was used to

measure the levels of extracellular hydrogen peroxide produced in

BV2 cells. Cells were plated in 96-well black-walled flat-bottom plates

at a density of 105 cells/mL. The cells were incubated with LPS with

and without a NOX2 inhibitor for 2 h in the assay media and

fluorescence was measured using a SpectraMax plate reader

(Molecular Devices, San Jose, CA). Fluorescence values were

normalized to cell number measured using the Presto Blue Cell

Viability Assay (ThermoFischer Scientific) as described below.
Cell viability determination

BV2 cells were seeded in 96-well flat-bottom, black-walled plates

at a density of 104 cells/well and allowed to reach 90% confluence. The

cells were then treated with media containing different additives. The

media was then removed from each well and replaced with 90 mL
fresh media and 10 mL PrestoBlue reagent (ThermoFisher Scientific)

and incubated at 37°C and 5% CO2 for 10 min. Fluorescence was

measured at Ex/Em = 560/590 nm and cell numbers were correlated

against a standard curve.
ELISA

A sandwich enzyme-linked immunosorbent assay (ELISA) was

used to quantify cytokines produced by BV2 cells and primary

macrophages. The cells were plated in 96-well plates at a density of

105 cells/mL and allowed to reach 90% confluence. The cells were

then incubated for 24 h with media containing the following

combination of additives: LPS (1 mg/mL); LPS (1 mg/mL) +

apocynin (100 mM); apocynin (100 mM); LPS (1 mg/mL) + GSK (25

mM); and GSK (25 mM). To understand the influence of IL-4 addition

on cytokine production, cells were incubated with the following

combination of additives: IL-4 (20 ng/mL); LPS (1 mg/mL); IL-4 (20

ng/mL) + LPS (1 mg/mL); and IL-4 (20 ng/mL) for 24 h followed by

LPS (1 mg/mL) for 24 h. Untreated BV2 cells were used as a control.

Post-incubation, the supernatants were collected and levels of two

pro-inflammatory cytokines, TNF-a and IL-6, were measured using

the DuoSet ELISA Assay kit (R&D Systems, MN, USA). ELISA data

was analyzed using GraphPad Prism 7.
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RNA-sequencing and proteomics

Data for RNA-sequencing and proteomics in BMDMs were

acquired and analyzed as mentioned previously (22).
Statistical analysis

One-way ANOVA was used for biological replicates. For each

data point, triplicate biological replicates, each with triplicate

technical replicates, were performed. Circadian rhythmicity was

determined using ECHO analysis software. Statistical analyses were

performed using GraphPad Prism 7 or Excel software (Microsoft).
Results

Expression of clock genes Per2 and Bmal1 in
BV2 microglia follow a daily oscillation

Per2 and Bmal1 are the best studied representatives of the positive

and negative arm of the circadian transcriptional-translational

feedback loop with predictable relationship (19, 20). They have

been extensively studied in BV2 microglia, and hence, were

employed as indicators of clock activity (41–43). To investigate

whether the clock was functional in the BV2 microglial cell line,

Per2 and Bmal1 gene expression were quantified in naïve (resting)

BV2 microglial cells. To assess transcriptional levels of both clock

genes, samples were collected starting at 16 h post-serum shock

(Hours Post Serum Shock 16 or HPS16), every 2 h for 24 h

(Figure 1A). Total RNA was isolated from each sample, and Per2

and Bmal1 transcript levels were measured using RT-qPCR. The

Extended Circadian Harmonic Oscillator (ECHO) application (40)

was used to identify oscillations in the transcriptional data and

determine whether the gene products oscillated with a circadian

period. The ECHO algorithm uses an extended solution of the fixed

amplitude oscillator that incorporates the amplitude change

coefficient and provides detailed information on the nature of

circadian oscillations (40). ECHO analysis indicated that both Per2

(ECHO period = 16 h, ECHO p-value = 8.31 x 10-13) (Figure 1B) and

Bmal1 (ECHO period = 16 h, ECHO p-value = 1.11 x 10-10)

(Figure 1C) displayed oscillations at the transcriptional level,

although these oscillations are shorter than those considered to be

circadian. Both Per2 and Bmal1 mRNA oscillations had peaks at

around HPS20 and HPS36 post serum shock and a trough around

HPS28, paralleling what has been seen in other studies of BV2

microglia (41, 42). To further analyze the circadian clock

components in BV2 microglia, Western blotting was performed

using anti-PER2 and anti-BMAL1 antibodies over circadian time to

quantify protein levels (Figure 1D). Both PER2 (Figure 1E) (ECHO

period = 16 h, ECHO p-value = 2.7 x 10-8) and BMAL1 (Figure 1F)

(ECHO period = 16 h, ECHO p-value =1.3 x 10-4) displayed

significant oscillations according to ECHO with periods and phases

that corresponded to what was noted for these genes at the

transcript level.
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The inflammatory status of the BV2
cell line affects the nature of clock
protein oscillations

A functional circadian clock in bone-marrow derived mouse

macrophages is receptive to the inflammatory state of the cells (31).

