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Acute myeloid leukemia (AML) arises from the cells of myeloid lineage and is the

most frequent leukemia type in adulthood accounting for about 80% of all cases.

The most common treatment strategy for the treatment of AML includes

chemotherapy, in rare cases radiotherapy and stem cell and bone marrow

transplantation are considered. Immune checkpoint proteins involve in the

negative regulation of immune cells, leading to an escape from immune

surveillance, in turn, causing failure of tumor cell elimination. Immune

checkpoint inhibitors (ICIs) target the negative regulation of the immune cells

and support the immune system in terms of anti-tumor immunity. Bone marrow

microenvironment (BMM) bears various blood cell lineages and the interactions

between these lineages and the noncellular components of BMM are considered

important for AML development and progression. Administration of ICIs for the

AML treatment may be a promising option by regulating BMM. In this review, we

summarize the current treatment options in AML treatment and discuss the

possible application of ICIs in AML treatment from the perspective of the

regulation of BMM.

KEYWORDS
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checkpoint proteins (ICP), acute myeloid leukemia, tumor microenvironment
1 Acute myeloid leukemia

Acute myeloid leukemia (AML) stems from the myeloid cell lineage and is defined as the

presence of immature myeloid precursors (blast cells) in bone marrow or peripheral blood

(1). Although it mostly affects adults, its clinical presentation and features vary among

individuals. The latest WHO classification considers AML in 25 subtypes. Even though AML
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is mostly seen in blood and bone marrow, extramedullary

manifestations can also be seen with certain types. AML manifests

with aggressive progression, with an overall 5-year survival rate of

approximately 25% (2, 3).

In AML, nonfunctional abnormally proliferated blast cells

dominate the bone marrow and thus impair normal hematopoiesis

that may result in pancytopenia which will further demonstrate itself

with manifestations such as anemia, clotting disorders, and

immunosuppression, where the latter increases vulnerability to

infections (4–6). In some cases, exceedingly high leukocyte count

can increase the risk of disseminated intravascular coagulation and

leukostasis of which the latter leads to lethal manifestations related to

the central nervous system (CNS) and lungs (7, 8). Patients may

experience weakness, fatigue, pulmonary leukostasis and some

abnormal bleeding, along with bruising resulting from minor

traumas (9–11). Coagulation disorders are considered the most

severe presentations of AML and they account for death in 7% of

all cases (12).

Diagnosis of AML is made by the presence of 20% blast count in

peripheral blood or bone marrow aspirate. Subtypes of the disease is

assessed by flow cytometry to define the subtype of the disease, while

chromosomal alterations are investigated using cytogenetic

approaches, morphological changes in cells can be observed by

bone marrow smears, and oncogenic mutations can be detected by

genomic sequencing (1, 13).
2 Current treatment strategies in acute
myeloid leukemia

Treatment strategies in AML depend on prior toxic exposure,

precursor myelodysplasia, karyotypic and molecular abnormalities

and patient-specific factors, including assessment of comorbid

conditions, age, risk status, or disease situation such as relapsed or

refractory. National Comprehensive Cancer Network (NCCN)

Clinical Practice Guidelines in Oncology offer annually updated

recommendations for the diagnosis and treatment of AML in

adults, based on the reviews of recently published clinical trials

which have led to significant improvements in treatment. Although

details of treatment strategies are not a focus of this review, we will

summarize the current therapeutic opportunities to provide a general

perspective based on the NHHC 2022 guidelines (14, 15).

The European LeukemiaNet (ELN) risk stratification and the

National Comprehensive Cancer Network (NCCN) guidelines

classify AML patients into three groups that are associated with

specific prognoses and may guide medical decision-making:

favorable, intermediate, and poor (16). The classification is based

on chromosomal and genetic abnormalities that certainly may have

therapeutic significance, and likely to be changed as newer strategies

become available. These markers include nucleophosmin 1 (NPM1),

FLT3, CCAAT/enhancer-binding protein alpha (CEBPA), IDH1/2,

DNA (cytosine-5)-methyltransferase 3A (DNMT3A), KIT, tumor

suppressor protein 53 (TP53), Runt-related transcription factor 1

(RUNX1), and additional sex combs like-1 (ASXL1) gene mutations.

FLT3 inhibitors (midostaurin, gilteritinib, quizartinib) are effective
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against FLT3-mutated AML, while IDH inhibitors (ivosidenib,

enasidenib) are active against IDH1 or IDH2 mutated AML,

respectively, and TP53 inhibitors (eprenetapopt) are effective

against secondary AML and therapy-related leukemia. Other

targeted therapy options include B-cell lymphoma 2 (Bcl2)

inhibitors such as venetoclax; Hedgehog signaling pathway

inhibitors such as glasdegib and hypomethylating agents (HMAs:

azacytidine, decitabine) (17). Some patients admitted with isolated

extramedullary disease may be eligible for systemic radiation therapy.

In rare cases, local radiotherapy or surgery may be used for residual

disease (18).

Currently, the main treatment for most types of AML is cytotoxic

chemotherapy that consists of two phases: remission induction and

post-remission consolidation treatments. Although patients are

managed according to the same general therapeutic principles,

chemotherapy regimens may vary depending on whether the

patient is a candidate for intensive or non-intensive therapeutic

regimens. In patients eligible for high intensity induction

chemotherapy, the “7+3 regimen” of cytarabine plus anthracycline

is commonly used (19). Other alternatives include fludarabine +

cytarabine + granulocyte colony-stimulating factor + andidarubicin

regimens (FLAG-IDA) and mitoxantrone-based cytarabine regimens

(20). In addition to these regimens, addition of the kinase inhibitor

midostaurin to induction therapy for FLT3-mutant AML patients has

become standard (21). For remission consolidation therapies,

regimens containing moderate doses of cytarabine are widely used

and may improve blood count recovery. Despite the lack of a

consensus, in patients who are not considered candidates for

intensive therapy, following regimens are often used in the context

of clinical trials: Azacitidine or decitabine + venetoclax combination,

low dose cytarabine + venetoclax combination, azacitidine +

ivosidenib combination (AML with IDH1 mutation), ivosidenib

monotherapy for very frail patients (AML with IDH1 mutation) or

best supportive care including hydroxyurea for patients who cannot

tolerate or refuse any anti-leukemic therapy (20). To be considered in

remission, bone marrow biopsy should show normocellular bone

marrow while blasts should not exceed 5%; yet many patients develop

relapsed and refractory diseases despite therapeutic options (22).

Stem cell transplantations are reported to decrease the risk of

leukemia relapse more than the standard chemotherapeutic

approaches, yet they are also likely to lead to severe complications

(23). Another approach in AML treatment is the administration of

high doses of chemotherapeutics followed by either an allogeneic or

autologous hematopoietic stem cell transplantation (HSCT).

Currently, HSCT is the most recognized and frequently used

cellular therapeutic option (24).

