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Anna S. Świerzko

aswierzko@cbm.pan.pl

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 24 November 2022
ACCEPTED 02 January 2023

PUBLISHED 17 January 2023

CITATION
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Chrzanowski J, Sobczuk K, Fendler W,
Matsushita M, Domżalska-Popadiuk I,
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Association of low ficolin-2
concentration in cord serum
with respiratory distress syndrome
in preterm newborns
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Introduction: Ficolin-2 is a serum pattern recognition molecule, involved in

complement activation via the lectin pathway. This study aimed to investigate

the association of ficolin-2 concentration in cord blood serum with complications

related to premature birth.

Methods: 546 premature neonates were included. The concentration of ficolin-2

in cord blood serumwas determined by a sandwich TRIFMAmethod. FCN2 genetic

variants were analysed with RFLP-PCR, allele-specific PCR, Sanger sequencing or

allelic discrimination using TaqMan probes method.

Findings: Cord blood serum ficolin-2 concentration correlated positively with

Apgar score and inversely with the length of hospitalisation and stay at Neonatal

Intensive Care Unit (NICU). Multivariate logistic regression analysis indicated that

low ficolin-2 increased the possibility of respiratory distress syndrome (RDS)

diagnosis [OR=2.05, 95% CI (1.24-3.37), p=0.005]. Median ficolin-2

concentration was significantly lower in neonates with RDS than in premature

babies without this complication, irrespective of FCN2 gene polymorphisms

localised to promoter and 3’untranslated regions: for patients born <33 GA: 1471

ng/ml vs. 2115 ng/ml (p=0.0003), and for patients born ≥33 GA 1610 ng/ml vs. 2081

ng/ml (p=0.012). Ficolin-2 level was also significantly lower in neonates requiring

intubation in the delivery room (1461 ng/ml vs. 1938 ng/ml, p=0.023) and inversely

correlated weakly with the duration of respiratory support (R=-0.154, p<0.001).

Interestingly, in the neonates born at GA <33, ficolin-2 concentration permitted

differentiation of those with/without RDS [AUC=0.712, 95% CI (0.612-0.817),

p<0.001] and effective separation of babies with mild RDS from those with
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moderate/severe form of the disease [AUC=0.807, 95% CI (0.644-0.97),

p=0.0002].

Conclusion: Low cord serum ficolin-2 concentration (especially in neonates born

at GA <33 weeks) is associated with a higher risk of developing moderate/severe

RDS, requiring respiratory support and intensive care.
KEYWORDS

FCN2, ficolin-2, newborn, prematurity, preterm, respiratory distress syndrome (RDS)
1 Introduction

Preterm birth is often associated with multiple pregnancies,

infections and gestational diabetes, however most (even >60%)

cases are unexplained (1). Common prematurity-associated

complications include neonatal sepsis, necrotizing enterocolitis

(NEC), intraventricular haemorrhage, patent ductus arteriosus

(PDA) and retinopathy. Due to smaller surface area for gas

exchange, thicker blood-gas barrier and fewer type II alveolar

epithelial cells, respiratory problems are more common in preterm

than in term infants (2) and are the main reasons for morbidity and

mortality in premature babies. If not recognised and managed

quickly, respiratory disease can escalate to respiratory failure and

cardiopulmonary arrest (3). The similarities in clinical signs for

common causes of respiratory distress like pneumonia, transient

tachypnea of neonates (TTN), respiratory distress syndrome (RDS)

and meconium aspiration syndrome (MAS) make it difficult to

distinguish between them (4).

Human lung development begins between the 4th and 7th weeks of

pregnancy and the formation of alveoli continues until early postnatal

life (5). RDS is a multifactorial and complex disease associated with

inadequate pulmonary surfactant production by immature lungs,

resulting in microatelectasis, severe hypoxia, and acidosis (3, 6).

The development of RDS may be caused by inadequate clearance of

fetal lung liquid as well (7). Genetic susceptibility to RDS in preterm

infants has also been demonstrated (8). RDS long-term complications

include bronchopulmonary dysplasia (BPD) and asthma. In term and

post-mature neonates, respiratory distress may be associated with

meconium aspiration syndrome (MAS), and with a higher incidence

of asthma in later life.