Specifically, the activation of bone-marrow derived macrophages

into a pro-inflammatory phenotype using LPS, TNF-a, or IFN-g
suppressed the oscillation of core clock components Per2 and

Nr1d1, whereas anti-inflammatory activation using IL-4 enhanced

their expression (31). To assess whether a similar result is observed

in microglia, we subjected BV2 cells to both pro- and anti-

inflammatory activation. The bacterial endotoxin LPS, and the

cytokine IL-4 have been successfully used in previous work and

are known to be the strongest polarizing stimulants to activate BV2

microglia. Hence, LPS and IL-4 were used to activate BV2 microglia

into pro- and anti-inflammatory states, respectively (44–52).

Therefore, to evaluate the influence of LPS exposure on the

circadian clock in BV2 microglia, BV2 cells were synchronized

using serum-shock, and LPS (1 mg/mL) was added to the growth

media post serum-shock. Time course samples for RT-qPCR

analysis were collected every 2 h for 24 h starting at HPS16. We

found that LPS exposure suppressed the oscillation of the clock

genes Per2 and Bmal1 in BV2 microglia (Figure 2A). This loss of

rhythm in the expression of the positive and negative arm

components of the circadian feedback loop indicates that the pro-

inflammatory activation of BV2 microglia has a suppressive effect

on the circadian system, paralleling what was observed in primary

macrophages (31).

The effect of the activation of BV2 microglia into the anti-

inflammatory phenotype was assessed by exposing the BV2 cell line

to IL-4 (20 ng/mL) after the BV2 cells were synchronized using

serum-shock. As with LPS exposure, time course samples for RT-
Frontiers in Immunology 05
qPCR analysis were collected every 2 h for 24 h starting at HPS16.

Unlike for LPS addition, the expression of Per2 (ECHO period = 16 h,

ECHO p-value = 1.04 x 10-15) and Bmal1 (ECHO period = 16 h,

ECHO p-value = 2.62 x. 10-13) remained oscillatory (Figure 2B)

following exposure to IL-4. However, the characteristics of the

oscillation of Per2 and Bmal1 changed in response to the addition

of IL-4. Compared to the resting state, upon IL-4 exposure both Per2

and Bmal1 underwent a phase inversion, with a peak around HPS24

to 28 and HPS28 to 32 respectively in the IL-4 activated microglia, as

opposed to the peak at around HPS20 for both the genes in the resting

state (compare Figures 1, 2). This change in the oscillatory behavior of

IL-4 activated BV2 cells vs. resting cells, however, does not abrogate

the retention of a daily oscillation in the anti-inflammatory state.
The BV2 microglial circadian clock times the
expression of the NOX2 subunits p47phox

and gp91phox

A hallmark of a cellular pro-inflammatory state is the presence of

oxidative stress, as reflected in the production of ROS (9, 53). NOX2 is

a major contributor to ROS production leading to oxidative stress (11,

15, 32, 54–57). With the known connection between the clock and

inflammation, we hypothesized the circadian clock may control Nox2

gene expression in BV2 microglia. NOX2 is comprised of six subunits,

with gp91phox and p22phox serving as integral membrane proteins that

together form the large heterodimeric subunit flavocytochrome b558
(cytb558) (58), and p40

phox, p47phox, p67phox, and Rac together forming

the cytosolic subunits (55). Activation of NOX2 occurs though a

complex series of protein-protein interactions and translocation (59,

60) driven by phosphorylation of p47phox, which results in attachment

of phospho-p47phox to the p22phox component of cytb558, thus
A B

D E F

C

FIGURE 1

Clock genes Per2 and Bmal1 display circadian oscillations in resting BV2 microglia. (A) BV2 microglia were synchronized using the serum-shock protocol
and samples were collected every 2 h starting at 16 h post serum-shock (HPS16) for RT-qPCR and Western blotting experiments. (B, C) ECHO fitted
plots for mRNA expression of clock genes Per2 and Bmal1 in BV2 microglia. Data represented as fold change in expression using Hprt1 as a reference
gene and HPS0 as a reference sample for the DDCt method of data analysis (n = 3) (D) Time course samples obtained from serum-shock synchronized
BV2 cells analyzed using Western blotting to measure the levels of PER2 and BMAL1. Amido black staining was used to normalize for protein loading. For
complete blot images refer to Supplementary Information (Supplementary Figures 3, 4) (E, F) ECHO fitted plots for PER2 and BMAL1 protein levels in BV2
cells (n = 3). For all ECHO plots, the bold lines depict the ECHO fitted model and the shaded region represents ±1 standard deviation of model at each
time point. Statistical significance was determined using ECHO. All plots had p < 0.05 for ECHO significance fit.
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forming an active enzyme complex. For this study, we focused on two

essential sub-units of NOX2; p47phox and gp91phox (11).