Antibody–Drug Conjugates (ADC), monoclonal antibodies that

are linked to cytotoxic agents are novel treatment options in AML

(25). The antibody targets a cell surface antigen that is exclusively

expressed on tumor cells, the linker provides stability and enable

selective intracellular release, and cytotoxic compound exerts DNA-

damaging or microtubule-inhibitory activities (26). Contrary to

conventional monoclonal antibodies, antibody conjugates in ADC

do not induce any biological response. These antibodies should

remain intact in the circulation, they have high target affinity while
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exerting limited immunogenicity and cross-reactivity. In 2017,

Gemtuzumab ozogamicin (GO) became the first clinically approved

ADC for the treatment of CD33-positive AML, and remains as the

only FDA approved ADC for AML treatment (26). IMGN632 which

combines an anti-CD123 antibody with a unique DNA-alkylating

agent is another ADC that revealed promising results when tested in

cell lines and animal models of AML as well as primary patient

samples, and currently being tested in AML treatment either as

monotherapy or in combination with venetoclax and/or azacytidine

(27, 28).

Besides the abovementioned therapeutic interventions, other

immunotherapeutic strategies in AML include immune checkpoint

blockade, bispecific T cell engagers (BiTE), chimeric antigen receptor

T cells (CAR-T) and tissue infiltrating lymphocytes (TIL) are under

investigation (19, 22). As extensively described in the literature, the

expression of inhibitory checkpoint proteins on AML blasts has been

recognized as an important immune escape mechanism (29).

Immune checkpoint inhibitors are under investigation for treatment

of AML in many experimental and clinical studies.
3 Immune checkpoint inhibitors in
treatment of acute myeloid leukemia

Immune checkpoints are receptor-based signal cascades that lead

to negative regulation of immune cells, enabling escape from immune

surveillance that eventually results in failure of tumor cell elimination

favoring tumor progression. Immune checkpoint blockade exerts its’

anti-cancer effect by promoting the immune response through

administration of monoclonal antibodies that target immune

checkpoint proteins present on immune cells or tumor cells.

Inhibition of immune checkpoints such as cytotoxic T lymphocyte

antigen 4 (CTLA-4), programmed death-1 (PD-1), and programmed

death-ligand 1 (PD-L1) enhances immune responses by inhibiting

negative signaling receptors and supporting immune activation,

where, in turn, elimination of the tumor promotes cancer

regression. Currently, three different classes of Immune Checkpoint

Inhibitors (ICIs); PD-1 inhibitors (cemiplimab, nivolumab,

pembrolizumab, dostarlimab), PD-L1 inhibitors (avelumab,

atezolimumab, durvalumab), and one CTLA-4 inhibitor

(ipilimumab) have been approved by the US Food and Drug

Administration (FDA) for the treatment of various malignancies

while others targeting T cell immunoglobulin and mucin domain 3

(TIM3) and lymphocyte activating-3 (LAG-3) are still under

investigation (30–32). All checkpoint pathways differ from each

other according to the stages they involve the in the immune

responses as well as their signaling mechanisms; however, the

common purpose of ICIs is to observe similar impact on T-cell

activity and clinical regression of cancer.

Although ICIs are already being used in the treatment of various

malignancies, studies on AML are still ongoing. There are many

completed and ongoing experimental studies and clinical trials in

distinct phases evaluating ICIs in treatment of AML either as

monotherapy or part of a combinational therapy with other agents

including chemotherapeutics, HMAs or other immunotherapies.

Experimental studies and clinical trials regarding ICIs, either in
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combination with other therapeutic interventions or alone are

summarized below.
3.1 Experimental studies on immune
checkpoint inhibitor therapy in acute
myeloid leukemia

Importance of IC pathways in immune evasion of AML as well as

their blockade with specific agents in AML treatment has been

underlined in several experimental studies which involved AML cell

lines and murine models.

Constitutive expression of regulatory cell surface antigen CTLA-4

expression in more than 80% of AML samples was first reported two

decades ago (33) and in 2006, its’ blockade with monoclonal

antibodies were reported to enhance T cell responses in AML in-

vitro (34). In a study involving a DA1-3b mouse model of AML,

leukemic cells were reported to be present months despite the

presence of an effective antileukemic immune response. Persistent

leukemic cells were reported to have enhanced B7-H1 (PD-L1) and

B7.1 expressions and resistant to cytotoxic T cell (CTL) mediated

killing (35). The authors stated that an effective immunotherapeutic

intervention should facilitate leukemia rejection and targeting

overcoming the mechanisms that lie behind tumor dormancy and

revealed that inhibition of B7-H1 (PD-L1) and B7.1/CTLA-4

interactions augmented CTL-mediated killing of the persistent cells

as well as prolonging survival of naive mice injected with persistent

leukemic cells. However, it should be noted that targeting B7.1/

CTLA-4 and PD-1/PD-L1 axes may target different mechanisms

compared to monotherapies (36), and elucidating such pathways in

leukemias may pave the way for novel combinatorial therapies.

In terms of PD-1/PD-L1 axis, numerous experiments revealed

upregulated expressions of both proteins in murine leukemia cells

while demonstrating that genetic ablation or pharmacological

inhibition of PD-1 can suppress leukemic cell proliferation and

enhance survival in AML bearing mice (37). Combinatorial

administration of innate immune agonists along with an ICI has

revealed promising results by enhancing anti-tumor activity in a

preclinical AML model: an innate immune agonist 5,6-

dimethylxanthenone-4-acetic acid (DMXAA) activated the

stimulator of interferon genes (STING) pathway that promoted

dendritic cell maturation and in turn, maturation of leukemia-

specific T-cells, resulting in a prolonged overall survival in leukemic

mice (38). In anti-tumor responses, type I interferons (IFN) promotes

the infiltration of CD8+ T cells, hence acts as a bridge between the

innate and adaptive immunity (39, 40). This pathway also activates

STAT6 and nuclear factor kappa B (NF-kB) pathways that result in
the production of inflammatory mediators including TNF-a, IL-6
and CCL2/MCP-1 (41, 42). Unlike solid tumors, type I IFN response

is shown not to be activated in hematological malignancies and

activating STING pathway to promote anti-leukemic T cell

responses stands out as a promising strategy (43). However,

expression of immunosuppressive indolamine-2,3-dioxygenase

(IDO) and upregulation of PD-L1 as a response to IFN-g may be

the restricting factors for the administration of STING agonists as a

single agent in AML treatment. Thus, determination and inhibition of
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immune escape pathways induced by STING activation may enable