The complement system is a crucial mediator of the immune

response to infection. It interacts with other innate mechanisms as well

as acquired immunity, and engages in cross-talk with other endogenous

cascades, like the coagulation network (9). It also contributes to cell

homeostasis (10), tissue development and repair (11, 12), and

reproduction (13). Low activity of classical, lectin or alternative routes

of complement in sera of premature babies may enhance their

vulnerability to infections due to impaired clearance of pathogens via

opsonophagocytosis or direct lysis of pathogens. The lectin pathway (LP)

of complement activated by microbial glycoconjugates may play a crucial

role in the protection of neonates from infections due to their poor

response to T-independent polysaccharide antigens and limited

transplacental transfer of maternal antibodies [reviewed in (14)].
02
Knowledge concerning associations of LP with complications

related to prematurity is still limited. Several reports have

documented correlations of LP-specific factors in serum with

gestational age [reviewed in (14)]. One of the pattern-recognition

molecules initiating the lectin pathway of complement is ficolin-2. In

a large cohort of neonates (recruited consecutively, including approx.

18% preterms), relative ficolin-2 insufficiency was shown to be

associated with prematurity, low birthweight and perinatal infections

(15). Ficolin-2 was also demonstrated to contribute to the clearance of

serotype III group B streptococci – a common cause of neonatal sepsis

(16), often clinically and radiographically indistinguishable from RDS

(17). In women diagnosed with pre-eclampsia, serum ficolin-2

concentration was significantly lower in comparison with

uncomplicated pregnancies (18, 19). Moreover, deposition of ficolin-2

on apoptotic trophoblasts in preeclampsia was observed (18).

So far, published reports have not demonstrated a strong

relationship between prematurity-associated complications and the

frequency of promoter or exon 8 FCN2 gene variants, known to

markedly influence ficolin-2 level/activity (20). Recently we analysed

15 polymorphisms localised to the FCN2 3’untranslated region

(3’UTR) in a large group of preterm babies. Our data revealed that

reconstructed diplotypes, including both the G variant at rs4521835

and the C variant at rs73664188 (classified into proposed group VI)

were associated with a significantly lower ficolin-2 concentration in

cord serum (21).

Ficolin-2 is considered to be an important factor of innate

immunity. Several reports suggested its association not only with

infections but also with non-infectious diseases and its potential

application as a prognostic marker (22–24). In this study, we

examined ficolin-2 levels in cord-blood serum of preterm neonates

in the context of prematurity-associated complications and its

possible usefulness for their diagnosis. Moreover, the genetically

determined origin of the differences in ficolin-2 levels observed was

verified via analysis of FCN2 gene polymorphisms.
2 Material and methods

2.1 Subjects

Cord blood samples from 546 Polish preterm neonates, including

118 born at gestational age (GA) <33rd weeks (range 24-32 weeks),

and 428 born between 33rd and 37th weeks of pregnancy were
frontiersin.org
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obtained from the Department of Newborns’ Infectious Diseases

(Poznań University of Medical Sciences, Poland), Department of

Neonatology (Medical University of Gdańsk, Poland) and

Department of Perinatology (Medical University of Łódź, Poland).

This cohort included 504 subjects investigated previously (21).

The basic clinical data are presented in Table 1. The clinical data

for neonates separated into the subgroups born at GA <33 and GA

≥33 are presented in Supplementary Table 1. The study was approved

by the corresponding local ethics committees (Bioethics Committee

of The Karol Marcinkowski Poznań University of Medical Sciences,

Independent Bioethics Committee for Scientific Research at Medical

University of Gdańsk, Bioethics Committee of The Medical

University of Łódź). Written informed parental consent was

obtained. This work conforms to the provisions of the Declaration

of Helsinki.

Cord samples were taken at birth into sodium citrate (for DNA

isolation) and clot activator (for serum) containing tubes. Isolated

serum was kept at -80°C. DNA was isolated using GeneMATRIX
Frontiers in Immunology 03
Quick Blood Purification Kit (EURx Ltd. Gdańsk, Poland), according

to the manufacturer’s protocol.
2.2 Determination of ficolin-2 concentration
in cord sera