To assess whether gene expression of p47phox and gp91phox was

under circadian control in BV2 microglia, time course samples were

collected every 2 h for 24 h post-HPS16 from serum-shock

synchronized BV2 cells and RT-qPCR was used to measure the

expression of p47phox and gp91phox. In the resting state, both p47phox

(ECHO period = 16 h, ECHO p-value = 1.7 x 10-11) and gp91phox

(ECHO period = 16 h, ECHO p-value = 1.3 x 10-17) displayed

significant oscillations, matching the oscillations in Per2 and Bmal1

(Figure 3A). ECHO plots for both subunits showed peaks around

HPS20-24 and HPS36-40, and a trough around HPS28-32, paralleling

what was seen for Per2 and Bmal1 in the resting state in BV2 cells.

It is known that NOX2 is activated upon addition of LPS (61).

Given what we found relating to the effect of LPS on the clock in BV2

microglia, we next assessed the effect of LPS on NOX2 component

oscillations. The addition of 1 mg/mL LPS after serum

synchronization resulted in the loss of circadian oscillations in both

p47phox and gp91phox transcript levels (Figure 3B). Conversely, the

addition of 20 ng/mL IL-4 after serum synchronization did not result

in a loss of circadian oscillations for either p47phox (ECHO period =

16 h, ECHO p-value = 4.98 x 10-7) or gp91phox (ECHO period = 16 h,

ECHO p-value = 1.57 x 10-6) (Figure 3C). Interestingly, there was

again a shift in phase between the resting and IL-4 activated states,

paralleling what was seen in Per2 and Bmal1 after the addition of IL-4.

p47phox expression underwent a phase inversion, with a peak at

HPS28-32, as compared to a peak at HPS20 in the resting state.

Thus, the two key NOX2 subunits are under circadian regulation in

BV2 microglia.
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NOX2 inhibition supports a role for NOX2
in the circadian inflammatory response of
BV2 microglia

Given the oscillation of NOX2 and the loss of circadian gene

expression both in clock and Nox2 genes in the pro-inflammatory

state, we hypothesized there was a role for NOX2 in clock-driven

inflammation. To validate this role for NOX2 in circadian-driven

inflammation, we next assessed the effect of NOX2 inhibitors on

oscillations in the core clock gene transcripts as well as NOX2 gene

expression. To do so, we employed two NOX2 inhibitors to suppress

NOX2 function – apocynin (4-hydroxy-3-methoxy-acetophenone)

(62–64) and GSK2795039 (GSK, N-(1-Isopropyl-3-(1-methylindolin-

6-yl)-1H-pyrrolo[2,3-b]pyridin-4-yl)-1-methyl-1H-pyrazole-3-

sulfonamide) (65). Apocynin is known to block the translocation of

p47phox to the membrane and its interaction with membrane-bound

p22phox, thereby preventing the formation of the active enzyme

complex (66). Apocynin in not NOX2 specific but is used

indiscriminately as a broad NOX inhibitor (67). GSK is a

competitive reversible inhibitor of NADPH binding to cytb558 in

vitro and in vivo (65), and is selective for NOX2 as compared to the

other NOX isoforms, xanthine oxidase, and endothelial nitric oxide

synthase (65).

As a proxy for the activity of NOX2 in the presence of LPS and

inhibitors, we determined ROS levels via Amplex Red (extracellular)

and DCFDA (intracellular) assays. For both assays, additives such as

LPS, apocynin or GSK were introduced to serum-shock synchronized

BV2 at HPS20 and ROS was measured upon exposure of the BV2 cells

to LPS only, LPS with either apocynin or GSK, or no additive
A

B

FIGURE 2

BV2 circadian clock oscillations are affected by the cell’s inflammatory status. ECHO fitted plots for mRNA expression of clock genes Per2 and Bmal1 in
BV2 microglia (n = 3) under (A) LPS (1 µg/mL) (pro-inflammatory) and (B) IL-4 (20 ng/mL) (anti-inflammatory) activation. Data represented as fold change
in expression using Hprt1 as a reference gene and HSP0 as a reference sample for the DDCt method of data analysis. Bold line represent model fit with
shaded region representing the standard deviation of model at each time point. All plots had p<0.05 for ECHO significance fit.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1106515
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Muthukumarasamy et al. 10.3389/fimmu.2023.1106515
(control) for 2 h. In the presence of LPS, both extra- and intracellular

