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Neuropathic pain is a common type of chronic pain, primarily caused by

peripheral nerve injury. Different T-cell subtypes play various roles in

neuropathic pain caused by peripheral nerve damage. Peripheral nerve

damage can lead to co-infiltration of neurons and other inflammatory cells,

thereby altering the cellular microenvironment and affecting cellular

metabolism. By elaborating on the above, we first relate chronic pain to T-cell

energy metabolism. Then we summarize the molecules that have affected T-cell

energy metabolism in the past five years and divide them into two categories.

The first category could play a role in neuropathic pain, and we explain their roles

in T-cell function and chronic pain, respectively. The second category has not yet

been involved in neuropathic pain, and we focus on how they affect T-cell

function by influencing T-cell metabolism. By discussing the above content, this

review provides a reference for studying the direct relationship between chronic

pain and T-cell metabolism and searching for potential therapeutic targets for

the treatment of chronic pain on the level of T-cell energy metabolism.

KEYWORDS
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1 Introduction

Chronic pain is defined as pain that lasts or recurs for three months or longer (1). The

main clinical manifestations are spontaneous pain, hyperalgesia and allodynia (2),

accompanied by existing or potential tissue damage. Neuropathic pain is the most

common type of chronic pain, with a prevalence of over 80% (3) and the most

comprehensive and established animal models (4). It is characterized as a chronic pain

syndrome resulting from a lesion or disease affecting the sensory nervous system (5),
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comprising central and peripheral neuropathic pain (CNP and

PNP) (6). PNP, which can occur after nerve injury, is the most

common type of clinical neuropathic pain (7, 8).

The mechanism of neuropathic pain mainly involves peripheral

sensitization and central sensitization. Peripheral sensitization

refers to the phenomenon that the threshold of nociceptors is

reduced due to nerve injury (9), while central sensitization is

often manifested by the enhanced response of the pain loop in

the central nervous system (CNS) (10). Infiltrated macrophages and

T cells, as well as activated microglia and astrocytes, can release

several pain regulators, contains proinflammatory cytokines, such

as tumor necrosis factor-a (TNF-a), interleukin-1b (IL-1b), IL-17
and interferon-g (IFN-g), causing pain hypersensitivity (11–14).

Particularly, T cells are able to infiltrate the dorsal root ganglion

(DRG) and release the pro-inflammatory mediator leukocyte

elastase (LE), leading to mechanical ectopic pain; and are

involved in mechanical nociceptive hyperalgesia in the spinal

cord, playing an important role in pain in the central and

peripheral systems (15).

Cellular energy metabolism primarily relies on three nutrient

types: carbohydrates, proteins, and fats. Normal cells break down

proteins and fats into smaller molecules that enter the mitochondria

to participate in the tricarboxylic acid (TCA) cycle. In contrast,

glucose metabolism, a key aspect of carbohydrate metabolism,

occurs in two distinct scenarios. Both conditions involve

glycolysis, a series of biochemical reactions that convert glucose

to pyruvate. Under aerobic conditions, pyruvate enters the

mitochondrial TCA cycle for energy production, a process

referred to as glucose oxidative phosphorylation (OXPHOS) or

aerobic glycolysis. Under anaerobic conditions, pyruvate is

converted to lactate in the cytoplasm while simultaneously

generating energy, known as anaerobic glycolysis. However,

tumor cells exhibit distinct energy metabolism compared to

normal mature cells. Regardless of oxygen availability, tumor cells

primarily rely on glucose consumption and lactate production for

energy, a phenomenon known as the “Warburg effect” or aerobic

glycolysis (16). Recent studies have demonstrated that activated T

cells share similar energy metabolism with tumor cells, utilizing the

“Warburg effect” as a critical energy source (17). To prevent

ambiguity, we adopt the terms “anaerobic glycolysis” for lactate

production in the cytoplasm and “glucose OXPHOS” for the

process of glucose conversion to pyruvate followed by

mitochondrial entry and OXPHOS. Moreover, the conversion of

glucose to pyruvate is referred to as glycolysis. In recent years, the

metabolic regulation of T-cell activity and function has become a

focal point of research. This area of study has been widely explored

in various diseases, such as oncology (18), metabolic syndrome (19),

autoimmune diseases (20), and inflammatory diseases (21). While

direct studies on the relationship between T-cell energy metabolism

and neuropathic pain are relatively limited, there exist numerous

molecules that play a role in T-cell metabolism and are implicated

in the development of neuropathic pain.

The review first outlines the functions of different subpopulations

of T cells in peripheral neuropathic pain arising from persistent nerve

injury. Subsequently, it provides a comprehensive overview of the

changes in the microenvironment caused by nerve injury and
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alterations in cellular energy metabolism that result from these

changes. It also discusses the primary metabolic pathways adopted

by T cells. We have focused on identifying the crucial metabolic

molecules in T cells that have garnered attention in recent five years

of research, categorizing them into two groups: (1) molecules of T-cell

metabolism that participate in neuropathic pain, and (2) molecules of

T-cell metabolism that have yet to play a role in neuropathic pain.

These perspectives help to explore the critical role of T-cell metabolic

molecules in the development and occurrence of neuropathic pain and

provide potential targets for intervening in neuropathic pain.
2 T-cell functions in neuropathic pain

Different T cell subtypes play different roles. In the nerve injury-

induced neuropathic pain model, CD4+ T cells infiltrate into the

injured nerve, DRG, and spinal cord (22–26) and facilitate the

transition from acute to chronic pain (25) and maintenance of

chronic pain with different subpopulations acting distinctively (25,

27). Several studies have revealed that compared with mice from

heterozygous litters, interferon-g receptor 1 (IFN-gR1) deletion

mutants and congenital athymic nude mice deficient in mature T

cells show significantly less mechanical allodynia and thermal

hyperalgesia after chronic constriction injury of the sciatic nerve

(CCI) (28, 29). Corresponding transfer of T helper 1 cells (Th1) to

nude mice enhances pain hypersensitivity in recipients to levels similar

with the heterozygous donor rats (28, 29). In contrast, passive transfer

of anti-inflammatory cytokine-producing Th2 into heterozygous rats

significantly attenuates their pain hypersensitivity (29). Actually, the

circulating levels of Th2-related IL-10 and IL-4 in patients with painless

neuropathy are higher than those in patients with painful neuropathy

and controls (30). These suggest that a Th2-mediated anti-

inflammatory response may play a crucial role in regulating pain

development. In a CCI model, IL-17A-positive T cells are detected by

immunocytochemistry within the damaged nerve, and lack of Th17 is

associated with reduced thermal nociceptive sensitization (26, 31).