Ficolin-2 concentrations in 481 cord blood serum samples were

determined by TRIFMA, as described by Świerzko et al. (25). Briefly,

anti-ficolin-2 mAb (ABS 005-16, BioPorto Diagnostics, Denmark) for

384 HB Optiplate coating, whereas biotinylated mAb (GN4, Hycult

Biotech, The Netherlands) and Eu3+-labelled streptavidin (Perkin

Elmer, USA) for protein detection were used. The 25th percentile

(determined for the whole group or for subgroups of neonates born at

GA <33 and at GA ≥33) was taken as an indicator of low ficolin-2

concentration. Although the influence of tubes used for blood

collection on concentration of ficolin-2 determined in serum was

evidenced (26, 27), tubes of the same type were used in all three clinics

collecting samples what makes all data fully comparable.
2.3 Determination of FCN2 polymorphisms

The differences in ficolin-2 levels were analysed in the context of the

FCN2 gene promoter haplotype GGCA [corresponding to single

nucleotide polymorphisms at positions: -986 (rs3124952); -602

(rs3124953); -64 (rs7865453); -4 (rs17514136)] (28) and 3’UTR group

VI diplotype (21), both associated with low ficolin-2 concentration.

Briefly, promoter polymorphisms at positions -986 and -602 were

investigated by PCR-RFLP analysis in 503 DNA samples, according to

the procedures published by Metzger et al. (29). SNP at positions -64

and -4 were determined using allele-specific PCR or PCR-RFLP,

respectively, as described by Szala et al. (30), with minor

modifications. Polymorphisms in the FCN2 3’UTR were determined

via Sanger sequencing or allelic discrimination using TaqMan probes

(21). Haplotypes and diplotypes were created using Haploview 4.2

and PHASE software.
2.4 Statistical analysis

To determine whether continuous variables had a normal

distribution, the Shapiro–Wilk test was conducted. The ficolin-2

concentrations were compared using Mann-Whitney U test or

Kruskal-Wallis test with post-hoc Dunn test, depending on the

number of compared groups. Spearman’s rank correlation test

assessed the correlations. The frequencies of genotypes/clinical

complications were compared by Fischer’s exact or c2 test when

appropriate. Odds ratios were calculated using online MedCalc

software (https://www.medcalc.org). Clinical associations of low

ficolin-2 concentration were verified using multiple logistic

regression analysis. The predictive power of ficolin-2 was evaluated

by receiver operating characteristics (ROC) curves and area under the

curve (AUC) analysis. The Statistica (version 13.3, TIBCO Software)

and SigmaPlot (version 12, Systat Software) software were used for

data management and statistical calculations. P values <0.05 were

considered statistically significant.
TABLE 1 Clinical data of preterm neonates included into the study
(n=546).

Variable N (%)

Sex
M: 285 (52.2)
F: 261 (47.8)

GA <33
GA ≥33

118 (21.6%)
428 (78.4%)

Birthweight <1500 g 62 (11.4)

Multiple pregnancy 106 (19.4)

Gestational diabetes mellitus (GDM) 90 (16.5)

Hypertension in mother 70 (12.8)

Pre-eclampsia 25 (4.6)

Preterm premature rupture of membranes (pPROM)1 99 (18.1)

Antenatal corticosteroid therapy2 221 (40.4)

Caesarean section 349 (63.9)

Early-onset infection (EOI)3 81 (14.8)

Respiratory distress syndrome (RDS)4 140 (25.6)

Patent ductus arteriosus (PDA) 14 (2.6)

Tachycardia5 36 (6.6)

Necrotizing enterocolitis (NEC) 17 (3.1)

Perinatal hypoxia6 20 (3.7)

Respiratory support7 163 (29.9)

Delivery room intubation 31 (5.7)

Mean length of hospitalisation (days)8 15.3

Mean length of stay at NICU (days)8 5.0

1-more than 24 h before delivery, 2- at least one course, 3- caused by variety of agents
(including staphylococci, E. coli, Klebsiella sp. and GBS; in majority of cases however, agents
were not identified and infection was diagnosed basing on clinical symptoms), 4- respiratory
distress with an oxygen requirement to maintain oxygen saturations of ≥90%, accompanied
by a characteristic chest radiograph, 5- >160 per min, 6- pH ≤7.0 or BE ≤12 mM/ml in
umbilical artery or within 1h of life, 7- mechanical ventilation, continuous positive airway
pressure (CPAP) or both, 8- after excluding three cases of death
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3 Results

3.1 Low ficolin-2 levels in the context of
basic clinical characteristics and outcomes

Median ficolin-2 concentrations differed markedly between

neonates born before the 33rd week of gestation and those born at

GA ≥33 (median 1639 ng/ml vs 2036 ng/ml, p=0.0024)

(Supplementary Figure 1A). Moreover, in neonates with very low

birthweight (VLBW, <1500 g), ficolin-2 was significantly lower than

in babies with higher birthweight (median 1496 ng/ml vs 2018 ng/ml,

p=0.0001) (Supplementary Figure 1B).