ROS levels in BV2 microglia increased relative to the control

(Figures 4A, B). In the absence of LPS, neither apocynin nor GSK

influenced the levels of ROS produced (Figures 4A, B). However, in

the presence of both LPS and either apocynin or GSK, the levels of

both extra- and intracellular ROS were significantly reduced relative

to the presence of LPS alone, and were even significantly lower than

the control (Figures 4A, B). These results suggest that the inhibition of

NOX2 may prevent ROS production in BV2 microglia as compared to

even basal levels as well as in the presence of LPS.

A key step in the activation of NOX2 is the phosphorylation of the

p47phox subunit (55). To confirm that inhibition of ROS levels by

apocynin was NOX2 dependent, even in the presence of LPS, Western

blots were obtained to quantify levels of phospho-p47phox upon LPS

and apocynin addition (Figure 4C). Given that traditionally used

loading controls, such as GAPDH and b-Actin, are under the control
of the circadian clock, Amido Black staining was used as an internal

loading control to measure total protein loaded in a lane and

normalize protein levels (68). In the presence of LPS, there was a
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40% increase in phospho-p47phox levels. In the presence of LPS +

apocynin, however, levels of phospho-p47phox fell to approximately

15% below that of the control. These results correlated with

extracellular ROS levels (Figures 4A, B). The reduction in phospho-

p47phox levels in the presence of LPS + apocynin suggests that

apocynin might regulate ROS production upstream of p47phox

phosphorylation (69–71). Interestingly, when we repeated the

experiment with LPS + GSK, we found that GSK did not affect

phospho-p47phox levels (Figure 4C), which was not unexpected as

GSK inhibits the NOX2 cytochrome downstream of the phospho-

p47phox membrane translocation. Overall, these results confirm

effective reduction in ROS levels due to microglial pro-

inflammatory activation through the inhibition of NOX2 in the

presence of apocynin or GSK, suggesting that NOX2 is the primary

source of ROS in BV2 microglia.

Having established that BV2 cells express an active NOX2 that is

inhibited by apocynin and GSK, we next studied the effect of NOX2

inhibition on clock gene expression to validate a role for NOX2 in

clock-driven inflammation. Serum-shock synchronized BV2 cells
A

B

C

FIGURE 3

NOX2 sub-units p47phox and gp91phox are under the control of the BV2 microglial circadian clock. ECHO fitted plots for mRNA expression of NOX2
components gp91phox and p47phox in BV2 microglia (n = 3) under (A) resting, (B) LPS (1 µg/mL) (pro-inflammatory) and (C) IL-4 (20 ng/mL) (anti-
inflammatory) activation. Data represented as fold change in expression using Hprt1 as a reference gene and HSP0 as a reference sample for the DDCt
method of data analysis. Bold line represent model fit with shaded region representing the standard deviation of model at each time point. All plots had
p < 0.05 for ECHO significance fit.
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were exposed to LPS (1 mg/mL) in the presence of apocynin (100 mM)

or GSK (25 mM). Time course samples were collected every 2 h for

24 h starting at HPS16. Addition of apocynin under LPS activation

rescued the oscillations in Per2 (ECHO period = 16 h, ECHO p-value

= 1.17 x 10-6) and gp91phox (ECHO period = 16 h, ECHO p-value =

1.03 x 10-12), which showed oscillations consistent with naïve BV2

microglia (Supplementary Figures 1A, D). Conversely, Bmal1 and

p47phox expression levels no longer showed significant oscillations
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(Supplementary Figures 1B, C). However, the addition of LPS + GSK