STING agonists’ administration in the clinical setting. In line with this

hypothesis, DMXAA inhibited the growth of murine AML cell line

C1498 and increased PD-L1 expression while combination of PD-1

inhibition along with DMXAA therapy boosted activated host T cell

numbers and bone marrow PD-1/L1/L2 expression, reducing disease

burden and prolonging overall survival in-vivo (44). In an in-vitro

study, DMXAA exposure promoted PD-L1 expression while leading

to a slight increase in apoptosis and IL-6 and IFN-b production in

C1498 AML cell line while coupling DMXAA with an anti-PD-1

antibody significantly reduced disease burden and extended general

survival in C1498 grafted leukemic mice (45). Mice receiving

combinatorial treatment exhibited boosted memory T-cells and

mature dendritic cells along with lesser numbers of regulatory T-

cells, proving apoptosis of leukemic cells. These findings were further

supported by increased serum levels of type I interferons (IFN) and

IFN-g. These studies suggest that STING agonists can be used in

combination with ICI for enhanced anti-tumor efficacy. Besides

DMXAA, other STING agonists include GSK3745417 that has been

shown promising anti-cancer activity on AML cell lines as well as

primary AML cell cultures and MIW815 (ADU-S100) which recently

have been reported to induce systemic immune activation while being

well tolerated in patients with advanced/metastatic cancers, though

AML was not investigated in the latter (46, 47). A recent study

revealed that a novel STING agonist SHR1032 enhanced anti-tumor

immunity and induced AML apoptosis under in-vitro and in-vivo

settings (48). Besides AML, STING agonists have been under

evaluation for the treatment of other solid and hematological

malignancies: Ulevostinag (MK-1454) has been tested in

combination with pembrolizumab in participants with advanced/

metastatic solid tumors or lymphomas (49), while GSK3745417 is

currently being tested either alone or in combination with PD-1

inhibitor dostarlimab (50), and BMS-98630 is being tested alone or in

combination with nivolumab and ipilimumab in patients with

advanced solid tumors (51). However, there are certain questions to

be addressed before the implementation of STING agonists in the

field of immune oncology, including whether the overstimulation of

the pathway can induce autoimmune conditions, or if the pathway is a

valid target in case of epigenetic silencing of STING (52).

Recent findings suggest that AML cells express high levels of

TIM-3 and release galectin-9 (Gal-9) that impair activity of cytotoxic

T cells and NK cells (53). The association between PI3K/Akt/mTOR

signaling pathways and the regulation of immune checkpoint ligands

including PD-L1, Galectin-9 (Gal-9), and CD155 was investigated in

human AML cell line HL-60 in-vitro. For this purpose, cells were

treated with idelalisib as PI3K inhibitor, MK-2206 as Akt inhibitor,

and everolimus as mTOR inhibitor either in a single or combined

format (54). Combinatorial treatment of HL-60 cells with two or three

inhibitors diminished the expression levels of PD-L1, Gal-9, and

CD155 checkpoint ligands, decreased proliferation and enhanced

apoptosis. This study revealed that besides their cytotoxic

properties, drugs targeting the PI3K/Akt/mTOR pathway play role

in the regulation of ICP expression and interfere with immune

evasion mechanisms of AML cells.

Recently, Xu et al. reported co-expression of PD-1 along with

TIGIT on CD8+ T cells of AML patients’ bone marrow samples,
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moreover PD-1 and TIGIT positivity on CD8+ T cells showed

positive correlation with age, suggesting greater T cell dysfunction

in elderly patients. This study also revealed the increased frequency of

PD-1+ and TIGIT+ CD8+ T cells in bone marrow samples compared

to peripheral blood, a finding that indicates the importance of

targeting immunosuppressive bone marrow microenvironment

(BMM) in AML treatment (55). In another study aiming to

characterize NK cell subsets of AML patients in bone marrow and

peripheral blood, Brauneck et al. revealed TIGIT and poliovirus

receptor-related immunoglobulin domain-containing (PVRIG) co-

expression on NK cells of AML patients, and their simultaneous

blockade enhanced the NK cell mediated killing in-vitro (56). In

another study, Li et al. reported PVRIG ligand (poliovirus receptor-

related 2, PVRL2) on AML patient blasts, and proven that blocking

the PVRIG/PVRL2 axis enhanced NK cell activation and in turn,

promoted killing of patient derived primary AML blasts (57).

CD47 is a macrophage ICP that is particularly involved in

myeloid malignancies and has been identified as a leukemic stem

cell marker in AML. Blockade of CD47-SIRPa pathway has been

shown to increase several therapeutics in pre-clinical studies (58).

Similarly, CD200 plays role in the formation of T regulatory cells

(Tregs) is commonly overexpressed in AML blasts and shown to be

associated with poor outcome (59). Along with CD200 on AML

blasts, TIM-3 expression on peripheral blood T cells was proven to be

involved in AML development, and these proteins hold the potential

to serve as prognostic markers (60).

Programmed Death-1 Homolog (V-domain Ig suppressor of T

cell activation, VISTA) is a novel co-inhibitory molecule that

promotes immune evasion in solid tumors, and an in-vivo study

revealed the connection between PD-1H and epigenetic modifications

as well as their role in immune evasion in AML where DNA methyl

transferase inhibition by 5-aza-2’-deoxycytidine (Decitabine)

increased T cell infiltration that potentiated the anti-leukemic effect

of the PD-1H blockade and significantly prolonged survival (61).

VISTA has also been shown to be expressed on myeloid-derived

suppressor cells (MDSCs) present in the peripheral blood of AML

patients and contribute to the inhibition of T cell responses in AML

(62). Moreover, authors reported a positive correlation between

VISTA expression on MDSCs and PD-1 expression on T cells of

AML patients, highlighting the potential of combinatorial VISTA and

PD-1 inhibition in leukemia treatment. In an in-vitro study, both

CTLA-4 and LAG-3 expression levels were reported higher in

comparison with healthy controls in AML, and the receiver-

operating characteristic (ROC) curve analysis suggested that CTLA-

4 and LAG-3 co-positivity can be used as a diagnostic criteria for the

disease (63).

It should be noted that even if the ICIs are promising in the cancer

treatment, the broadly distributed immune-related adverse events

(irAEs) may not be tolerable in some cases. To overcome this, some

experimental studies focus on restricted immune checkpoint blockade

such as a-PD-1 × a-CD3 × a-CD33, a bifunctional checkpoint

inhibitory T cell–engaging antibody (CiTE) that directs T-cells to

CD33 on AML cells with locally restricted immune checkpoint

blockade (64). By the synergistic effect of ICI and avidity-dependent

binding, PD-1 attachment improved T-cell activation (3.3-fold

elevation of IFN-g) and led to efficient and highly selective
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cytotoxicity against CD33+ PD-L1+ cell lines as well as patient-

derived AML cells. In a murine xenograft model, CiTE induced

complete AML eradication without initial signs of irAEs.
3.2 Clinical trials on immune checkpoint
inhibitor therapy in acute myeloid leukemia

HMAs have been approved by FDA, and they are being used as

epigenetic modifiers for the treatment of myelodysplastic syndromes

(MDS) and acute AML patients, who are not eligible for induction

chemotherapy (65, 66). It is reported that in these patients who

underwent the treatment with HMAs, surface expression of ICPs

(PD-L1, PD-L2, PD-1, and to a lesser extent, CTLA-4) increased in a

dose-dependent matter. For the patients for whom the up-regulation

of PD-L1 was to the greatest extent, it is reported that the response to

HMA therapy was the shortest, and it was associated with a lower

survival (67). Concerning these observations, clinicians suggested that

HMA therapies lead to immune checkpoint activation and up-

regulation, indicating that this resistance may be overcome by

combining HMA with ICIs (68, 69).