Depletion of regulatory T cells (Tregs) is achieved by injection of anti-

CD25 antibody, and it is observed that Treg-depleted mice exhibit

prolonged mechanical hypersensitivity (32). In studies of neuropathic

pain resulting from peripheral nerve injury in mice, CD8+ T

lymphocytes aggregate to a greater extent in the DRG and dorsal

horn by migration after CCI, yet infiltrate mainly in the ventral horn

after transection. These cells have been found to produce IL-10, which

can relieve chronic pain (33), indicating that they may play a role in the

resolution of chronic pain. However, it is worth noting that CD8+ T

cells are not the only source of IL-10, as CD4+ T cells and macrophages

are also capable of producing this cytokine (34).
3 T-cell energy metabolism in
neuropathic pain

After peripheral nerve injury, various cells such as macrophages

(35), glial cells (36), and lymphocytes (37) infiltrated the injured

nerve, DRG, or spinal cord. These cells, along with the neurons,
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released numerous mediators that contributed to the alteration of

the microenvironment in which they were located. These alterations

induced a diverse range of effects on the cells in that environment,

such as facilitating the conversion of inflammatory phenotypes (38)

and triggering oxidative stress (39). Recent studies showed that

metabolic abnormalities could occur in this microenvironment

(40), which theoretically could modify neuropathic pain if

rectified (41). Interestingly, metabolic abnormalities could also

exist in T cells. Notably, in previous studies, it has been found

that different types of T cells possess different metabolic patterns,

and that their functions can be influenced by altering their

metabolic processes.
3.1 Microenvironment changes due to
nerve injury

In response to severe injurious stimuli, peripheral tissues and

nerves may undergo a series of changes that induce alterations in

the microenvironment surrounding the cells. For instance, nerve

cells and other cells release a series of factors, causing to an

inflammatory shift in the microenvironment. Specifically,

following nerve lesions, neurons release reactive oxygen species/

reactive nitrogen species (ROS/RNS) (42) and excess glutamate

(43). Mast cells, neutrophils, and macrophages within the

microenvironment subsequently release inflammatory factors

such as adenosine triphosphate (ATP), bradykinin, prostaglandin

E2, histamine, Serotonin (5-HT), IL-1b, IL-6, neural growth factor,

and TNF-a, leading to peripheral inflammation. This inflammatory

response further activates neurons to release pain-causing factors

including substance P, calcitonin gene-related peptide (CGRP),

neurokinin A, and nitrous oxide (NO), resulting in neurogenic

pain (44). Sustained injurious stimuli lead to a prolonged

inflammatory process, with lymphocytes releasing factors to

create an “inflammatory soup” that lowers pain thresholds

through peripheral sensitization due to inflammation-related

changes (45).

In addition to eliciting inflammatory changes, the

microenvironment experiences metabolic alterations. Functional

neuroimaging studies reveal that glucose metabolism undergoes

enhancement and glucose transporter 3 (GLUT3) protein

expression increases in the medial prefrontal cortex (mPFC),

which plays a pivotal role in neuropathic pain development (46).

Classical antineuropathic pain therapeutics, such as gabapentin

(47), and transcranial direct current stimulation (48), can mitigate

pain responses by modulating glucose metabolism in the mPFC.

The enhancement of glucose metabolism implies that there might

be a temporary decrease in glucose within the microenvironment.

These metabolic alterations result in the accumulation of various

intermediates, including phosphoenolpyruvate (PEP) (41, 49) and

lactate (41, 49, 50), which subsequently disturb the acid-base

equilibrium in the microenvironment, driving a cascade of

pathophysiological processes (41). Of note, astrocytes can

produce L-lactate through the astrocyte-neuron lactate shuttle

(ANLS), playing a crucial role in maintaining synaptic
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transmission (51, 52). Additionally, it has been shown to increase

the concentration of glutamate after excitatory neuronal injury (53).

Alterations in the microenvironment could affect the cells

within it and contribute to multiple pathological processes in

neuropathic pain. For instance, the binding of ROS/RNS to

receptors, such as Transient receptor potential cation channel

subfamily M member 2 (TRPM2) expressed by glial cells and

leukocytes, triggers the expression of pro-inflammatory mediators

through the activation of mitogen-activated protein kinase (MAPK)

and nuclear factor kB (NF-kB) (54, 55). Moreover, these

extracellular changes can also result in alterations to the

intracellular metabolism, which will be elaborated upon in the

subsequent section.
3.2 Cellular metabolism alterations due to
microenvironment changes

Due to microenvironment changes, various cellular

metabolisms undergo certain alterations (40, 56). The

accumulation of ROS/RNS by injury can impair mitochondria in

the nociceptive pathway and induce mitochondrial dysfunction and

can severely impair OXPHOS, resulting in metabolic disturbances

(57), which has a significant impact on the mechanisms of

neuropathic pain. It can occur in neurons, glial cells, and immune

cells (55, 58), and restoring normal mitochondrial function can

alleviate both the induction and persistence of pain (59). Targeting

mitochondrial metabolism has also emerged as a potential

therapeutic approach for neuroinflammation in progressive

multiple sclerosis (60). Lactate can shuttle between glial cells and

neurons, acting as one of the essential energy sources for neurons in

the context of nerve injury, in order to maintain and promote pain

transmission (51). Furthermore, Glutamate can be taken up by

various cells and increase the metabolism of glutamine (41, 61, 62).

It is noteworthy that, besides enhancing the metabolism of

glutamate, glutamine also facilitates anaerobic glycolysis.

Glutamate can be taken up by astrocytes via a sodium-dependent

mechanism, which increases the intracel lular sodium

concentration, activates the sodium-potassium-ATPase on the cell

membrane, promotes glucose uptake, and thus promotes anaerobic

glycolysis (41). Furthermore, the presence of IFN-g within the

microenvironment has been implicated in potential modulatory

effects on microglial cells (63). According to recent literature (63),

brief exposure to b-amyloid alters the metabolic profile of microglia

from OXPHOS to glycolysis by activating the mammalian target of

rapamycin/hypoxia-inducible factor-1a (mTOR/HIF-1a) pathway.
However, prolonged b-amyloid exposure reduces both glycolysis

and OXPHOS, which impairs microglial responsiveness to harmful

stimuli. In a murine model of Alzheimer’s disease, exogenous IFN-g
activates the mTOR pathway to promote glycolysis, which mitigates

b-amyloid-induced microglial activation and ameliorates resultant

neurofunctional deficits (63).