rescued oscillations in all four genes: Per2 (ECHO period = 16 h,

ECHO p-value = 2.06 x 10-12), Bmal1(ECHO period = 16 h, ECHO p-

value = 1.02 x 10-17), p47phox (ECHO period = 16 h, ECHO p-value =

5.46 x 10-5) and gp91phox (ECHO period = 16 h, ECHO p-value = 1.48

x 10-10), displaying oscillations consistent with naïve BV2

macrophages at the transcriptional level (Figure 5). This retention

of oscillations under NOX2 inhibition, particularly with GSK,
A B C

FIGURE 4

NOX2 inhibition in BV2 microglia results in the reduction of ROS levels and affects phosphorylated-p47phox levels. ROS levels in BV2 microglia with and
without LPS and, NOX2 inhibitors apocynin and GSK2795039 determined using (A) Amplex Red Assay to measure extracellular hydrogen peroxide levels
and (B) DCFDA Assay to measure intracellular ROS levels. (C) Western blotting analysis of phosphorylated-p47phox levels in BV2 microglia in the presence
of LPS and NOX2 inhibitors apocynin and GSK2795039 (n = 3 to 4). For all experiments, BV2 cells with no additives were used as control sample. Data
are represented as mean ± SEM and analyzed using single-factor ANOVA test. ** denotes p<0.01, **** denotes p<0.0001 and *** denotes p<0.001. For
complete blot images, refer to Supplementary Information (Supplementary Figure 5).
A B

DC

FIGURE 5

Inhibition of NOX2 by GSK2795039 under LPS activation results in the retention of circadian oscillations in BV2 microglia. ECHO fitted plots for mRNA
expression of clock genes (n = 3) (A) Per2 and (B) Bmal1, and NOX2 components (C) gp91phox and (D) p47phox in BV2 microglia in the presence of 1 mg/
mL LPS and 25 mM GSK2795039. Data represented as fold change in expression using Hprt1 as a reference gene and HSP0 as a reference sample for the
DDCt method of data analysis. Bold line represent model fit with shaded region representing the standard deviation of model at each time point. All plots
had p<0.05 for ECHO significance fit.
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suggests that NOX2 might play a circadian regulatory role in

BV2 microglia by facilitating the transition into a pro-

inflammatory phenotype.
NOX2 regulates the circadianly-induced
transition of bone-marrow derived
macrophages into a pro-inflammatory state

To validate that the results obtained in BV2 microglia were

consistent in primary cells, we next studied the effect of NOX2

inhibition on the circadian clock in bone marrow-derived

macrophages (BMDMs). We searched our previous quantitative

RNA-sequencing and proteomic analysis datasets (22) to assess the

oscillation of p47phox and gp91phox in BMDMs. At the transcriptional

level, Per2 (ECHO period = 23.1 h, ECHO p-value = 3.89 x 10-20) and

Bmal1 (ECHO period = 29.3 h, ECHO p-value = 3.96 x 10-20) showed

significant oscillation along with p47phox (ECHO period = 19.5 h,

ECHO p-value = 1.37 x 10-4), though gp91phox had an oscillation

beyond the circadian range (ECHO period = 36 h, ECHO p-value =

6.82 x 10-8) (Supplementary Figure 2A). However, analysis of the

proteomic dataset revealed that along with PER2 protein levels

(Figure 6A), BMAL1 (ECHO period = 28.9 h, ECHO p-value =

1.32 x 10-5), and gp91phox (ECHO period = 19.7 h, ECHO p-value =
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6.76 x 10-5) oscillated with a circadian period, suggesting the post-

transcriptional circadian regulation of gp91phox, which is common in

murine macrophages (Supplementary Figure 2B) (22).

To assess the role of NOX2 inhibition on the circadian clock in

BMDMs, we used luciferase luminescence measurements to track the

levels of PER2 in real time. For this, Per2::Luc mice, in which a Luc

gene is fused in-frame to the 3’ end of the endogenous mPer2 gene,

was used (72). This targeted reporter results in the expression of

PER2::LUC bioluminescence similar to endogenous Per2 expression,

rendering it as a real-time reporter of circadian dynamics (72). Bone

marrow progenitor cells extracted from Per2:Luc C57BL/6J mice were

differentiated with recombinant M-CSF into BMDMs and serum-

shock synchronized, as per a previously established protocol (22, 39).

PER2::LUC bioluminescence in BMDMs was assayed over several

days using a LumiCycle32 with Leibovitz media containing Luciferin

(22, 39). Samples treated with neither LPS nor NOX2 inhibitors added

were used as controls to confirm that PER2 protein levels oscillated

with a circadian period in Per2:Luc BMDMs (Figures 6A, B). We next

treated these BMDMs with either LPS (1 mg/mL) or IL-4 (20 ng/mL)

post-serum shock, as we did with the BV2 microglia, to elicit pro- and

anti-inflammatory activation in the BMDMs respectively. We also

analyzed the effect of LPS with NOX2 inhibitors (apocynin (100 mM)

