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Multi-modular structure of the
gene regulatory network for
specification and commitment
of murine T cells

Boyoung Shin* and Ellen V. Rothenberg*

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena,
CA, United States
T cells develop from multipotent progenitors by a gradual process dependent on

intrathymic Notch signaling and coupled with extensive proliferation. The stages

leading them to T-cell lineage commitment are well characterized by single-cell

and bulk RNA analyses of sorted populations and by direct measurements of

precursor-product relationships. This process depends not only on Notch

signaling but also on multiple transcription factors, some associated with

stemness and multipotency, some with alternative lineages, and others

associated with T-cell fate. These factors interact in opposing or semi-

independent T cell gene regulatory network (GRN) subcircuits that are

increasingly well defined. A newly comprehensive picture of this network has

emerged. Importantly, because key factors in the GRN can bind to markedly

different genomic sites at one stage than they do at other stages, the genes they

significantly regulate are also stage-specific. Global transcriptome analyses of

perturbations have revealed an underlying modular structure to the T-cell

commitment GRN, separating decisions to lose “stem-ness” from decisions to

block alternative fates. Finally, the updated network sheds light on the intimate

relationship between the T-cell program, which depends on the thymus, and the

innate lymphoid cell (ILC) program, which does not.

KEYWORDS

gene regulatory network, early T cell development, transcription factors, gene expression
program, cell fate decision, thymus, epigenetic control, multipotency
1 Introduction

Conventional T cells provide lifelong protection against infection and cancer by

recognizing their cognate antigens and mediating effector functions. To ensure that the

host can exert various immune responses in a context-specific manner, T cells have extensive

diversity in their sub-lineages. The unique properties of T cells stem from the intersections of

functional similarities with different types of immune cells (1, 2). Both T and B cells utilize

antigen receptors whose diversities are achieved by DNA recombination and selection

mechanisms. Distinct from B cells though, T cells can differentiate to various subsets
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showing functional parallelism with distinct types of helper-like

innate lymphoid cells (ILCs) and natural killer (NK) cells, which

lack recombined antigen receptors but produce effector cytokines

and/or perform cytolytic functions in response to environmental

signals. In addition, T cells possess proliferative potential and

generate self-renewing long-lived populations, which are features

shared with the multipotent hematopoietic progenitor cells and

stem cells, respectively.

A recent global comparison of a wide range of hematopoietic cell

types found that lineage-specific transcription factor motif

“signatures” distinguished the active chromatin patterns for nearly

every major analyzed hematopoietic lineage, suggesting the impacts of

distinct lineage-determining transcription factors, but that T-lineage

cells notably failed to show any cell type-specific “signature” (3). How,

then, is the T-cell identity established and robustly maintained,

despite functions broadly overlapping with those of other immune

cells? We propose that this distinctive positioning as T cells can be

supported by combinatorial actions of transcription factors, instead of

relying on a lineage-specific “master regulator”. T cells utilize many

transcription factors that are commonly employed by other types of

hematopoietic cells for their own respective lineage specification and

function. However, by precisely regulating combinatorial actions of

these transcription factors over time under the influence of Notch

signaling, and possibly also using epigenetic chromatin changes to

inhibit reversibility, intrathymic hematopoietic precursors launch and

lock down the specific T-lineage program. In this analytical review, we

bring together recent evidence that assembles a newly clear picture of

how this comes about.
2 Gene regulatory network
models as explanations of
developmental pathways

2.1 Gene regulatory networks
in development

Developmental progression to generate a specialized cell type

requires continuous, ordered changes in gene expression (4, 5). As a

regulatory program, development must thus be distinct both from the

stable epigenetic mechanisms that maintain a mature cell type’s

identity (e.g., superenhancers) and from random transcriptional

“noise”, both of which have been much studied in cell lines (6, 7).

While environmental signals are often essential to trigger and support

development, the unidirectional regulatory cascade that emerges

depends on the transcription factors that are present in the cell

receiving the signals and their impacts on other transcription

factors and cellular chromatin states. The genes encoding

transcription factors and signaling components collectively

determine the regulatory state of the cell, and then the genes they

control (downstream genes) encoding effector molecules determine

the functional identity of a cell.