Weak but significant correlations of ficolin-2 concentration with

Apgar 1’ and Apgar 5’ scores were observed (R=0.18, p=0.0002 and

R=0.24, p<0.0001, respectively). The median ficolin-2 level for babies

with Apgar 1’ score <7 (1559 ng/ml) was lower than that for those

with Apgar 1’ score ≥7 (2014 ng/ml, p=0.01) (Supplementary

Figure 1C). In the case of Apgar 5’, medians were 1409 ng/ml and

2042 ng/ml, respectively (p=0.0098) (Supplementary Figure 1D).

Moreover, ficolin-2 inversely correlated with the length of

hospitalisation (R=-0,2, p<0,0001) and the length of stay at the

neonatal intensive care unit (NICU) (R=-0.13, p=0.007). In

neonates who stayed in the hospital for >2 weeks, the median

ficolin-2 concentration was significantly lower (1646 ng/ml) than in

babies, who stayed in the hospital for a shorter time (2094 ng/ml,

p=0.0001) (Supplementary Figure 1E). In the group of neonates with

ficolin-2 levels below 1295 ng/ml (<25th percentile), the length of stay

at the neonatal ward was generally longer (mean 18 days, range 2-78

days) than in those with higher ficolin-2 (mean 14 days, range 1-91

days, p=0.02). Furthermore, ficolin-2 concentration was significantly

lower (1749 ng/ml) in neonates who stayed at least 5 days at NICU in

comparison with babies who stayed there for up to 4 days or did not

need intensive care (2018 ng/ml, p=0.022) (Supplementary

Figure 1F). It is worth noting that all neonates with ficolin-2

concentration <25th percentile and born at GA <33 required

hospitalisation at NICU and their stay was generally longer than

that of newborns with the same GA but with higher ficolin-2 levels

[22.8 days (range 4-61 days) vs. 14.9 days (range 0-84 days), p=0.002).
3.2 Low ficolin-2 levels in the context of
complications associated with prematurity

The data concerning relationships between low (<25th percentile)

ficolin-2 concentration in the cord blood and selected prenatal clinical

complications of prematurity in the whole cohort are presented in

Table 2. Additionally, FCN2 gene promoter haplotype GGCA and

3’UTR diplotype group VI were included in the analysis.

Corresponding analyses between subgroups depending on

gestational age (<33 weeks and ≥33 weeks, in the context of a wider

panel of complications) are presented in Supplementary Table 2.

Logistic univariate regression analysis revealed associations of low

ficolin-2 with VLBW, FCN2 promoter GGCA haplotype and group

VI 3’UTR diplotype (Table 2). In contrast, premature rupture of

membranes (pPROM) was associated with higher ficolin-2

concentrations. Multivariate analysis confirmed that low
Frontiers in Immunology 04
birthweight [OR=2.14, 95%CI (1.14-4.02), p=0.018] and GGCA

haplotype [OR=2.57, 95%CI (1.26-5.26), p=0.0098], (but not the

group VI 3’UTR diplotype) independently predicted low ficolin-2

concentration (Table 2).
3.3 Low ficolin-2 levels in the context of
respiratory distress syndrome

Next, the univariate and multivariate logistic regression analysis

for RDS as the dependent variable was performed (Table 3).

According to the final model, the likelihood of RDS development

was increased in neonates with low ficolin-2 cord blood serum

concentration [OR=2.05, 95% CI (1.24-3.37), p=0.0051]. It was also

associated with shorter GA [OR=7.64, 95% CI: (4.34-13.43),

p<0.0001], very low birthweight [OR=3.2, 95% CI (1.46-7.03),

p=0.0037], and PDA [OR=11.04, 95% CI (1.87-65.02), p=0.008].

Median ficolin-2 concentration was significantly lower in

newborns diagnosed with RDS compared with neonates without

this complication (for patients born <33 GA: 1471 vs. 2115 ng/ml,

p=0.0003; for patients born ≥33 GA: 1610 vs. 2081 ng/ml; p=0.012)

(Figure 1A). For thirty-eight neonates with RDS born at GA <33, data

about disease severity were available. Kruskal-Wallis test revealed a

significant difference in ficolin-2 levels among groups of babies with

no RDS, those with mild and more advanced RDS (p=0.015)

(medians: 2115 ng/ml, 2002 ng/ml and 1275 ng/ml, respectively).