and GSK (25 mM)) on PER2 levels in BMDMs. When LPS and/or

NOX2 inhibitors were added to the BMDMs post serum-shock
A

B

FIGURE 6

Inhibition of NOX2 by GSK2795039 under LPS activation conserves PER2 oscillation in mouse bone marrow-derived macrophages (BMDMs).
Luminescence traces obtained luciferase measurement of serum-shock synchronized mouse BMDMs with and without LPS, and NOX2 inhibitors.
(A) Cells were exposed to LPS with and without NOX2 inhibitors apocynin and GSK2795039 during the starve stage of the synchronization protocol.
(B) Cells were exposed to LPS with and without NOX2 inhibitors apocynin and GSK2795039 post serum-shock stage of the synchronization protocol.
Luciferase measurements were obtained by the LumiCycle HPS0 to HPS120 (n = 3). Data are represented as mean ± SEM.
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synchronization, LPS resulted in a reduction of PER2 amplitude

compared to the control sample (Figure 6A). When apocynin was

added in parallel with LPS, there was a similar decrease in the

amplitude of the PER2 oscillation. However, samples in which GSK

was added in parallel with LPS maintained the amplitude in PER2

oscillations as compared to untreated BMDMs (Figure 6A).

Conversely, IL-4 addition resulted in an increase in the amplitude

of the PER2 oscillation as compared to the control sample.

Unlike what we had carried out with BV2 microglia, previous

work on the response of PER2 oscillations in BMDMs to

immunological challenge was performed by adding the treatment

prior to serum shock (31). Therefore, to mimic this approach, we

repeated our assay of PER2 oscillations in BMDMs by treating the

cells with immune insults prior to serum shock synchronization. Like

what was seen in BV2 microglia and in post serum shock exposure,

exposure to IL-4 did not affect PER2 oscillations as compared to the

control sample (Figure 6B). When added prior to serum

synchronization, LPS addition resulted in the reduction of PER2

levels overall, as well as a reduction in the amplitude of the PER2

oscillation, as has been previously reported (Figure 6B) (31). When

apocynin was added in combination with LPS prior to serum

synchronization, the reduction in PER2 levels and amplitude of

oscillation was conserved (Figure 6B). However, when GSK was

added in combination with LPS prior to serum synchronization,

PER2 levels and oscillations were similar to that of the control

(Figure 6B). The ability of GSK to rescue the levels and amplitude

of oscillation of PER2 in BMDMs during LPS activation is consistent
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with our results in BV2 microglia, and further suggests that NOX2

might play a regulatory role in the circadianly-regulated transition of

cells from the monocyte lineage into a pro-inflammatory state.
Effect of NOX2 on the pro-inflammatory
profile of BV2 microglia and BMDMs

To further profile the role of NOX2 in the pro-inflammatory

activation of BV2 microglia and BMDMs, we quantified the

expression of two common inflammatory cytokines, TNF-a and IL-

6, in response to LPS treatment with and without NOX2 inhibitors.

Serum-synchronized BV2 cells were stimulated using LPS (1 mg/mL)

with and without apocynin (100 mM) or GSK (25 mM) at HPS20. We

chose HPS20 as a time point both to allow sufficient time for the cells

to recover from the serum-shock, to avoid artifactual gene expression

that occurs immediately following serum-shock (37), and to overlap

with the peak time in Per2 oscillation as observed in inactivated BV2

microglia (Figure 1B). After 24 h incubation starting at HPS20, the

supernatant was collected from BV2 microglia and TNF-a and IL-6

levels were measured using ELISA (Figures 7A, B). BV2 microglia

treated with LPS demonstrated a significant increase of both TNF-a
and IL-6 compared to untreated cells. BV2 microglia treated with only

apocynin, or GSK showed no significant change in TNF-a and IL-6

levels compared to untreated cells. However, when apocynin or GSK

was added individually in parallel with LPS treatment, there was a

significant reduction in TNF-a and IL-6 levels relative to samples
A B

DC

FIGURE 7

NOX2 inhibition in BV2 microglia creates an inflammatory environment similar to anti-inflammatory activation. (A) TNF-a and (B) IL-6 (pro-inflammatory
cytokines) levels in BV2 cells (n = 3) with and without LPS and NOX2 inhibitors apocynin and GSK2795039 measured using ELISA. (C) TNF-a and (D) IL-6
(pro-inflammatory cytokines) levels in BV2 cells (n = 3) under IL-4 activation with and without LPS measured using ELISA. Data are represented as mean
± SEM and analyzed using single-factor ANOVA test. * denotes p < 0.05 and **** denotes p < 0.0001.
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with LPS treatment alone, with the greatest reduction in cytokine

levels observed in the GSK-treated cells.