All these genes, whether they encode signaling receptors,

transcription factors, or effector proteins, are controlled by cis-

regulatory modules encoded in the genomic DNA, such as

enhancers, silencers, and insulators, largely via interactions with
Frontiers in Immunology 02
trans-acting sequence-specific transcription factors (8, 9).

Specifically activated long noncoding RNAs (lncRNAs) can

contribute to chromatin states as well, although their actions are

still only characterized in a few cases (10–13). Therefore, the

important components driving development, the genes and their

regulatory modules, transfer information in a directional manner.

For example, transcription factor “X” binds to the regulatory elements

of target genes Y and Z, which in turn induces expression of other

regulatory factors, “Y” and “Z”. Importantly, the activities of these cis-

regulatory elements are never driven by single transcription factors

alone, but rather by combinations of factors, even though one or

another factor can be rate-limiting in a particular experimental

situation (14–20). As a result, gene regulation cascades are not

explained by a linear pathway but by a hierarchical network (21,

22). These features of developmental regulatory networks can be

effectively captured by using topological network models, in which

the functional interactions are represented as inputs and outputs.

While there are some caveats about the interpretation of these

networks for hematopoietic development (23, 24), topological

models are indispensable for compiling evidence to explain cell

state differences in terms of gene regulation mechanisms.

In this review, we will focus on the gene regulatory programs

utilized in the early stages of thymic T-cell development, in which

multipotent progenitor cells undergo definitive T-lineage

commitment and establish T-cell identity. Some gene regulatory

network (GRN) circuits have been shown to promote cell type

stability, as in the pluripotency state of ES cells, while others have

been shown to drive ultra-rapid, deterministic cascades of change, as

in the early Drosophila embryo (25, 26). As shown below, early T cell

development falls between these models. It includes both regulatory

subcircuits that resist change and regulatory connections that enforce

change; the stochastic balance between these network subcircuits is

likely to underlie the distinctively asynchronous kinetics of T cell

program entry (27, 28). We review the major regulatory genes that are

involved in different sub-programs to establish T-cell fate, resolve

coherent but distinct program modules that need to be deployed, and

propose an updated gene regulatory network (GRN) model.
2.2 Technical requirements and challenges
for accurate GRN construction

There are significant challenges and caveats of experimental

strategies that are utilized to understand developmental GRNs. As

transcription factors need to bind to specific sequences in the DNA in

order to work, genome-wide transcription factor occupancy data

should in principle help to map where the “direct” interactions of

the putative regulatory factor occur. In the past fifteen years it has

become relatively easy to map transcription factor binding across the

genome by ChIP-seq (or CUT&RUN, or CUT&Tag) (29–31).

Potential transcription factor inputs to active regulatory elements

can also be mapped in the DNA even without direct evidence of

transcription factor binding, based on the enrichment of their motifs

in accessible chromatin in a given cell type (32–34). Mapping open

chromatin by DNase-seq or ATAC-seq and using the cell type-

specific enrichment of motifs predicted to be bound by given

transcription factors (35–37) in the open chromatin has become a
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powerful way to predict which transcription factors may be important

in that cell type (38–44). Even without any evidence that a particular

target gene actually responds to the presence of the transcription

factor itself, such predictive analysis can be a valuable step toward

perceiving network relationships at a global level (39, 45). Adding

measured evidence for actual transcription factor occupancy at sites

around key genes, when possible, enables specific network predictions

to be made (46, 47).

However, actually confronting binding-based or motif-based

predictions with empirical tests of individual target gene responses

to transcription factor activity perturbations has given a more

complex picture. Binding should not be overinterpreted.

Transcription factor-DNA interaction sites in a cell type are often

much more numerous (order of 104 sites) than the number of genes

that change expression in response to the loss or gain of a given

transcription factor in that cell type (order of 102 genes) (48–51). This

indicates that a given transcription factor’s occupancy is often

dispensable for regulation of most of the genes that it binds. Even

when the transcription factor may be required for the existence of the

cell type, its binding to the promoter of a particular gene in that cell

type can be functionally irrelevant for that gene. It is thus challenging

to predict which binding sites are actually functional, or what mode of

actions they mediate (activation vs. inhibition), solely based on the

transcription factor occupancy pattern. In addition, it is not simple to

assign a binding site to potential target genes, especially if the binding

site is surrounded with multiple genes or when the binding site is

distant from a promoter. Developmentally important enhancers of

key genes in the T-cell gene regulatory network can be hundreds of

kilobases (kb) away from the promoters (e.g. Bcl11b, Ets1, Gata3, Id2;

also Myc) (52–59). Disrupting individual regulatory elements by

deletion or a mutation of a specific motif sequences can reveal the

enhancer-target gene link, but functional redundancy of regulatory

elements can lead to underestimation (60–62).