In a phase 2 clinical trial, nivolumab was administered with

azacitidine to a high-risk population of relapsed or refractory (R/R)

AML patients. Among 70 patients, the response rate to therapy was

33%, with 22% being in complete remission or incomplete

hematologic recovery. Grade 3/4 irAEs were reported in 11% of

patients, the most frequent one being pneumonitis. For all 70

patients, the median survival was 6.3 months, while for 32 salvage-1

patients (the first therapy administered after all standard treatments

proved ineffective), it was 10.5 months. This finding indicates a

promising response rate for the combination therapy, as also stated

by the authors. A greater response rate was recorded in patients with

higher CD3+CD8+ T cell infiltration pre-therapy. Thus, it was

reported that pre-therapy T cell infiltration can be considered an

inflamed tumor marker and a biomarker that can be used in deciding

which patient group would benefit from ICI-based treatments (70). In

an expanded cohort study as a follow-up study to the clinical trial, the

anti-CTLA-4 antibody ipilimumab was added to azacitidine and

nivolumab regimen and administered to 24 R/R AML patients. The

study has reported a 1-year overall survival of 45% in R/R AML

patients. When this new triple combination treatment is compared in

the aspect of the median overall survival, with the previous

azacytidine and nivolumab double treatment and with the current

treatment with hypomethylating agents, the results were respectively

10.5, 6.4 and 4.6 months. These findings demonstrate an encouraging

and promising efficacy. Although regarding its safety, it is worth

mentioning that in 6 patients (25%), grade 3/4 immune-related

toxicity, including rash, pneumonitis, and colitis was reported (71).

In another phase 2 study, the anti-PD-1 antibody pembrolizumab was

administered to recently diagnosed R/R AML patients in combination

with azacitidine. In this cohort, out of 29 eligible patients, 4 (14%)

achieved complete remission or incomplete hematologic recovery,

while 1 patient (4%) had partial remission. The median overall

survival was 10.8 months. After 22 newly diagnosed older AML

patients not eligible for intensive chemotherapy joined the study, out

of 17 of whom were evaluable, 47% achieved complete remission or

incomplete hematologic recovery, while 12% had partial remission.
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The new median survival was 13.1 months. These two cohorts display

that azacitidine and pembrolizumab combination therapy proved

beneficial in both R/R and recently diagnosed older patient groups.

Grade 3/4 irAEs were observed in both patient groups, the ratios

being more frequent (24%) in the first cohort and less (14%) in the

second. Although at this point this treatment combination looks more

suitable to newly diagnosed older patient groups, more specifically

directed research is still needed (72).

A phase 1b/2 study reported that azacytidine leads to PD-1 and

PD-L1 upregulation in AML which causes drug resistance that may be

overcome by including the PD-1 inhibitor nivolumab. In a study,

azacitidine was combined with nivolumab and administered to 35

relapsed AML patients. Out of 35 patients evaluated, the preliminary

data from this study showed that 6 (18%) were in complete remission

(CR) or CR with incomplete count recovery (CRi) and 5 (15%) were

in hematologic improvement. A decrease in blast count greater than

50% was observed in 14 patients (26%), and the median overall

survival was reported as 9.3 months (range, 1.8 - 14.3). Patients with

CR/CRi, higher levels of pre-treatment CD3+ and CD8+T-cell

infiltration were detected in bone marrow aspirates (73). In

conclusion, azacytidine in combination with nivolumab yielded a

promising and durable response in relapsed AML, and irAEs may be

managed with systemic steroid administration.

In another multi-centered, randomized, international phase 2

clinical trial, azacitidine was administered to high-risk MDS or

AML patients in combination with the anti-PD-L1 antibody

durvalumab or as a single agent. In this study with 129 AML

patients older than 65 years old who were not eligible for

chemotherapy; a comparison between the azacitidine and

Durvalumab combination therapy and azacitidine as a single agent

therapy showed no statistically significant difference in total response

rate (31.3% vs. 35.4%) or complete remission rate (17.2% vs. 21.5%).

The overall survival rate was 13.0 and 14.4 months, respectively, with

no unexpected side effects. Although this study portrays an important

role regarding its comparatively larger sample size, it is worth

considering that more than half of the patients did not continue

with the study regimens, which might be taken into account in

interpreting the results (74).

The resistance mechanisms and biomarkers playing role in

processes that play role in treatment response are not yet fully

explained, but a study from Herbrich et al. puts forth a possible

explanation. In their study, Herbrich et al. evaluated the bone marrow

and peripheral blood samples taken from nine relapsed or refractory

AML patients who received azacitidine and anti-PD-L1 antibody

avelumab using single-cell mass cytometry. Out of nine evaluable

patients, four had an initial decrease in blast count, and seven showed

a fast progression subsequently. Authors reported that in AML bone

marrow, CD4+ and CD8+ T cells had a significantly lower proportion

of naïve T cells at baseline, along with a smaller ratio of terminally

differentiated CD8+ cells. Contrarily, the largest portion of T-cells in

AML bone marrow consisted of the effector memory CD4 and CD8

cells. In these patients, a high PD-L2 protein expression was observed

in AML cells, and PD-L1 expression was low in the samples taken at

both baseline and during therapy. PD-L2 was also frequently

expressed in the newly formed clones which were not present at

baseline. These findings may indicate a possible explanation for the

different response rates to PD-1 and PD-L1 inhibition observed
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during AML treatment. These findings also indicate that the immune

cell distribution is significantly affected in AML patients’ bone

marrow. The T cell distribution ratio and the different checkpoints

that are expressed on AML cells, such as PD-L2, may pose a key in the

consideration of the approach and response of the treatment (75, 76).

In their study, Berger et al. administered anti-PD-1 monoclonal

antibody CT-011 (pidilizumab) to patients with advanced

hematologic malignities in a phase 1 clinical trial, where

pidilizumab was administered to 17 patients (8 being diagnosed

with AML) in doses between 0.2 and 0.6 mg/kg. Complete

remission was observed in one patient, while clinical benefit is

reported in 33%. Although serious adverse events were reported in

4 patients, who were all diagnosed with AML and passed away later,

the study reported that none of these were related to the treatment but

to fulminate-resistant leukemia and that the dose aforementioned can

be considered safe (77, 78). Currently, pidilizumab is also being

investigated in combination with a dendritic cell vaccine on AML

patients in complete remission (79). In a phase 1/1b multi-centered

study performed with hematologic cancer patients who were in

relapse following post-allogenic HSCT, the anti-CTLA-4 antibody

ipilimumab was administered to the patients. In 22 patients who were

receiving 10 mg/kg, four were diagnosed with extramedullary AML,

and one was diagnosed with MDS which progressed to AML; five

patients (23%) were in complete remission, 2 (9%) showed partial

response and 6 (27%) had a decreased tumor burden. A sustained

response for longer than a year was reported in four patients.