We next compared NOX2 inhibition to the anti-inflammatory

effect on cytokine production in BV2 microglia. To this end, we

assessed the effect of IL-4 activation on TNF-a and IL-6 production in

BV2 microglia (Figures 7C, D). Serum synchronized BV2 cells were

incubated with IL-4 (20 ng/mL) for 24 h starting at HPS20. After a 24

hr incubation with IL-4, the media was replaced with fresh media

containing LPS (1 mg/mL). In addition, we treated serum

synchronized BV2 cells with LPS and IL-4 simultaneously or

individually and incubated the cells for 24 h starting at HPS20.

While TNF-a levels showed a slight, albeit significant, drop in

levels in the presence of IL-4 (Figure 7C), no significant change in

IL-6 levels was observed (Figure 7D). Co-treatment of LPS and IL-4

resulted in significant reduction of TNF-a levels compared to samples

that had only LPS, IL-6 levels remained unchanged (Figure 7D).

Interestingly, LPS activation of BV2 cells post-24 h incubation with

IL-4 resulted in a significant drop of both TNF-a and IL-6

(Figures 7C, D).

We repeated these experiments in BMDMs to study the effect of

NOX2 inhibition on pro-inflammatory activation in primary cells.

Serum shock synchronized BMDMs were stimulated using LPS (1 mg/
mL) with and without apocynin (100 mM) or GSK (25 mM) at HPS20.

After a 24 h incubation, the supernatant was collected and TNF-a and

IL-6 levels were measured using ELISA (Figures 8A, B). BMDMs

treated with LPS demonstrated a significant increase in TNF-a and

IL-6 levels compared to the untreated control (Figures 8A, B).

Concordant with what was seen in BV2 cells, NOX2 inhibition by

either apocynin or GSK during LPS treatment resulted in a significant

reduction in both TNF-a and IL-6 levels as compared to BMDMs

exposed only to LPS. While LPS + GSK showed a more significant

drop in TNF-a and IL-6 levels than LPS + apocynin in BV2 microglia,

such a difference was not observed in the BMDMs. Compared to

BMDMs treated with LPS, addition of IL-4 along with LPS resulted in

lower levels of IL-6 (Figure 8B). Interestingly, addition of apocynin or

GSK along with LPS resulted in the secretion of significant amounts of

IL-4 in BMDMs compared to naïve BMDMs or BMDMs exposed
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only to LPS (Figure 8C). Comparison of ELISA results from IL-4

activation (Figures 7C, D) and NOX2 inhibition (Figures 7A, B) in

BV2 microglia and that of mouse BMDMs (Figure 8) suggests that

inhibiting NOX2 leads to a microglial response that is similar to that

of an anti-inflammatory activation. This is consistent with the

inhibition of NOX2 using GSK, wherein the circadian clock

retained its oscillation for all genes of interest. These results taken

together might indicate that NOX2 inhibition leads to an anti-

inflammatory response from both microglia and macrophages,

which results in the conservation of circadian oscillations even

upon pro-inflammatory activation.
Discussion

The internal circadian clock comprises a transcription/translation

negative feedback loop (TTFL) that controls physiology in

macrophages and monocytes to regulate the immune response,

playing an important role in the regulation of inflammation, glial

activation, oxidative stress, and autophagy (18, 24). Concordantly,

circadian clock dysfunction has been found to have direct

implications on the progression of inflammation, redox defense,

and cell death (18). While several studies have been directed

towards understanding the impact of circadian regulation on

peripheral macrophages, relatively few have focused on microglia.

We observed that Per2 and Bmal1 gene expression, and PER2 and

BMAL1 protein production in serum-shock synchronized BV2 cells

displayed circadian oscillations at both transcriptional and protein

levels (Figure 1). Studies beyond our own have shown that Per1, Per2,

Rev-erb and Bmal1 display rhythmic expression, but like our study,

have found that while they are predicted to oscillate with a 24 h period

in an anti-phasic pattern, this is not the case in the BV2 microglial line

(Figure 1) (21–23). We predict this is likely due to the circadian

modulatory effects commonly noted in cell lines (41, 42).

While the effect of the microglial circadian clock on its immune

response has been studied (24, 42, 73–75), the effect of microglial

phenotypes on the circadian clock has not been investigated. Pro-
A B C

FIGURE 8

NOX2 inhibition affects the levels of inflammation associated cytokines in mouse bone marrow-derived macrophages. (A) TNF-a and (B) IL-6 (pro-
inflammatory cytokines), and (C) IL-4 (anti-inflammatory cytokine) levels in BMDMs (n = 3) with and without LPS and NOX2 inhibitors apocynin and
GSK2795039 measured using ELISA. Based on ELISA data, we did not see any IL-4 secretion from BV2 microglia. This could be because of the
immortalization process. Data are represented as mean ± SEM and analyzed using single-factor ANOVA test. ** denotes p < 0.01, *** denotes p < 0.001
and **** denotes p < 0.0001.
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inflammatory activation of primary macrophages suppresses Per2

oscillations, whereas anti-inflammatory activation results in Per2

amplification (31). We observed similar results for BV2 microglia,

wherein the cells lost circadian rhythmicity in Per2 and Bmal1

expression upon exposure to LPS (Figure 2A) but retained

circadian oscillations upon IL-4 exposure (Figure 2B). This suggests

that BV2 microglia respond in a similar manner to macrophages and

that there is a strong dependence of the microglial clock on the

cellular inflammatory state.