For identification of the gene network linkages described here,

therefore, we have required evidence from functional tests that acutely

perturbed the levels of transcription factor proteins in a specific

developmental context. This has been achieved by germline/

conditional deletion using a Cre-loxP or CRISPR-Cas9 system,

knocking down using RNA interference (RNAi), repression using

CRISPR interference (CRISPRi), or acute overexpression/ectopic

activation of the target gene, each of which was then followed by in

vivo and/or in vitro phenotype scoring at the cellular, transcriptomic,

and epigenomic levels. Furthermore, we have given greater weight to

results from experiments where the role of a transcription factor was

tested in a precise, relevant T-cell developmental context and time

window. This was important because recent results of stage-specific

perturbation tests have shown that the same transcription factor’s

function may change or disappear entirely in a different context, or

even at a different stage within the same lineage (49, 51, 63–68). We

have sought to apply consistent statistical criteria to these expression

differences and to emphasize relationships that have been

independently confirmed.

Precise controlling of perturbation timing can be experimentally

challenging, especially in the context of a developmental process, as

the cells are constantly progressing forward to the next stage.

Inadequately defined perturbation time-windows could lead cells to

developmental deviation toward irrelevant fates prior to reaching the
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stages of interest, or allow cells to activate compensatory mechanisms.

Wide perturbation time windows could also span states in which the

same transcription factor plays different roles, which could

complicate data interpretation. Also, although stage-specific

perturbation approaches can capture the functional consequences of

the perturbation effectively, it is difficult to dissect whether the

phenotype is resulting from direct effect, indirect effect via gene

network, or indirect effect via differential population survival. As

noted above, simply detecting transcription factor binding in the

vicinity of a possible target gene is not enough to prove a direct

functional relationship.

These limitations and challenges are not completely avoided

within the data sources that we have analyzed to construct the

update of the early T-development GRN. However, support for

specific sites through which a transcription factor could exert direct

control of a target gene can be gleaned from the recent increase in

available genome-wide transcription factor binding data together with

measurements of local chromatin states such as chromatin

accessibility, 3D chromatin structure, and changes in histone

marks, when these data are coupled with analyses of transcription

factor perturbation effects.
2.3 Construction of an updated T-cell
specification GRN model

The current gene network model we present differs from previous

versions (27, 69–74) in several ways. In particular, initial models for

early T-cell developmental GRNs were based primarily on candidate

gene measurements, due to technical considerations. Targeted assay

systems such as qPCR were used to examine perturbation effects on

sets of only 100-150 genes out of 10,000 expressed transcripts, focused

mainly on high sensitivity monitoring of transcription factor coding

genes. It is now routine to use RNA-seq to measure the entire

transcriptome quantitatively in an unbiased manner with low

numbers of input cells, both at the bulk population level and at the

single-cell level. This reveals whole batteries of genes coregulated by a

given transcription factor perturbation in the specific context, which

help to identify the changes in developmental status that have been

induced. Genome-wide transcriptome data processing pipelines also

standardize accepted statistical criteria. Where available, single-cell

transcriptome analyses are also useful to separate perturbation effects

on cells within a lineage from perturbation effects on population

balances between the lineage of interest and contaminants.

Another change has been the advent of better technology for acute

loss of function as well as acute gain of function of transcription factor

genes within a well-defined developmental time window. Whereas

Cre excision required a separate mouse strain to be developed for each

gene to be targeted, using Cas9-transgenic mice (75) as cell sources for

in vitro T-cell differentiation has made it possible to use guide RNAs

(gRNAs) targeting one or several genes anywhere in the genome to be

introduced, to disrupt genes efficiently at any stage desired in the

same genetic background. Previous analyses of transcription factor-

target linkages in early T cell development have often depended on

gain of function or ectopic expression experiments because these

techniques change transcription factor levels acutely in a specific cell

type with even faster kinetics. However, multiple recent examples
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have shown that transcription factor impacts on a network can differ

markedly depending on the level of expression of the transcription

factor protein (GATA3, PU.1, Runx), and levels may be hard to

control in gain of function. While loss-of-function experiments can

pose other problems (asynchronous, sometimes slow loss of targeted

protein; potential viability losses in the affected cells; potential

masking by redundancy), they measure effects of factors at their

normal levels of expression. Thus, gain of function data have needed

to be re-evaluated in light of corresponding loss of function data, and

the manipulated levels of factor protein have needed to be compared

to physiological levels.