In particular, the metabolism of T cells could be influenced by

alterations in the external environment, which in turn may affect a

range of T cell functions. Current research has shown that activation of

the T cell receptor (TCR) leads to enhanced uptake of GLUT1 on T
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cells (64). Following enhancement of T-cell glycolysis, the build-up of

the metabolic intermediate phosphoenolpyruvate (PEP) can inhibit the

endoplasmic reticulum (ER) calcium (Ca2+) channel, leading to

impaired Ca2+ uptake by the ER Ca2+ store. This leads to a rise in

cytoplasmic Ca2+ concentration, further activating the inflammatory

pathway, driving T-cell differentiation towards a pro-inflammatory

phenotype, and inducing the transcription of pro-inflammatory

cytokines (41, 65). Lactate accumulation can enhance NF-kB
pathway-mediated immune responses and inflammatory cascade

reactions in Th17 (66). Excessive glutamate may contribute to

enhanced glutamine metabolism in T cells, which is a potential

outcome of altered T-cell energy metabolism.
3.3 T-cell function changes due to cellular
metabolism alterations

It is noteworthy that various T-cell subtypes rely on distinct

metabolic pathways, and their energy metabolism plays a pivotal

role in their activation, differentiation, and effector functions (67).

In a quiescent state, T cells primarily catabolize glucose and fatty

acids (FA) via OXPHOS to maintain their basal cellular state and

sustain their circulation in lymphoid tissues (17, 68).

Correspondingly, when activated, CD4+ T cells and CD8+

cytotoxic T cells predominantly shift their metabolic program

towards anaerobic glycolysis and glutaminolysis, allowing for the

rapid generation of copious amounts of ATP and biosynthetic

precursors necessary to sustain their activation and effector

responses (69). Distinct metabolic programs are employed by

different effector CD4+ T cell subtypes after activation.

Specifically, Th1, Th2, and Th17 predominantly rely on glycolysis

as their primary energy-generating pathway (70–72).

Notwithstanding the fact that Th1 and Th17 cells predominantly

rely on glucose as their principal fuel source and engage in

glycolysis, their respective tendencies toward anaerobic glycolysis

vs glucose oxidation via phosphorylation are divergent. Specifically,

Th17 shows a preference for pyruvate conversion to lactate in order

to expeditiously synthesize non-mitochondrial ATP (73), while Th1

cells exhibit a greater proclivity for pyruvate oxidation (20). Tregs

predominantly rely on FA oxidation (FAO) and OXPHOS to

maintain their function (71, 74). Memory CD4+ T cells primarily

utilize glycolysis, while during the transition from activation to

memory in CD8+ T cells, cellular metabolism is reprogrammed

(75), leading to enhanced OXPHOS, FAO, and mitochondrial

maintenance (76). As a result, memory CD8+ T cells primarily

rely on FAO as their metabolic pathway. Overall, T cell energy

metabolism includes glycolysis, FA OXPHOS, and glutaminolysis,

as illustrated in Figure 1B.

Various enzymes and proteins participate in the metabolic

processes discussed above. Among them, the glycolysis pathway is

extensively and in-depth researched. The mTOR pathway and the

transcription factor HIF-1a are key promoting regulatory factors in

the progression of glycolysis (77, 78), while AMP-activated protein

kinase (AMPK) and phosphatase and tensin homolog (PTEN) act

as negative regulators (79, 80). It is worth noting that T cell surface-

specific activation molecules, such as TCR (64), CD28 (81), and IL-
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OXPHOS, FA are converted into fatty acyl-CoA in the cytoplasm

and then transported into mitochondria by carnitine

palmitoyltransferase I and II to play a crucial role in OXPHOS.

C-Myc has an inhibitory effect on this critical enzyme. Glutaminase

is a key enzyme in the glutamine metabolism process, and c-Myc

has a promoting effect on glutamine metabolism (83). See Figure 1A

for the detailed mechanisms of specific molecules and

metabolic processes.

The adaptation of specific metabolic phenotypes is critical for

T-cell immune function, and the regulation of cellular metabolism

plays a pivotal role in shaping the plasticity of T-cell functions.

Manipulating classical molecules involved in T-cell metabolism can

have a profound impact on the function of these immune cells. For

instance, the deficiency or restraint of mTOR can repress glycolysis,

hindering the activation of CD4+ T cells to differentiate into Th

effector cells, while promoting the generation of Tregs (84).

Conversely, augmented the mammalian target of rapamycin

complex 1 (mTORC1) signaling can promote Th1 or Th17 cell

differentiation by enhancing glycolysis and suppressing Treg

differentiation (85). Notably, although the absence of mTORC1

does not affect Treg differentiation, its function is suppressed (86–

88). HIF-1a plays a crucial role in Th17 differentiation and

function, while inhibiting Treg differentiation by facilitating

glycolysis (72, 89). The c-Myc transcription factor mainly affects

T-cell activation by modulating glycolysis. T cells deficient in c-Myc

exhibit impaired proliferation and IL-2 secretion and are unable to

differentiate into effector T cells (90). The AMP-activated protein

kinase (AMPK) pathway is a key modulator of energy metabolism

that exerts profound effects on T-cell subset differentiation. AMPK

has been shown to regulate Th1 and Th17 differentiation by

suppressing glycolysis through the inhibition of mTORC1.

Additionally, AMPK-mediated FA OXPHOS promotes Treg and

memory CD8+ T-cell differentiation and function, indicating the

intricate interplay between metabolic pathways and T-cell

plasticity (91).
4 T-cell metabolism-associated
molecules in neuropathic pain

In T-cell metabolism researches, the classical molecules

mentioned earlier have been thoroughly explored for their

significant impact on T-cell function. We designate these

molecules as the classical molecules involved in T-cell energy

metabolism. However, with the advancement of research in this

field, it has become apparent that certain molecules seemingly

unrelated to metabolism also partake in T-cell metabolic

pathways and regulate T-cell function via such pathways.