Although this study was noted to be attainable in patients with

AML post-allogenic HSCT; the irAEs were reported in 6 patients

(21%) including one death reported. Graft versus host disease

(GvHD) is also reported in 4 (14%), which resulted in the

conclusion of further application of ipilimumab. Altogether, these

data revealed promising results regarding ipilimumab administration

in patients with post-allogenic HSCT relapsed AML (65, 80). In a

phase 2 study evaluating the effect of PD-1 inhibition after cytotoxic

chemotherapy on clinical response, 37 patients diagnosed with

relapsed or refractory AML were administered high-dose cytarabine

followed by IV 200 mg pembrolizumab on the 14th day. The patients

who responded to the treatment continued to receive pembrolizumab

for two years. The overall response rate was 46%, the composite

complete remission was 38%, and the median overall survival was

11.1 months. For refractory or early relapsed patients, and for patients

who received the treatment as the first salvage, the median overall

survival was 13.2 and 11.3 months, respectively, which was

considered promising by the authors. Grade 3 and higher irAEs

were reported to be rare and self-limiting, with 14% which is

promising when treatment feasibility is considered (81). In another

phase 2 study, a patient group of nine who received pembrolizumab

following high dose cytarabine was compared with a control group of

18 who underwent allogeneic HSCT and didn’t receive ICI. According

to the one-year survival data, no significant difference was reported

between the two groups (67% vs. 78%; p=0.34). For the group that

received ICI, the 100-day mortality rate was 0%, while in the control

group, it was 17%. Grade 3/4 acute GVHD risk didn’t increase in

patients who received pembrolizumab prior to allogeneic HSCT while

no indicator of chronic GVHD was reported (82). These findings

support the aforementioned phase 2 study, in reflecting both the
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clinical activity and safety profile of cytarabine and pembrolizumab

combination. Besides agents targeting PD-1/PD-L1 axis, anti-

leukemic potential of humanized anti-TIM-3 antibody sabatolimab

in combination with HMAs was investigated in 48 patients who were

newly diagnosed with AML and ineligible for intensive chemotherapy

(83). The overall response rate was reported as 40% while 30% of

these patients achieved CR/CRi.

When ICIs’ role in maintenance is considered, preclinical studies

indicate that ICIs can prevent leukemic cells’ evasion of the immune

system and, thus, overcome tumor persistence. Another phase 2 study

investigating efficacy of nivolumab on 14 high-risk AML patients in

complete remission who were not eligible for allogeneic HSCT

indicated that by the end of the year, 71% of patients were in

complete remission, indicating the drug’s safety and feasibility in

high-risk AML (84).

In brief, numerous recent clinical studies involving ICI as a single

agent or combined with other treatments demonstrated promising

results regarding clinical efficacy and safety profile. However, it is

early to draw distinct conclusions about ICIs’ use in AML and further

research is needed. It should be noted that currently, there is no ICI

approved by the FDA in the treatment of AML, and the clinical trials

regarding ICI in AML treatment are still at the early stages with

results revealing modest efficacy, especially for monotherapy the

refractory settings (85).

As mentioned earlier, chemotherapy in AML is divided into two

phases; induction therapy and consolidation therapies which both

vary according to the patient’s age, presence of co-morbidities and

genetic alterations. Induction therapy aims to eliminate the blasts in

the peripheral blood and to restore normal hematopoiesis while

consolidation therapy is administered to remove residual leukemic

cells (86). In clinical trials, efficacy of ICIs is mainly investigated in

combination with chemotherapy agents and HMA (87). intervention

in AML remains as allogeneic HSCT while the clinical trials involving

ICI are ongoing and up-and-coming.
4 The interaction between bone
marrow microenvironment
and cancer cells in AML

Bone marrow is an extraordinary tissue where various cells from

lineages reside. BMM is a substantial gatekeeper in maintenance of

the blood cell formation and is a complex structure which is

composed of cellular and noncellular elements (88). The cellular

elements consist of hematopoietic cells, stromal cells (fibroblasts,

endothelial cells, endothelial progenitor cells, osteoblasts, osteoclasts,

adipocytes) and noncellular elements consists of ECM components,

autonomic nervous system and soluble factors such as cytokines (89).

BMM is usually divided into two different anatomical locations as

endosteal niche and perivascular niche (90); the main function of

endosteal niche and perivascular niche is to aid long term storage of

HSCs by providing a hypoxic environment and to support the

proliferation and differentiation of HSCs by maintaining a more

oxygenated environment, respectively. Based on their different

functions and structural features, these niches have been divided
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into various subgroups; endosteal niche mainly comprise of osteo-

lineage cells while the perivascular niche consists of different subtypes

associated with endothelial and perivascular cells (91) (Figure 1).

Various cellular or non-cellular components of BM is critical for

maintenance of physiological conditions of microenvironments (92).

In addition, in some sources, a third bone marrow niche called

reticular niche, a transitional zone of endosteal and perivascular

niches is described (117).

In leukemia, a growing body of evidence indicates leukemic cells’

involvement in malignant transformation, disease progression,

treatment resistance, and relapse as the interplay between leukemic

stem cells and the microenvironment alters the hemostasis in a way to

support leukemic cells’ survival and proliferation, suggesting a

bidirectional interaction between HSCs and BMM (118, 119). AML

cells mainly bind to the BM fibroblast, fibronectin and laminin (120);

SCF exposure enhances these cells’ adhesion to fibronectin (121).

Both SCF and fibronectin are found in the BMM at high levels, and

together they protect AML cells from apoptosis (121). These cells also

remodel the BMM via secreting matrix metalloproteinases (MMPs)

(122, 123). MMP-2 and -9 have been indicated to be secreted by

leukemic blasts and involved in dissemination of myeloproliferative

malignancies including AML. Thus, it can be concluded that the
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mediators released by the BMM play role in survival of the leukemic

cells as well as regulating their mobilization, and in leukemia

treatment, targeting BMM-related signaling pathways has been

shown to enhance the therapeutic efficacy (124). Moreover, various

BM-derived populations including myeloid cell–derived suppressor

cells, mesenchymal stem cells, and tumor-associated macrophages are

shown to be involved in escaping anti-tumor immune responses by

suppressing anti-tumor responses (125). Angiogenesis enhances

leukemogenesis by providing necessary factors that favor

malignancy as certain angiogenic cytokines and factors were

reported to be increased in AML patients and it was associated with

poor prognosis (126). Lipolysis and remodeling of BMAT are induced

in the setting of AML, and free fatty acids yielded by lipolysis are used

as nutrient by leukemic cells (127). Sympathetic neuropathy may be

seen due to bone marrow infiltration of malignant cells, and it was

associated with AML progression (128). Along with chronic myeloid

leukemia (CML), the niche microenvironment of acute myeloid

leukemia (AML) is well established: with the help of recent studies,

significant progress has been made in understanding the impact of

genetic mutations or functional alterations in the BM on leukemia.