The post-hoc analysis showed significantly lower ficolin-2 in cord

blood serum in neonates diagnosed with more advanced compared

with those with mild RDS (p=0.0017) or without this complication

(p=0.0084) (Figure 1B).

The management of RDS includes exogenous surfactant therapy

(by intubation in the delivery room) as well as assisted ventilation.

Ficolin-2 concentrations were lower in babies requiring intubation in

the delivery room than in those who did not require it (1461 vs. 1938

ng/ml, p=0.023) (Figure 2A). The duration of respiratory support

(mechanical ventilation and/or continuous positive airway pressure,

CPAP) inversely correlated with ficolin-2 concentration in cord

serum (R=-0.154, p<0.001).

Furthermore, Kruskal-Wallis analysis showed a statistically

significant difference in the level of ficolin-2 across three groups:

without respiratory support, with respiratory support duration <10

days and with respiratory support ≥10 days (p=0.001) (Figure 2B).

Patients who did not require respiratory support had higher median

ficolin-2 concentration (median 2089 ng/ml) compared with patients

requiring ≥10 days of respiratory support (median 1447 ng/ml, post-

hoc Dunn test p=0.0017) but compared with neonates on <10 days of

respiratory support the difference was not statistically significant

(median 1782 ng/ml, p=0.208).

The potential of ficolin-2 to discriminate between patients with

and without RDS was also tested. When all samples were analysed, the

selective power of ficolin-2 appeared rather low [AUC=0.643, 95% CI

(0.588-0.699), p<0.0001] (Figure 3A). When analysis was performed

for neonates born at GA <33 only, it increased to AUC=0.712 [95% CI

(0.612-0.817), p=0.0003] (Figure 3B). Then, we developed a simple

logistic regression model with GA and birthweight (≥/<1500 g) as

independent variables. This model yielded AUC of 0.75 [95% CI
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1107063
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gajek et al. 10.3389/fimmu.2023.1107063
(0.70-0.81, p<0.001] with a sensitivity 59.5% and specificity 88.0%.

Ficolin-2 level incorporation into the model significantly increased its

performance up to AUC 0.80 [95% CI (0.74-0.85), p=0.011)

(Figure 3C). Importantly, sensitivity of this model reached 69.1%

with preserved specificity (79.8%). Furthermore, ficolin-2

concentration could better differentiate between mild and

moderate/severe RDS in newborns born at GA <33 [AUC=0.807,

95% CI (0.644-0.97), p=0.0002] with sensitivity of 75% and specificity

of 91% at cut off 1469 ng/ml (Figure 3D). It should however be
Frontiers in Immunology 05
remembered that the number of samples with corresponding data

concerning disease severity was rather small.
4 Discussion

The main goal of this work was to investigate the association of

ficolin-2 concentration at birth with the risk of complications related

to prematurity. We demonstrated that low (<25th percentile) ficolin-2
TABLE 3 Univariate and multivariate logistic regression analysis1 of potential factors for RDS development.

Variable
Univariate analysis Multivariate analysis

OR 95%CI p OR 95%CI p

GA <33 weeks 11.41 7.14-18.23 <0.0001 7.64 4.34-13.43 <0.0001

Birthweight <1500 g 9.75 5.39-17.63 <0.0001 3.20 1.46-7.03 0.0037

Low ficolin-2 2.51 1.64-3.85 <0.0001 2.05 1.24-3.37 0.0051

Promoter GGCA haplotype 1.33 0.75-2.35 0.326 – – –

3’UTR diplotype group VI 1.31 0.82-2.07 0.255 – – –

Sex (Male) 1.24 0.84-1.84 0.273 – – –

Caesarean section 1.45 0.95-2.20 0.081 1.36 0.81-2.30 0.247

GDM 1.37 0.84-2.25 0.207 – – –

Preeclampsia 1.66 0.72-3.85 0.236 – – –

pPROM 1.11 0.68-1.82 0.667 – – –

Fetal growth
restriction (FGR)

0.98 0.54-1.80 0.956 – – –

NEC 13.65 3.83-48.66 0.0001 3.90 0.86-17.57 0.0767

PDA 18.80 4.15-85.1 0.0001 11.04 1.87-65.02 0.008

Tachycardia 1.23 0.57-2.65 0.59 – – –

Hypertension in pregnancy 1.01 0.57-1.80 0.966 – – –

1- multivariate analysis data are shown when p<0.1 in univariate analysis. The values are marked in bold when statistically significant.
TABLE 2 Univariate and multivariate1 regression analysis of potential factors for low ficolin-2 concentration (below 25th percentile)2 in the whole cohort.