Therefore, we classify these molecules as those that affect T-cell

energy metabolism and refer to them as T-cell metabolism-related

molecules. We conducted a focused screening of T-cell metabolism-

related molecules in the literature over the past five years and found

that these molecules do not exert their effects in every T-cell, but

rather depend on specific T-cell subtypes. Subsequently, we
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classified T-cell metabolism-related molecules into two distinct

categories based on their association with chronic neuropathic

pain. The first category encompasses molecules that participate in

the underlying mechanisms of chronic neuropathic pain,

underscoring their importance in this condition. The second

category consists of newly reported molecules that regulate T-cell

metabolism, highlighting their critical role in this cellular process.

Given their distinct emphases, we refer to them as “molecules

affecting neuropathic pain” and “molecules affecting T-cell

metabolism”, respectively. These molecules are shown in Figure 2

and Table 1.
Frontiers in Immunology frontiersin.or05
4.1 Molecules affecting neuropathic pain

In this section, we provide an overview of T-cell metabolism-

related molecules implicated in chronic neuropathic pain over the

past five years. These molecules include pyruvate kinase M2 subtype

(PKM2) and adiponectin, which mainly function in Th1 cells;

insulin-like growth factor 1 receptor (IGF-1R), PKM2, cortistatin

(CST), and adiponectin, which primarily work in Th17 cells; and

P2X receptor 7 (P2RX7) that acts in CD8+ T cells. We initially

present how these molecules modulate the functions of distinct T

cell subpopulations by regulating their energy metabolism.
A

B

FIGURE 1

(A). Classical molecules regulating T-cell energy metabolism. (B). The energy metabolism preferences of T cells with different state and subtype. (1)
HIF-1a: promotes glycolysis; inhibits OXPHOS of pyruvate; (2) c-Myc: enhances glycolysis; promotes glutamine catabolism. (3) AKT: foster
glycolysis; (4) mTORC1: promotes glycolysis. (5) AMPK: prevent lipid synthesis; promote lipid oxidation; inhibit glycolysis. (6) TCR: promote
glycolysis. (7) CD28: promote glycolysis. (8) IL-7R facilitates glycolysis; promotes OXPHOS. (9) LDHA: promotes glycolysis. HIF-1a, hypoxia-inducible
factor-1a; mTORC1, the mammalian target of rapamycin complex 1; AMPK, AMP-activated protein kinase; TCR, T-cell receptor; IL-7R, interleukin-7
receptor; LDHA, lactate dehydrogenase.
g
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Subsequently, we explore the roles and underlying mechanisms of

these molecules in relation to chronic neuropathic pain. Based on

the discussion presented, it is clear that T cell subtypes are involved

in chronic neuropathic pain (as extensively examined in the

previous section), and these molecules not only affect T cell

functions, but also directly influence the pathological progression

of chronic pain. It implies that these molecules may affect T cell

function by modulating their metabolism, ultimately contributing

to the development of chronic neuropathic pain. Although direct

evidence to substantiate this perspective is presently limited, the

growing number of associated molecules underscores the significant

potential and research value in this domain. In the subsequent

sections, we will offer an in-depth analysis of these molecules.
4.1.1 PKM2
Pyruvate kinase M2 subtype (PKM2), an intermediate in

glycolysis, catalyzes the last step of glycolysis by the conversion

from PEP to pyruvate (92). As a key enzyme in glycolysis, PKM2 is
Frontiers in Immunology 06
present in multiple cells and participates in metabolic processes (93,

94). The current studies demonstrate that PKM2 is requisite for Th1

and Th17 differentiation (95). Accordingly, interference with PKM2

expression by small interfering RNA (siRNA) or pharmacological

inhibition of PKM2 activity could suppress its involvement in

glycolysis and subsequently restrict the function of Th1 and Th17

(96, 97). It has been demonstrated that PKM2 is a potential

therapeutic target in various diseases (98–100). For instance, in a

recent study, PD-1-targeted particles suppressed activated T cells

and alleviated autoimmunity exactly via inhibition of PKM2-

mediated glycolysis (98).

The role of PMK2 in neuropathic pain has been studied (101).

In the rat animal model of CCI-induced neuropathic pain,

peripheral nerve injury significantly raised PKM2 levels in spinal

cord. Double immunofluorescence staining displayed co-

localization of PKM2 with neurons, microglia and astrocytes.

Intrathecal injection of PKM2 siRNA leads to attenuation of CCI-

induced extracellular regulated protein kinases (ERK) and signal

transducer and activator of transcription 3 (STAT3) activation, as
FIGURE 2

Metabolism-Related Molecules in Different T Cell Subtypes (Th1, Th17, Treg, and Activated CD8+ T Cells) Involved in Neuropathic Pain from Nerve
Injury. Red letters on a yellow background indicate molecules capable of playing a role both in T cell function and in chronic neuropathic pain; red
letters on a white background indicate molecules that currently play a role only in T cell function, but not in chronic neuropathic pain.
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well as CCI-induced mechanical allodynia and thermal

hyperalgesia. The above findings suggest that inhibition of PKM2

expression can effectively attenuate CCI-induced neuropathic pain

and inflammatory responses in rats, possibly through modulation of

ERK and STAT3 signaling pathways (101). This study illustrates

that PKM2 is an important contributor to neuropathic pain,

however it fails to focus on the impact on T cell metabolism in

chronic pain, which would be a valuable direction for

future research.

4.1.2 Adiponectin
Adiponectin is an adipocytokine primarily secreted by adipose

tissue (102), modulating the regulation of glucose and FA oxidation

(103, 104). Adiponectin binds to several receptors, including two

adiponectin receptors (AdipoR1 and AdipoR2) and one cadherin-

like receptor (105). Previous studies have demonstrated that

Adiponectin exerts a pivotal regulatory influence on T-cell

differentiation and function (106). Recent research has revealed

that in Th1, after binding to the adiponectin receptor, adiponectin

can interfere with the transcription factor HIF-1a, resulting in the

suppression of glycolysis. Similarly, upon binding to AdipoR1,

Adiponectin can suppress phosphofructokinase 1 (PFK1), the

principal enzyme involved in glycolysis, thereby influencing

glycolysis and inhibiting Th17 function (107, 108). These findings

suggest that adiponectin can modulate T-cell metabolism to affect

its function, thereby suggesting the potential of adiponectin as a

therapeutic target for T-cell-related diseases. Notably, in patients

with obesity, adiponectin can regulate the activity of pro-

inflammatory CD4+ T cells (108), and its effectiveness in treating

obesity has been demonstrated (109).