Examples include the deletion of Dicer1 in osteoprogenitors, which

leads to the development of myelodysplastic syndrome (MDS) with
FIGURE 1

The cellular components of the BM niches include endothelial cells, HSCs, megakaryocytes, osteoblasts, osteoclasts, adipocytes, sympathetic neurons
that are related to Schwann’s cells, bone macrophages and reticular cells (90, 92). Both soluble factors and direct contact between cells regulate HSC
maintenance. Quiescent HSCs are kept in contact with osteoblasts and Nestin+ MSCs as well as CXCL12 - abundant reticular (CAR) cells in the
perivascular niche; both secrete soluble factors such as Stem Cell Factor (SCF), CXCL12 (CXC motif chemokine ligand 12) and Ang-1 (Angiopoietin-1)
while in the perivascular niche, secrete (93). Osteomacs, the bone-marrow-resident macrophages are also found in the endosteal niche and facilitate
colonization; in the absence of osteomacs, HSCs are shown to leave BM and join circulation (92, 94). Jagged-1 is released from cells of osteocyte
lineage, and responsible for the activation of Notch pathway (95). Organized as a monolayer in the internal compartment of blood vessels, ECs take part
in various physiological processes including facilitating blood flow, contributing coagulation, nutrient exchange and regulate hematopoiesis (96).
According to their localization in the BM, they are divided into two categories: sinusoid endothelial cells (SECs) which have low CD31 and Endomucin
expression (type L), or arteriolar endothelial cells (AECs) with CD31 and Endomucin expression (type H). Both cell types play different roles in the
modulation of BM niche (97). SECs are the compartments of more permeable sinusoidal vessels and secrete high levels of CXCL12 as well as E-selectin
that regulate HSC homing (96, 98). On the contrary, AECs are the compartments of arteriolar vessels which have low penetration and ensure a relatively
hypoxic environment (99, 100). AECs generate SCF which play a fundamental role in maintaining HSCs and express CXCL12. In addition, they produce
Netrin-1 that retains HSCs’ quiescence and self-renewal (101). Megakaryocytes are the basic subunit in the perisinusoidal area and regulate HSC
quiescence (102–104). In the endosteal niche, osteoblasts stabilize bone formation and produce mediators which are essential for HSC maintenance;
and CXCL12, granulocyte colony-stimulating factor (G-CSF), SCF, Annexin 2 (ANXA2), Ang-1, Thrombopoietin (TPO) that are required for the regulation
of HSC homing, quiescence and mobilization (105–113). Schwann cells are found in the perivascular niche and protect the quiescent HSCs through
transforming growth factor-b (TGF-b) (114). Bone marrow adipocytes were also reported to support HSC proliferation through secreting adiponectin and
contribute to energy metabolism (115, 116).
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sporadic transformation to AML (129), or overexpression of b-
catenin in osteoblasts as observed in 38% of the patients diagnosed

with MDS or AML (130). Similarly, activation of the parathyroid

hormone receptor in osteoblasts is shown to promote KMT2A-

MLLT3 oncogene-induced AML (131). AML cells are also capable

of modulating the BMM as cells harboring BCR-ABL1 and Nup98/

HoxA9 fusion gene are indicated to inhibit mature osteoblasts and

disrupt bone homeostasis by secreting CCL3 (132). Likewise,

KMT2A-MLLT3 AML cells have been shown to inhibit terminal

differentiation of bone marrow mesenchymal stromal cells to mature

osteoblasts, which eventually results in decreased bone

mineralization (128).

Recently, upregulated ICP expressions including PD-1, TIM-3,

LAG-3 in addition to expansion of myeloid-derived suppressor cells

and increased Treg frequency in the BMM of AML patients were

reported, which highlights the importance of IC blockade as a novel

therapeutic strategy in the treatment of the disease (133).
4.1 Targeting bone marrow
microenvironment in acute myeloid
leukemia – existing strategies

When considering treatments targeting BM microenvironment,

CXCL12 (C-X-C motif chemokine ligand 12)/CXCR4 (C-X-C

chemokine receptor 4) axis is the most studied pathway in AML

treatment; as reported, inhibition of this pathway leads to

mobilization of leukemic cells, sensitizes them to chemotherapy and

promotes apoptosis (134–138). The anti-CXCR4 antibody

ulocuplumab has shown to inhibit CXCL12-mediated cell migration

and promote apoptosis in in vivo murine AML models as well as

promoting chemosensitivity via mobilizing AML cells to circulation

in clinical studies (139–141). Another common strategy is inhibiting

the Wnt/b-catenin pathway to diminish the protection provided by

BMM: b-catenin is highly expressed in unfavorable and relapsed

AML patients, and Wnt/b-catenin inhibitor PRI-724 was shown to

suppress cell growth while promoting apoptosis in AML blasts and

stem/progenitors (142). Wnt/b-catenin/FLT3 inhibitor SKLB-677

promoted apoptosis in FLT3-driven AML both in-vitro, in-vivo and

exvivo (143). Another Wnt/b-catenin inhibitor, BC2059 has shown

promising results in treatment of AML stem or blast progenitor cells

with FLT3 internal tandem duplication expression in combination

with receptor tyrosine kinase inhibitors quizartinib and

crenolanib (144).

Targeting adhesion molecules which support the leukemic cells is

another approach in AML treatment. Being the receptor of vascular

cell adhesion molecule (VCAM-1), integrin a4b1 (very late antigen 4

– VLA 4) plays role in the adhesion of leukemic myeloblasts to BMM

(145). Humanized VLA-4 monoclonal antibody natalizumab has

been reported to induce mobilization and sensitize leukemic cells to

chemotherapy (146). In combination with cytarabine, VLA-4

inhibitor FNIII14 has shown to eradicate minimal residual disease

in a murine AMLmodel, underlining the importance of inhibiting cell

adhesion-mediated drug resistance (147). By regulating VLA-4

avidity, adhesion molecule CD44 was shown to strengthen the

connection between AML cells and BMM, thus, contributing to the
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supportive BMM (148). In a phase I study, humanized anti-CD44

monoclonal antibody RG7356 was found to be safe and well tolerated

though it is not suitable as a monotherapy due to its’ limited clinical

activity in AML treatment (149).

The endothelial cell adhesion molecule E-selectin is another

important component of the vascular niche that regulates the

balance between HSC renewal and commitment. However, the

inflammatory mediators secreted by AML blasts increase the

expression of endothelial niche E-selectin, which, in turn, promotes

their survival and chemoresistance through AKT/NF-kB/mTOR

signaling pathways (150). In an AML murine model bearing the

human KMT2A-MLLT3 oncogene, the small molecule E-selectin

mimetic GMI-1271/Uproleselan has enhanced the efficacy of AML

treatment by overcoming vascular niche-mediated chemoresistance,

indicating E-selectin blockade alleviates pro-survival signaling and

improving therapeutic efficacy (150).
4.2 Targeting bone marrow
microenvironment in acute myeloid
leukemia with an emphasis
on immune checkpoint proteins

AML blasts modulate TME to enable disease progression, provide

protection against therapeutic interventions and contribute to

recurrence (151). In terms of ICPs, AML blasts can alter the T cell

immunological synapses, promote inhibitory soluble factors to

hamper T cell responses, and promote activity of MDSCs as well as

promoting polarization of tumor associated macrophages (TAMs) to

immunomodulatory M2 phenotype (151, 152). The interaction

between AML cells and immune cells are visualized in Figure 2.