Variable
Univariate analysis Multivariate analysis

OR 95%CI p OR 95%CI p

GA <33 weeks 1.33 0.82-2.15 0.2478 - - -

Birthweight <1500 g 2.12 1.17-3.84 0.0126 2.14 1.14-4.02 0.0177

Promoter GGCA haplotype 3.63 2.06-6.40 <0.0001 2.57 1.26-5.26 0.0098

3’UTR diplotype group VI 2.46 1.54-3.93 0.0002 1.51 0.85-2.70 0.1641

Sex (Male) 1.31 0.86-2.01 0.2107 – – –

GDM 1.01 0.58-1.79 0.9634 – – –

pPROM 0.55 0.31-0.99 0.0460 0.55 0.29-1.05 0.0685

Fetal growth
restriction (FGR)

1.55 0.83-2.88 0.1698 – – –

Intrauterine hypoxia 0.81 0.22-2.96 0.7512 – – –

Hypertension in pregnancy 1.17 0.63-2.17 0.6134 – – –

1- multivariate analysis data are shown when p<0.1 in univariate analysis; 1- 1295 ng/ml. The values are marked in bold when statistically significant.
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is associated with a lower Apgar score, prolonged hospitalisation and

stay at NICU. Moreover, a strong relationship with increased

probability of RDS was found (Table 3). Therefore, immediately

after birth preterms with low ficolin-2 levels are generally in poorer

condition than those with higher concentrations of this protein.

RDS was originally described as hyaline membrane disease-

(HMD)-associated vascular disruption leading to the leakage of

plasma into the alveolar spaces and layering of fibrin and necrotic

cells arising from type II pneumocytes along the alveolar ductus (6). It

develops at or within 24 h after birth, and causes hypoxia in

association with a lack of surfactant. Untreated disease leads to

severe hypoxia resulting in multiple organ failure and even death.
Frontiers in Immunology 06
Lung injury and progression to pulmonary edema are also

suspected to be consequences of the activation of complement and

its cross-talk with the coagulation system (31, 32). Several reports

have described lower concentrations of complement factors and

higher levels of complement activation products in neonates with

RDS, especially in the subgroup poorly responding to surfactant

treatment compared with good responders (33). Elevated C3a was

also proposed to differentiate RDS from RDS accompanied by

perinatal asphyxia (34). Knowledge concerning the role of lectin

pathway factors in RDS is limited to a single report by Dogan et al.

(35), showing significantly higher frequency of MBL2 genotypes

associated with low concentration of MBL in affected neonates. Our
B

A

FIGURE 1

The comparison of ficolin-2 cord blood serum concentration in preterm neonates with and without respiratory distress syndrome (RDS), depending on
gestational age (A) and disease severity in neonates delivered at GA <33 (B). The horizontal lines mark median values. Medians were compared with the
use of Mann-Whitney U test (A) and Kruskal-Wallis test (p=0.015) with post-hoc Dunn test (B).
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results showing increased probability of development of RDS in

preterms with low ficolin-2 confirm an association of the

complement system with this complication. Interestingly, we found

no significant relationship between FCN2 gene polymorphisms

and RDS.

Respiratory distress syndrome may be prevented by corticosteroid

administration and its treatment usually requires mechanical or non-

invasive ventilation and transbronchial exogenous surfactant

application. However, it may still result in the development of

neonatal chronic lung disease and possibly severe long-term lung

damage. Selection of specific and sensitive markers of RDS could be

helpful in the diagnostic process and in choosing appropriate
Frontiers in Immunology 07
treatment. Despite intensive studies, so far no such marker is

available. Our results may be helpful in this context since they

suggest that ficolin-2 insufficiency has the potential to differentiate

between preterms with and without RDS as well as those with mild or

more severe disease, at least in the subgroup born at GA<33

(Figure 3). Moreover, we reported that low ficolin-2 in cord blood

may predict a need for intubation in the delivery room as well as a

requirement for intensive respiratory support.