Studies have demonstrated that adiponectin plays a protective

role in neuropathic pain (110). L Sun and colleagues conducted
Frontiers in Immunology 07
experiments on wild-type (WT) and adiponectin-knockout (KO)

mice with partial sciatic nerve ligation (pSNL) or sham surgery,

assessing pain behavior and protein levels (110). The results

revealed that adiponectin-KO mice exhibited significantly lower

thermal and mechanical pain thresholds than WT mice under both

physiological and pathological conditions. Adiponectin was found

to regulate thermal nociception by inhibiting the activation of p38

MAPK and transient receptor potential cation channel subfamily V

member 1 (TRPV1) in neurons, microglia, and cortical neurons,

underscoring its regulatory role in neuropathic pain. Targeting

adiponectin may be a promising therapeutic strategy for reducing

thermal sensitivity via inhibiting the activation of DRG neurons,

spinal cord microglia, and somatosensory cortical neurons. In

addition, adiponectin has been shown to regulate T-cell

metabolism and function. Targeting Th1 and Th17 metabolism

may inhibit the function of these T cells, which could alleviate

neuropathic pain. Although further research is needed to fully

explore this treatment approach, it offers a novel direction for

developing more effective neuropathic pain treatment strategies.

4.1.3 IGF-1R
The IGF system is essential in diverse physiological processes,

including cellular metabolism, growth, and differentiation (111).

Insulin-like growth factor 1 receptor (IGF-1R) is one of the major

signaling receptor tyrosine kinases that mediate the actions of IGF1

and IGF2 (112), which could be expressed in CD4+ T cells,

particularly the Th17 (113). One step further research indicates,

in CD4+ T cells, IGF1 binding to IGF1R mediates signaling through

the PI3K-AKT-mTOR pathway to increase anaerobic glycolysis,

which subsequently facilitates Th17 cell differentiation (113). Thus,

IGF1 might be considered a decision-making molecule for Th17

differentiation, on the basis of an enhanced pathway of anaerobic
TABLE 1 Molecules of T cell energy metabolism in chronic neuropathic pain.

Molecules Metabolism T cell Chronic pain (Reference)

PKM2 Promotes glycolysis Promotes Th1 function;
Promotes Th17 function.

Facilitates pain (Wang B et al., 2018)

Adiponectin Suppresses glycolysis: ↓HIF-1a(Th1); ↓PFK1(Th17) Suppresses Th1 function;
Suppresses Th17 function.

Alleviates pain (L Sun et al., 2018)

IGF-1R Promotes glycolysis: ↑PI3K-AKT-mTOR signaling pathway Promotes Th17 function. Alleviates pain (Patrick L Stemkowski et al., 2014; Shiori
Sugawara et al., 2019; Xin Chen et al., 2021)

Cortistatin Suppresses glycolysis: ↓c-Myc; ↓HK2. Suppresses Th17 function Alleviates pain (Clara P Falo et al., 2021)

P2X7R Promotes glycolysis
Promotes mitochondrial respiration

Maintains CD8+ TM

function;
Facilitates pain (Henrique Borges da Silva et al., 2018)

LKB1-PTEN Suppresses glycolysis: PTEN could inhibit the mTORC1
signaling pathway, while LKB1 can promte PTEN.

Suppresses Th1 function;
Suppresses Th17 function.

/

PDP2 Suppresses anaerobic glycolysis: ↑PDH Suppresses Th17 function. /

PGK1 Promots anaerobic glycolysis: ↑PDK1 Promotes Th17 function. /

DEPTOR Promotes OXPHOS Promotes Treg function /

IL-33 Promotes glycolysis: ↑mTORC. Promotes CD8+ Tc function /

TLR2 Promotes glycolysis: ↑IRF4;
Promotes glutaminolysis

Promotes CD8+ Tc function /
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glycolysis. This decisional role makes its expression on T cells

necessary for the full development of pathogenic Th17-mediated

CNS inflammation in EAE, and a potential therapeutic target

candidate for new therapies to treat autoimmune diseases.

Lenaldekar (LDK), a novel small molecule targeting the IGF-1R

signaling pathway, has been studied to reduce T cell proliferation

and attenuate disease-related clinical symptoms (114).

Several studies have long focused on IGF1 as a factor

contributing to neuropathic pain (115, 116). Following peripheral

nerve injury, impaired neurons release this molecule into the

synaptic environment, acting on IGF1R on DRG neurons and

consequently mediating an enhancement of protein kinase C

alpha (PKCa)-dependent T-type calcium currents to increase

pain. Interfering with this pathway could potentially reduce

mechanical and thermal pain hypersensitivity in rodents (115). A

recent study demonstrated that IGF1 is not only produced by

cultured neurons, but also by astrocytes (117), while IGF1R is

primarily expressed in neurons (118). It focused on the study that

IGF1 acting on neurons could promote neuropathic pain by

mediating mTOR-related signaling, with intrathecal injection of

IGF1R inhibitors or IGF1-neutralizing antibodies attenuating CCI-

induced pain behavior (118). Of note, in the previous studies,

IGF1R is also expressed in T cells in the CNS (113); thus, the T-

cell metabolic pathway mediated by IGF1R is of great potential

research value in neuropathic pain.

4.1.4 Cortistatin
Cortistatin (CST) is a cyclic neuropeptide with a Cys-Cys ring,

which has a strong inhibitory effect on cortical neurons (119) and

immune cells (120). In recent years, CST has been found to have

immunomodulatory effects in various disease models. For instance,

in a rat model of collagen-induced arthritis, berberine can induce

CST in the gut to inhibit Th17 cell response and ameliorate arthritis

symptoms (121). This suggests that CST plays a crucial role in the

regulation of Th17 cells, but its inhibitory mechanism remains

poorly explored. To address this issue, Guo et al. conducted a study

aimed at elucidating the underlying mechanisms of CST in Th17

(122). It revealed that CST exerts its inhibitory effect on Th17

differentiation by regulating glycolysis. More specifically, CST was

found to significantly suppress the glycolytic activity of Th17, while

downregulating the mRNA expression of two key glycolytic

molecules, namely c-Myc and HK2. Notably, overexpression of c-

Myc and HK2 almost completely abolished the inhibitory effect of

CST on Th17 cell differentiation, highlighting the critical

involvement of the c-Myc-HK2 pathway in the CST-mediated

inhibition of Th17 differentiation. Furthermore, the study

identified the growth hormone secretagogue receptor 1 (GHSR1)

as the mediator of the inhibitory effect of CST on Th17

differentiation. These findings provide important insights into the

mechanism of CST in immune regulation and shed light on a novel

therapeutic target for the treatment of immune-related disorders.