4.2.1 Leukemic cells
PD-1/PD-L1 axis is the most studied IC pathway in AML (153),

and PD-L1 expression on AML blasts were reported to be linked with

the inflamed tumor microenvironment, highlighting the potential of

targeting BMM in disease management (154, 155). In addition, AML

cells also secrete soluble ICPs to the microenvironment to create an

immunosuppressive milieu as human AML cells including leukemic

stem cells have higher TIM-3 and its’ ligand Gal-9 expression levels

compared to healthy HSCs. By binding TIM-3 expressed on NK cells,

Gal-9 can inhibit granzyme B transfer, and in turn, NK-mediated cell

lysis while soluble TIM-3 can suppress IL-2 production by T cells,

hampering NK and CTL activation (156).

4.2.2 Endothelial cells
Bone marrow endothelial cells are an important part of the BMM;

by secreting growth factors along with certain cytokines and forming

physical contact with hematopoietic progenitors, they take part in the

regulation of hematopoiesis (157). In cancer, tumor vessels are highly

abnormal, and they favor immune suppression (158). T cells can

remodel the ECM by downregulating adhesion molecules to prevent

infiltration and recruitment of effector immune cells to the cancer

milieu; the production of immunosuppressive metabolites,

chemokines and cytokines inhibit CTL function while promoting

M2 macrophages and MDSCs (159, 160). Thus, normalization of the
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cancer vasculature would improve immune cell infiltration, promote

the immune reactivity, and hamper immune suppressive

microenvironment: inhibition of angiogenesis by drugs targeting

VEGF-dependent signaling pathways were suggested to improve

immunotherapy outcomes (161).
4.2.3 T cells
T cell function holds great importance in IC blockade since they

are the main targets of ICIs which are interfered by MDSCs that lead

to poor clinical outcome in ICI treatment (162). In AML, certain

clinical studies have revealed disruptions in T cell immunity such as

increased Treg frequency, reduced T helper cells, increased T cell

exhaustion (19). Resident T cells from AML bone marrow samples of

AML patients were reported to have altered transcription profiles

expressing genes related stemness and myeloid priming (163).

Increased frequency of PD-1+CD4+ and ICOS+/CD4+ effector T

cells were reported in the BM samples of AML patients (164, 165). In

terms of Tregs, their proportion in the BMM was reported to be

higher compared to healthy controls, and a higher frequency of PD-

1+/CD8+ cells co-expressing TIM3 or LAG3 was detected, especially

in patients who had multiply relapsed AML. Secreted by LSCs, Gal-9

promotes apoptosis of Th1 effector cells and CTLs expressing TIM-3

that eventually leads to T cell exhaustion and immune evasion (166,

167). In TP53-mutated AML patients, leukemia blasts from BMM

were more frequently positive for PD-L1 (164). Even after allogeneic

HSCT, T cells infiltrating the bone marrow were reported to have

early differentiated memory stem (TSCM) and central memory bone

marrow-T cell features with multiple IC receptor expressions (168).

Another mechanism that inhibit T cell growth is the expression of
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immunoglobulin-like receptor B4 (LILRB4) which is exclusively

expressed on monocytic leukemic cells (M4 and M5 subtypes) that

interact with T cells to alter their function via releasing arginase-1 to

suppress T cell proliferation (169). The immune-suppressive

molecule, CD200 is also increased on AML cells to interact with

CD200 receptor (CD200R) on T cells to inhibit memory T cell

function and increase Treg populations (170).

4.2.4 B cells
Regulatory B cells (Bregs), immunomodulatory B cells that exert

immunomodulatory effects mainly via secreting various soluble

mediators including IL-10 are reported to increase in peripheral

blood as well as bone marrow samples in AML patients,

highlighting their role in the AML pathogenesis (171). Recently,

PD-L1 expression has been reported on Bregs in AML patients and

is associated with a worse prognosis (165). According to an in-vivo

study, CXCL13 has been suggested as a novel IC regulating Breg

activity where ablation of CXCL13 increased the efficacy of

chemotherapy and PD-1 blockade, though this study did not

involve an AML model (172). Other ICPs involved in Bregs’

involve TIGIT, although its’ mechanism of action in AML is yet to

be elucidated (173).

4.2.5 Myeloid-derived suppressor cells
Myeloid-derived suppressor cells (MDSCs) are a heterogenous

group of CD11b+ CD33+ HLA-DRlo/neg immature myeloid cells that

consist of three major groups: monocytic MDSCs (M-MDSCs, CD11b

+CD14+HLA-DRlo) that resemble monocytes in terms of their

phenotypes and morphologies, polymorphonuclear MDSCs (PMN-
FIGURE 2

CTLA-4, which is also expressed on T cells and NK cells is the first ICP that is reported to be commonly overexpressed in AML to inhibit T cell responses.
In terms of T cells, increased frequency of PD-1+CD4+ T cells as well as PD-1+/CD8+ cells co-expressing TIM3 or LAG3 were reported in AML patients’
bone marrow samples. LSCs also secrete Gal-9 that leads to the elimination Th1 effector cells. LILRB4 is expressed on monocytic leukemic cells and
interact with T cells to alter their function. CD200 is also expressed on AML cells that engage in CD200R on T cells and NK cells. Similar to T cells, PD-L1
expression has been detected on Bregs in AML patients. Recently, blocking PD1/PD-L1 axis along with inhibiting CXCL13 has been increased
chemotherapeutic efficacy, and CXCL13 has been suggested as a novel ICP; TIGIT is also expressed on BREGs, though both these findings are yet to be
confirmed in AML BM samples. TAMs express CD47 that protects phagocytosis of AML LSCs. AML: acute myeloid leukemia; Arg-2: Arginase 2; Breg: B
regulatory cell; CTLA-4: Cytotoxic T-lymphocyte antigen-4; CXCL-13: CXC chemokine ligand 13; Gal-9: Galectin-9; IDO-1: Indoleamine 2,3-
dioxygenase; LAG3: Lymphocyte-activation gene 3; LILRB4: Leukocyte immunoglobulin like receptor B4; MDSC: myeloid-derived suppressor cell; MSC:
Mesenchymal stem cell; NK cell: Natural killer cell; PD-1: Programmed death – 1; PD-L1: Programmed death ligand 1; PVRIG: Poliovirus receptor related
immunoglobulin domain containing; PVRL2: Poliovirus receptor-related 2 (Nectin-2); ROS: Reactive oxygen species; SIRPa: Signal regulatory protein a;
sTIM-3: soluble TIM-3; TIGIT: T cell immunoreceptor with Ig and ITIM domains; TIM-3: T-cell immunoglobulin and mucin domain 3; Treg: T regulatory
cell; VISTA: V-domain Ig suppressor of T cell activation.
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MDSCs, CD11b+CD15+CD14neg) that are similar to neutrophils and

early-stage MDSC (eMDSC, CD11b+CD33+CD14negCD15negHLA-

DRneg) (174–176). All subsets of MDSCs are known to exert

immunosuppressive effects, both at a systemic and at the tumor

level which led to the investigations questioning their potential for

being biomarkers in response to ICI (176). In pathological conditions

including cancer, MDSCs expand in response to inflammatory

mediators as well as growth factors released, and they undergo

expansion to participate in disease development. The presence of

circulating M-MDSCs may correlate with response to anti-PD-1

treatments: advanced melanoma patients with lower circulating M-

MDSCs levels prior to nivolumab treatment had shown better

response to treatment, and Gal-9 expression of M-MDSCs is shown

to be associated with TIM-3 expression on lymphocytes which

contributes to nivolumab resistance in non-small cell lung

carcinoma. In AML, expansion of MDSCs were shown to suppress

T-cell proliferation and T-cell responses while MDSC expansion was

reported to be Muc-1 mediated c-myc expression dependent, which

has shown to be associated with PD-L1 expression in AML cases with

TP53 mutations (177). VISTA has been found to be highly expressed

on MDSCs, and knockdown of this ICP reduced MDSC-mediated

CD8+ T cell inhibition (62). Previously, cytarabine in combination

with CXCR4 inhibitor plerixafor and anti-PD-L1 monoclonal

antibody have successfully decreased Tregs and MDSCs in the

peripheral blood and leukemic cells in the bone marrow (178).