Several reports evidenced association of low ficolin-2

concentration with diseases of the respiratory system. For example,

relative ficolin-2 deficiency was shown to predispose to the

development of bronchiectasis (36) and to predict disease
B

A

FIGURE 2

Comparison of ficolin-2 concentration in neonates requiring and not requiring intubation at delivery room (A) and/or respiratory support (mechanical
ventilation, CPAP, or both) (B). The horizontal lines mark median values. Medians were compared with the use of Mann-Whitney U test (A) and Kruskal-
Wallis test (p=0.001) with post-hoc Dunn test (B).
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progression in patients with idiopathic pulmonary fibrosis (37).

Although, no association of ficolin-2 with susceptibility to

community-acquired pneumonia was shown (38), its low

concentrat ion may increase the risk of infect ion with

Mycobacterium tuberculosis or M. avium complex (39, 40). Median

ficolin-2 level was also demonstrated to be significantly lower in

paediatric patients with asthma and/or allergic rhinitis suffering from

recurrent respiratory infections than in controls (41). Interestingly,

Schaubel et al. (42) reported that neonatal RDS (with and without

BPD) significantly enhances the risk of asthma in pre-school-aged

children. Although ficolin-2 is synthesised by hepatocytes and

secreted into the circulation, it can be present in the lung as well

(43, 44). Interestingly, very low FCN2 mRNA was found in the fetal

lung (45).

Low circulating ficolin-2 in RDS patients may be inborn or be a

consequence of its consumption or leakage into the air space due to

impaired function of the alveolar-capillary barrier. It may lead not

only to complement activation, but also to activation of the

coagulation system, via complexed MASP (MBL-associated serine

proteases). Purified ficolin-2-MASP complexes were shown to release

fibrinopeptides from fibrinogen, activate factor XIII and in

consequence, to form a clot (46). It is also possible that ficolin-2

interacts with lung surfactant components like cholesterol crystals

which constitute up to 8% of native lung surfactant. Ficolin-2-MASP

complex deposition, followed by complement C4 activation on
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cholesterol crystals was documented by Pilely et al. (47). On the

other hand, cholesterol is a major component of meconium - involved

also in respiratory distress pathology and mentioned among factors

responsible for surfactant inactivation (48).

Apoptosis was proposed to contribute to the pathogenesis of RDS,

since numerous apoptotic cells were detected mainly in the

respiratory epithelium in lungs of affected infants (49). Late

apoptotic/necrotic cells may be also a target for ficolin-2/ficolin-2-

MASP complexes resulting in complement activation and enhanced

phagocytosis (50, 51).

Our data confirmed association of the FCN2 gene promoter

polymorphisms and ficolin-2 concentration, published previously

by others and ourselves (20, 28, 52). We previously reported also

the relationship of 3’UTR diplotypes (group VI) with low ficolin-2

(21). That was confirmed here in univariate analysis, however lost

statistical significance after multivariate logistic regression. It has to be

remembered as well that prenatal steroid administration might affect

ficolin-2 concentration in cord serum. We found a difference between

babies born at GA ≥33 to mothers treated with steroids vs. those of

mothers who were not receiving such a treatment, which however was

no t c onfi rmed i n mu l t i v a r i a t e r e g r e s s i o n an a l y s i s

(Supplementary Table 2B).

We report here for the first time possible involvement of ficolin-2

insufficiency in neonatal RDS development. However, it is not clear

whether low concentration in cord blood is a cause or consequence of
B

C D

A

FIGURE 3

The potency of ficolin-2 to differentiate between babies with and without RDS in whole cohort (A), between neonates with and without RDS, born at GA
<33 (B), between neonates with and without RDS, depending on GA (<33 vs. ≥33) and BW (<1500g vs. ≥1500g) (C) and between babies born at GA <33
with mild (I) and moderate/severe (II+III) RDS (D).
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disease progression. It can be assumed that cord blood ficolin-2 <1500

ng/ml may enhance the probability of moderate/severe RDS and the

need for surfactant therapy and assisted ventilation. Determination of

ficolin-2 concentration in cord serum may be considered a new early

prognostic factor in RDS development, helpful to distinguish RDS

from other prematurity-associated respiratory disorders and thus

facilitating the choice of appropriate treatment. That, however,

should be confirmed by an independent study, ideally taking into

account responsiveness to treatment and changes of ficolin-2 levels

during the course of RDS.
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