Correspondingly, amongst studies on neuropathic pain, Mario

Delgado’s team proposed in 2014 that CST, a natural analgesic

component of the peripheral injury receptor system, produced by

peptidergic injury receptor neurons in the DRG in response to
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inflammation and noxious stimuli (123), plays an essential pain

suppressing role in persistent inflammatory pain. Recently, Mario

Delgado’s team presented new evidence on the role of CST in

neuropathic pain (124). They found that the injection of CST, both

peripherally and centrally, was able to alleviate the hyperalgesia and

allodynia associated with peripheral nerve injury and diabetic

neuropathy. The analgesic effect of CST targeted multiple aspects,

regulating hypersensitization of nociceptors, inhibiting

neuroinflammatory responses, and enhancing production of

neurotrophic factors. Deficiency in CST worsened neuropathic

pain responses and peripheral nerve dysfunction. These findings

suggest that CST-based treatments may offer an appealing

substitute for managing chronic neuropathic pain, and the multi-

pronged analgesic effects of CST hint at the possibility of T cell

energy metabolism as a forthcoming therapeutic target.

4.1.5 P2RX7
Extracellular ATP (eATP) is a “danger signal” used by

eukaryotes to detect cell damage (125). In mice and humans, the

release of eATP during inflammation or injury stimulates innate

immune activation and neuropathic pain via the purinergic

receptor P2X receptor 7 (P2RX7) (126–128). Notably, P2RX7 was

expressed in diverse cells and was capable of facilitating both

glycolysis (129, 130) and mitochondrial respiration (131).

Nevertheless, the regulation of energy metabolism suggests that

P2RX7 may be instrumental in leaning immune cell differentiation,

which is likely due to the fact that P2RX7 activity may be governed

by multiple factors. Therefore, under different circumstances,

P2RX7 may predominantly support one metabolic pathway (e.g.

respiration) over another (e.g. glycolysis). For example, in mice,

eATP and P2RX7 have been shown to be requisite for Th17

differentiation (132). This process could be enhanced by glucose

metabolism, which might be facilitated by lower sensitivity to

mitochondrial damage, or by the preferential coupling of P2RX7

and glycolysis in this cell type. Recently, it was reported that P2RX7

promoted mitochondrial homeostasis and metabolic function in

differentiating memory CD8+ T cells (133). It also showed that

P2RX7 is required for the establishment, maintenance and function

of long-lived central and tissue-resident memory CD8+ T cell

populations in mice. In contrast, P2RX7 is not required for the

generation of short-lived effector CD8+ T cells. Specifically, in

activated CD8+ T cells, P2RX7 was stimulated by eATP (derived

from damaged cells or exported from activated living cells).

Calcium influx was subsequently induced, increasing

mitochondrial metabolic activity (133), which can be reflected in

enhanced glutaminolysis and enhanced FA OXPHOS. It is

important to emphasize that memory CD8+ T cells function

primarily in the metabolic mode of FA OXPHOS, whereas

activated CD8+ T cells function primarily in the metabolic modes

of glycolysis and glutaminolysis. Therefore, we speculate that

differences in the primary metabolic modality used may

contribute to the different roles of P2RX7 in the importance of

memory CD8+ T cells and activated CD8+ T cells.

Previous studies have revealed that P2RX7 regulates metabolic

processes, for which it is considered as a promising pharmacological
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target for the treatment of neuropathic pain (132, 134, 135). In a

recent study, P2RX7 can guide the metabolic adaptation of long-

lived memory CD8+T cells. At the same time, we also observed that

the pharmacological inhibitor of P2RX7 stimulated the metabolism

and differentiation disorder of activated mouse and human CD8+ T

cells in vitro. In vivo, the transient blockage of P2RX7 improved

neuropathic pain, but also impaired the production of memory

CD8+ T cells (133). It suggests that the mechanism underlying the

amelioration of neuropathic pain with suppression of P2RX7 is, at

least in part, through inhibiting active CD8+ T cell metabolism to

consequently affect the role of active CD8+ T cells in chronic

neuropathic pain. Furthermore, besides enhancing mitochondrial

stability, AMPK (which inhibits HIF-1a and thus glycolysis) is

induced by this kind of T-cell metabolic inhibition. Remarkably, the

role of memory CD8+ T cells in neuropathic pain has been

neglected and little studied in previous studies. Our focus here is

also on the effect of P2RX7 on active CD8+ T metabolism. Thus, the

present study also provides a different perspective to examine the

role of memory CD8+ T cells in neuropathic pain.
4.2 Molecules affecting T-cell metabolism

Regarding the molecules that have not been implicated in

chronic pain, we concentrate on elucidating their function and

specific mechanisms in regulating T-cell metabolism. These

molecules include liver kinase B1-phosphatase and tension

homolog deleted on chromosome 10 (LKB1-PTEN), which

primarily function in Th1 cells; pyruvate dehydrogenase

phosphatase catalytic subunit 2 (PDP2), phosphoglycerate kinase

1 (PGK1), and LKB1-PTEN, which primarily function in Th17 cells;

DEP domain containing mTOR interacting protein (DEPTOR),

which has a significant impact on Treg function; interleukin-33 (IL-

33) and Toll-like receptor 2 (TLR2), which are critical participants

in CD8+ T cell responses. Despite the lack of demonstrated

involvement in chronic neuropathic pain treatment, these

molecules hold the potential to emerge as targets in this field,

rendering them of significant interest for comprehensive reviews. It

should be noted that, in fact, there are additional molecules beyond

those presented above. Due to the limitations in space, we have

compiled a comprehensive list of these unmentioned molecules in

Table S1.
4.2.1 LKB1-PTEN
The mTORC is a central regulator of T cell metabolic

reprogramming, with the liver kinase B1-phosphatase and tension

homolog deleted on chromosome 10 (LKB1-PTEN) signaling

pathway being one of its upstream regulators. LKB1 and PTEN

directly interact with each other, and LKB1 can phosphorylate

PTEN to inhibit the mTORC1 signaling pathway, independent of

AMPK. Consequently, LKB1 deficiency results in increased

mTORC1 activity and upregulation of glycolysis mediated by

HIF-1a. Further experiments have shown that Th17 and Th1 cell

bias in LKB1-deficient T cells is mediated by glycolysis. These

findings highlight the critical role of the LKB1-PTEN signaling
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pathway in regulating T cell metabolism and immune balance.