4.2.6 Tumor associated macrophages
Polarization of TAMs to anti-inflammatory M2 phenotype has

been well documented in AML, which hampers anti-tumor immunity

and promotes cancer progression (179, 180). A study published by Al-

Matary et al. revealed that AML increases invasion of TAMs in the

BM and spleen in mice as well as leukemic patients, and Growth

factor independence-1 is the main regulator of M2 polarization (181).

Novel macrophage ICP, CD47 plays important role in various

cancers, mainly in myeloid malignancies and it is recognized as an

LSC marker in AML (58). CD47 prevents phagocytosis of AML

leukemic stem cells by interacting with SIRPa, and inhibition of

this pathway replenishes the phagocytosis ability of TAMs to engulf

AML LSCs (182). In line with these findings, the anti-CD47 antibody

magrolimab was revealed to show promising results when combined

with azacitidine in AML and MDS patients (58), and a phase 3 study

evaluating the efficacy of magrolimab in combination with venetoclax

and azacytidine has been ongoing (183). As magrolimab promotes

phagocytosis by interacting Fc gamma receptors on macrophages, the

mechanism of action of the monoclonal antibody raised questions in

terms of its’ toxicity as CD47 is also expressed on healthy cells (58,

184). However, inhibition of CD47 only promoted phagocytosis if

prophagocytic signals are present, which are normally absent on

healthy cells (184).

4.2.7 Natural killer cells
Along with T cells, NK cells target AML blasts via MHC

molecules, leukemia-associated antigens (LAAs), or NK cell

activating ligands (185), and ratio of NK cells in the BM samples of

the patients has been shown to be correlated with better prognosis
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(186). However, AML can modulate NK cell activity to eliminate anti-

leukemic responses by altering expression of ligands and receptors

(187), and studies revealed a correlation between AML blast ligand

repertoire and NK receptor expression in patients receiving

chemotherapy (188, 189). Recently, NK cells are reported to express

PD-1, and inhibiting the PD-1/PD-L1 axis has been shown to activate

these cells, suggesting NK activation as another result of ICI

administration (190). However, it should be noted that this study

did not involve AML patients but murine cancer models, and the

functional effects of PD-1 engagement on NK cells was investigated

in-vitro. Another recent study highlighted the involvement of PVRIG/

PVRL2 axis in AML and suggested that PVRIG blockade may be a

novel approach to enhance NK cell activity in PVRL2+ AML (57).

Besides PD-1 and PVRIG, expression of TIM-3, LAG3, TIGIT, Siglec-

7/9, CD200R, CTLA-4, or B7H3 were also reported on NK cells,

though in a lesser extent in comparison with T cells (191, 192). It

should be noted that none of these studies focus on the activity of NK

cells with an emphasis on AML, indicating the requirement of further

analyses regarding the NK cell-mediated anti-leukemic mechanisms

of ICI in AML.

4.2.8 Mesenchymal stem cells
MSCs influence their microenvironment by interacting with

neighboring cells via direct contact or secreting various mediators

that regulate innate and adaptive immune cells (193). MSCs inhibit

the function of T cells, NK cells; suppress dendritic cells’ maturation,

and promote Tregs’ proliferation (194). MSCs also support

hematopoiesis and promote HSCs’ colonization, and sharing the

same microenvironment with HSCs, leukemic stem cells can

modulate MSCs immunomodulatory actions: in AML, Nestin+ BM-

MSCs were reported to have altered properties that contribute to

disease development and chemoresistance (119). Under

inflammatory conditions, MSCs are reported to produce PD-L1 and

PD-L2 which bind to PD-1 on T cells to inhibit their activation and

contribute to immune escape (195). However, our current knowledge

regarding ICP expression on MSCs are limited, and further studies on

ICI-mediated anti-leukemic effects of MSCs are required.

4.2.9 Adipocytes
Bone marrow adipocytes (BMAs) are thought to be differentiated

from Sca1+ CD45− CD31− or LepR+ CD45− CD31− MSCs (196,

197). These small adipocytes secrete high levels of adipokines but

have lower CD36 and triglyceride levels compared to white adipose

tissue, and they do not share the same progenitors with brown

adipose tissue and contribute to inflammation by secreting high

levels of proinflammatory cytokines (198, 199). In 2018, Wu et al.

demonstrated PD-L1 gene expression in murine adipose tissue and

indicated that inducing adipogenesis in mouse cell lines in vitro

enhanced its’ expression up to 100-fold (200). Recently, Picarda et al.

reported that ICP B7-H3 is expressed on both mouse and human

adipocyte progenitors and involve in the glycolytic and mitochondrial

activity while its’ loss upon adipocytic differentiation results in

impaired oxidative metabolism and increased lipid accumulation

(201). However, none of these studies involve BMAs; when

considering their unique properties, expression levels of ICPs and
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their involvement in the regulation of hematopoiesis as well as

leukemia initiation and progression all require further studies.
5 Conclusions and future perspectives

Today it is widely known that the structure and the function of BMM

is altered to facilitate AML progression, dissemination and escape immune

surveillance (202). Manipulation of the CXCL12/CXCR4 pathway is the

key player in AML blasts’ growth, survival, and chemotherapy resistance:

CXCR4 expression on AML blasts that is involved in trafficking of

malignant LSCs within BM while the migration of healthy stem cells in

BM is prohibited (22). Regulation of tumor immune microenvironment

stands out as a promising strategy in cancer treatment; in AML, inhibitors

of several pathways are currently being investigated, either alone or in

combination (203). When considering the therapeutic interventions

targeting tumor microenvironment can alter ICP expression in tumor

microenvironment, inhibiting ICPs on AML blasts and stem cells may be

regarded as a combinatorial treatment strategy. In colorectal cancer, HMA

decitabine enhanced the therapeutic efficacy of PD-L1 blockade and in

ovarian cancer, dual inhibition of CXCL12-CXCR4 and PD-1-PD-L1 axes

alleviated the immunosuppressive tumor microenvironment (204, 205).

While these data underline the potential of ICP blockade in AML

treatment via BMM modulation, it should be noted that our current

knowledge regarding ICIs mainly relies on studies with solid tumors, and

more data involving larger patient cohorts are needed to determine

whether they will be integrated into therapeutic routines in

hematological malignancies, and the impact of tumor immune

microenvironment on the success of ICIs require more investigation.
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