Oxidative stress resulting from macrophages or microglial

activation is under circadian control (36, 76). NOX4 in aortic

endothelial cells is influenced by the circadian rhythm (77) and the

inhibition of superoxide ameliorated LPS-induced changes in

circadian periodicity in peritoneal macrophages (78). NOX2 is

associated with the progression of various neurodegenerative

diseases (14, 17, 32, 54, 79–84). Notably, the inhibition of NOX2 in

vascular endothelial cells using diphenyleneiodonium chloride (DPI)

restored PER2 rhythmicity under LPS stimulation (85). While these

findings linked the circadian clock and oxidative stress, we have

shown herein that gene expression of p47phox and gp91phox are timed

by the clock, indicating that NOX2 is directly timed by the microglial

circadian clock. Moreover, we demonstrated that the inflammatory

state of the cell has a direct effect on the oscillatory expression of both

p47phox and gp91phox (Figure 3).

While it is clear that NOX2 is controlled by the clock, the

reciprocal effect of NOX2 on the clock was unknown. We

demonstrated that NOX2 inhibition, by apocynin or GSK, resulted

in significant reduction in ROS production and p47phox

phosphorylation when BV2 cells were activated with LPS

(Figure 4). Importantly, GSK also rescued rhythmic expression of

the two clock genes and two NOX2 genes being tracked (Figure 5).

This may indicate that NOX2 plays a crucial role in the transition of

microglia from a resting state into a pro-inflammatory phenotype. In

parallel, previous studies have shown that p47phox knockout mice and

apocynin-treated mice display reduced levels of cerebrovascular

dysfunction and ROS, and increased anti-inflammatory activation

of microglia (86). Combined with our data, this suggests that NOX2

may facilitate the link between the circadian recognition of the pro-

inflammatory microglial phenotype during neuroinflammation (14).

The results observed in BV2 microglia were further supported by

trends obtained in primary mouse BMDMs, with clear oscillations in

the levels of gp91phox and p47phox. The rescue of PER2 by GSK during

LPS treatment directly paralleled what we observed in BV2 microglia

(Figure 6). Of note, apocynin failed to improve the amplitude of PER2

oscillations in the presence of LPS. Furthermore, inhibition of NOX2

by apocynin and knockouts of Nox2 have been shown to reduce pro-

inflammatory microglial phenotypes (81). Concordantly, we observed

that TNF-a and IL-6 production was significantly reduced in BV2

cells when either apocynin or GSK were present with LPS (Figures 7A,

B). These results paralleled the reduction in levels of TNF-a and IL-6

as a result of IL-4 priming (i.e., incubated with IL-4 for 24 h) prior to

exposure to LPS (Figures 7C, D). Similar results were observed when

TNF-a and IL-6 levels were measured in BMDMs under NOX2

inhibition, with both cytokines significantly reduced in the presence

of GSK along with LPS (Figures 8A, B). IL-4 levels significantly
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increased when NOX2 was inhibited using apocynin or GSK in the

presence of LPS (Figure 8C) indicating that NOX2 inhibition might

create a microglial response similar to that of anti-inflammatory

activation by IL-4. This could explain why creation of such an anti-

inflammatory environment supports retention of the circadian clock

in BV2 even in the presence of LPS (Figures 5, 6).

In summary, although neuroinflammation and circadian

disruption have been attributed to be major drivers of various

neurodegenerative diseases (27), their interrelationship remains

unclear. We observed that the BV2 circadian clock depends on the

nature of activation of BV2 cells. Furthermore, inhibiting NOX2

resulted in the maintenance of the circadian clock even under pro-

inflammatory activation. We suggest that NOX2 is a critical regulator

of the microglial inflammatory state and circadian clock function.

NOX2 inhibition under pro-inflammatory activation results in the

retention of a functional circadian clock in microglia by regulating the

inflammatory environment. Our work further suggests a strong link

between NOX2 inhibition and the circadian clock in BV2 microglia

and primary macrophages that could be further explored, for example

in a neuroinflammation mouse model, in the development of

therapeutics to target neuroinflammation.
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