Through the modulation of glycolysis, the LKB1-PTEN signaling

pathway regulates the differentiation of Th1 and Th17 cells, thereby

maintaining the internal homeostasis and immune balance of T

cells (136).

4.2.2 PDP2
Recent studies have identified pyruvate dehydrogenase

phosphatase catalytic subunit 2 (PDP2) as a crucial regulator of T

cell metabolism, specifically in the glycolysis and glucose OXPHOS

pathways (137). While expressed in both Th1 and Th17 cells, PDP2

plays a role in restricting Th17 differentiation by inhibiting

glycolysis. This function is closely associated with pyruvate

dehydrogenase (PDH). PDH is a critical branching enzyme that

converts pyruvate to acetyl-CoA, which is then transported to the

mitochondria for OXPHOS. Due to the advantage of Th17 cells to

convert pyruvate to lactate for rapid generation of non-

mitochondrial ATP, PDH has been shown to uniquely regulate

Th17 cells (73). Further, PDP2 has been identified as a key factor

that promotes PDH activity in vivo, facilitating glucose metabolism

and the subsequent steps of glycolysis and glucose OXPHOS. Taken

together, these findings emphasize the critical role of PDP2 in

regulating T cell metabolism and function, with a particular focus

on Th17.

4.2.3 PGK1
Phosphoglycerate kinase 1 (PGK1) plays a crucial role in

metabolic regulation in CD4+ T cells. Recently, Yang Lu et al.

found that both CD4+ T cells and Th17 exhibited increased

glycolysis and PGK1 expression in the hearts of mice with

myocarditis (138). Treatment of mice with the PGK1 inhibitor

NG52 resulted in reduced inflammation and fibrosis in the heart,

improved cardiac contractile function, reduced infiltration of Th17

and Th1 in the heart, and increased Treg proportion. In addition,

NG52 could inhibit the activation and differentiation of CD4+ T

cells from mice with myocarditis and patients with myocarditis in

vitro. The mechanism underlying the effects of the PGK1 inhibitor

involves the suppression of glycolytic activity and the reduction of

the phosphorylation of pyruvate dehydrogenase kinase 1 (PDHK1),

leading to increased production of ROS in the mitochondria, which

in turn inhibits Th17 differentiation. Previous studies have shown

that PDHK1 is a specific enzyme in Th17 that is almost not

expressed in Th1 or other T-cell subsets. PDHK1 can inhibit

PDH, which suppresses pyruvate entry into mitochondria and

promotes Th17 glycolysis (73). In summary, PGK1 plays a

metabolic regulatory role in CD4+ T cells and regulates the

function of Th17 by modulating their glycolytic metabolism.

4.2.4 DEPTOR
DEP domain containing mTOR interacting protein (DEPTOR)

is an evolutionarily conserved intracellular binding partner of

mTOR and serves as a negative regulator of signal transduction.

In this study, we identified the expression of DEPTOR in CD4+ T

cells and observed that its relative expression levels modulate

differentiation and glucose utilization of CD4+ T effector cells in
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vitro. Using a knock-in mouse model, we further found that

induced expression of DEPTOR in CD4 T regulatory cells

stabilizes Foxp3 expression, promotes a shift towards OXPHOS

metabolism, and enhances survival and suppressive function. These

findings demonstrate the critical regulatory role of DEPTOR in

CD4+ T cells, particularly in Tregs, and highlight the close interplay

between this process and T cell metabolism (139).

4.2.5 IL-33
Interleukin-33 (IL-33), a crucial member of the IL family, plays

a crucial role in both innate and adaptive immunity. Recent

research has revealed that IL-33 induces activation and

proliferation of CD8+ T effector cells through extracellular

signaling pathways, rather than nuclear signaling pathways (140).

Specifically, IL-33 activates the mTORC1 pathway, enhancing

glucose uptake and lactate production in CD8+ T cells, thereby

promoting accelerated anaerobic glycolysis and increased activation

of effector T cells. This discovery not only sheds light on the impact

of IL-33 on CD8+ T cell function and underlying metabolic

mechanisms but may also have profound implications for the

future treatment strategies of CD8+ T cell related diseases.
4.2.6 TLR2
Recent research has found that Toll-like receptor 2 (TLR2), a

co-stimulatory molecule, plays a role in enhancing TCR-dependent

activation of CD8+ T cells when activated (141). Specifically, TLR2

agonist Pam3CSK4 was shown to directly enhance TCR-dependent

activation of CD8+ T cells (141). Transcriptome analysis further

revealed that TLR2 signaling increases the expression of genes

related to the cellular energy metabolism of CD8+ T cells, such as

Interferon Regulatory Factor 4 (IRF4), leading to improved

glycolysis and glutaminolysis. This effect can further increase the

expression of genes related to immune regulation and function,

such as IFN-g. The metabolic processes of glycolysis and

glutaminolysis are necessary for the enhanced T cell activation

mediated by TLR2. Overall, TLR2 promotes CD8+ T cell immune

response and function by regulating their energy metabolism.
5 Discussion

Chronic neuropathic pain is a complex and multifaceted

condition that arises from pathological changes or disorders

within the nervous system (142). It can be classified as either

central or peripheral neuropathic pain (143), with the latter

having relatively well-established researches compared to the

former (144, 145). Peripheral neuropathic pain can be caused by

a multitude of factors, including peripheral nerve injury,

chemotherapy, and nerve inflammation-induced neuropathic pain

(146). In this review, we focus on neuropathic pain resulting from

peripheral nerve injury, which has been extensively studied in

animal models (144, 145) and has well-established mechanisms

involving both peripheral and central sensitization.

Numerous studies have explored the energy metabolism of T

cells in autoimmune and inflammatory disorders, including but not
Frontiers in Immunology 10
limited to rheumatoid arthritis (147) and systemic lupus

erythematosus (20, 148). In these diseases, pro-inflammatory T

cells, including Th1 and Th17 cells (particularly Th17), play a

crucial role and rely primarily on glycolysis for their functions (149,

150). Therefore, most researches on T cell metabolism have focused

on the glycolytic pathway of Th17 cells, which explains why this

review is more detailed in exploring the molecular mechanisms of

Th17 glycolysis. It should be emphasized that T cell energy

metabolism in cancer has also been extensively studied.

Nonetheless, these studies have been excluded from this review

due to the distinct energy metabolism of T cells within the tumor

microenvironment compared to that of T cells in physiological

conditions or other diseases (151).

Previous studies on neuropathic pain resulting from peripheral

injuries have identified the release of a series of mediators during

nerve damage. This event leads to the infiltration of other

inflammatory and immune cells in the area, which then continue

to release substances and ultimately form a microenvironment that

can profoundly impact the cells present and cause metabolic

abnormalities (45). Notably, metabolic reprogramming of glial

cells has been reported in chronic neuropathic pain (41). Such

conditions may also occur in T cells. This review places particular

emphasis on the molecular aspects of T cell energy metabolism and

explores its current involvement in neuropathic pain. By

establishing a link between T cell metabolism and neuropathic

pain resulting from peripheral injuries, this review provides a

potential target for intervening in neuropathic pain.

During nerve injury, the release of eATP can activate P2RX7 on

CD8+ T cells, leading to mitochondrial homeostasis and affecting

energy metabolism pathways, including lipid OXPHOS and

glutamine catabolism, which ultimately influence the function of

CD8+ T cells. Notably, P2RX7 is essential for the differentiation of

memory CD8+ T cells. Moreover, pharmacological inhibition of

P2RX7 in vitro induced metabolic and differentiation dysregulation

in activated mouse and human CD8+ T cells, while transient P2RX7

blockade improved neuropathic pain in vivo but impaired memory

CD8+ T cell production. Hence, in chronic neuropathic pain, P2RX7

can modulate T cell function through alterations in energy

metabolism, while blockade of P2RX7 can ameliorate neuropathic

pain (133). This study provides a cogent link between neuropathic

pain and T cell metabolism, yet the contribution of memory CD8+ T

cells in neuropathic pain requires further elucidation. While direct

evidence connecting T-cell metabolism and neuropathic pain is

limited, this review takes a novel approach by exploring how

molecules that impact T-cell function by affecting T-cell energy

metabolism and how these molecules can contribute to chronic

neuropathic pain. which bridges the connection between T-cell

energy metabolism and neuropathic pain. Finally, this review

explores some T-cell energy metabolism-associated molecules that

have not yet been explored in neuropathic pain. These molecules may

represent potential targets for the treatment of neuropathic pain, and

the exploration of T cell energy metabolism as a novel avenue for

neuropathic pain therapy is an area ripe for further development.

It is essential to highlight that this review was manually

searched for relevant studies. Although we have categorized the

research according to a certain logic, it still cannot cover all the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1107298
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dou et al. 10.3389/fimmu.2023.1107298
pertinent studies. We refer to the molecules that play a role in T-cell

energy metabolism as T-cell energy metabolism-related molecules

and categorize them into molecules that act in neuropathic pain and

those that have not yet been found to act in neuropathic pain.

Furthermore, we set our screening criteria to new molecules related

to T cell metabolism within the last five years to gather as

comprehensive a collection of related studies as feasible. It is

crucial to note that this article can also serve as a point of

reference for exploring other types of neuropathic pain. For

instance, the key transcription factor HIF-1a in T cell glycolysis

plays a vital role in neuropathic pain. In the initial stages of the

CRPS mouse model, inhibiting HIF-1a can produce an anti-

abnormal pain effect and suppress the production of

inflammatory cytokines (152). Hyaluronic acid (HA)/CD44

regulates Th1 differentiation by activating the Annexin A1-AKT-

mTOR signaling pathway, promoting the pathogenesis of chronic

prostatitis/chronic pelvic pain syndrome (CP/CPPS). AKT is

involved, which may be linked to its regulation of glycolysis

(153). However, the changes in T-cell energy metabolism in the

corresponding disease environment must be taken into account. To

conclude, exploring the connection between T cell energy

metabolism and neuropathic pain is a research area that merits

in-depth exploration.
6 Conclusion and perspective

Neuropathic pain, resulting from peripheral nerve damage, leads

to microenvironmental changes due to the buildup of substances

such as inflammatory cytokines and metabolic byproducts. These

changes may influence cellular metabolism and function, thus

altering their involvement in chronic pain, as evidenced in glial

cells (41). This review intends to investigate the relationship between

T-cell metabolic alterations, their function, and their contribution to

chronic pain. Firstly, we elucidate the impact of metabolic pathway

alterations on T-cell function to link T cell metabolism and function.

Subsequently, we investigate how microenvironmental alterations

lead to T-cell metabolic changes, connecting chronic pain and T-

cell metabolism. Lastly, we focus on recent advances in molecules

related to T-cell metabolism over the past five years. Some molecules

play pivotal roles in both T-cell metabolism and chronic pain. We

clarify how they modulate distinct T-cell subset functions by

regulating energy metabolism and further elucidate their roles and

potential mechanisms in chronic neuropathic pain. This implies that

these molecules can influence T-cell function through metabolic

alterations, thus promoting chronic neuropathic pain development.

Despite limited direct evidence, the growing number of associated

molecules underscores the field’s significant potential and research

value. For other molecules not yet linked to chronic pain, we focus on

their specific mechanisms and roles in T-cell metabolic regulation.

Although not currently employed in the treatment of chronic pain,

these molecules show promise as potential targets.

Thus, in future research, comprehensively exploring T-cell

metabolism in chronic pain may enhance our understanding of

T-cell mechanisms in chronic pain and establish a theoretical basis

for novel therapies. Moreover, attention should be focused on T-cell
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metabolic molecules that have yet to be explored in chronic pain, as

they could hold significant roles and potentially serve as future

targets for chronic pain treatment. However, the complexity of

chronic pain, involving multiple pain types and corresponding

microenvironmental changes, along with the intricate nature of

T-cell metabolism processes, including numerous metabolic

pathways, interactions, and regulations, render the exploration of

T-cell metabolism in chronic pain more challenging. Despite these

challenges, this research field offers promising prospects and merits

further exploration. In summary, delving deeper into T-cell

metabolism in chronic pain may offer new insights and

therapeutic strategies to address this complex pathological issue

in chronic pain.
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