To construct the network models shown below, we have compiled

data from several sources where developmentally well-defined gain or

loss of function perturbations were carried out, with all significantly

responding genes from each perturbation study tabulated in Table S1.

The studies used are described in Box 1. Table S1 also compiles

evidence of local binding by the transcription factor of interest around

each functional target gene, wherever this evidence was available.

Note that different perturbation experiments used as sources focused

on different developmental time windows and were more or less

sensitive to loss or gain of a given factor’s activity, depending on the

normal expression baseline at that timepoint. Where there was

variation between different controls or inadequate expression of a

gene within the time window tested, even repeatedly observed effects

may have missed statistical significance cutoffs. Therefore, while we

have generally depended on more than one corroborating piece of

evidence for each connection shown, we have not required that all

RNA-seq sources should score the same genes as “significantly”

affected. Taken together, however, these results now provide a

clearer view of the architecture of the T-cell specification gene

regulatory network, showing its modular construction, and the

coordination of changes in activities of its component subcircuits

from stage to stage.
3 Overview of early thymic
T-cell development

Thymic T-development begins as hematopoietic progenitor cells

possessing lymphoid potentials migrate into the thymus and interact
Frontiers in Immunology 04
with the cortical epithelial cells providing Notch ligands, growth

factors, and cytokine signaling (106–109). This drives the

developmental program shown in Figure 1A. At early stages,

intrathymic precursor cells undergo extensive cell proliferation and

upregulate some of the T-lineage associated genes. However, they still

preserve multipotentiality and can differentiate into non-T lineage

cells, especially if Notch signaling is withdrawn. This uncommitted

stage is referred to as “Phase 1”, which includes double-negative 1

(DN1, or Early T-cell precursor, ETP) and DN2a stages. In Phase 1,

both ETP and DN2a cells express high levels of cKit and CD44, but

CD25 surface expression distinguishes ETP (CD25-) from DN2a

(CD25+)(Figure 1A). Recent single-cell transcriptomics studies

reveal heterogeneity in Phase 1 population both in human and

mouse. The pro-T cells comprising Phase 1 actually include

multiple subsets of ETPs and populations transitioning to DN2a

cells that display distinct gene regulatory programs, with patterns

mostly conserved between mouse and human based on single-cell and

bulk analyses (94–98, 110). Of interest, the intermediate-stage ETP

populations, more than the most primitive ETPs, transiently express a

set of non-T lineage-associated genes (e.g. Mpo, encoding

myeloperoxidase) even though these cells are on the T-cell pathway

(94). This suggests that these genes are induced as a part of a normal

developmental progression program in ETPs, and multilineage

priming occurs before T-lineage commitment.

Upon sustained exposure to Notch-ligand and other thymic

microenvironmental signals, progenitor cells intrinsically commit to

a T cell fate, and the developmental plasticity to non-T-lineages is

terminally blocked. After T-lineage commitment, pro-T cells establish

a T-cell identity gene expression program and start to rearrange some

forms of T cell receptor (TCR) genes. For conventional T cells,

successful gene rearrangement for expression of TCRb chain is

assured by quality control at the b-selection checkpoint during

DN3 stage. Other T cell precursors rearrange and express genes

encoding TCRg and TCRd instead, to become gd T cells. These stages

from commitment to b-selection are collectively referred to as “Phase

2”, which is comprised of DN2b (cKitint CD25+ cells) and DN3a

(cKitlow CD25+ CD28- CD27low) stages (Figure 1A) (111–113).

Further development depends on the cells’ TCR interactions.

Following b-selection, most developing T cells accumulate as

CD4+CD8+ (“DP”) cells, while they complete their TCRa gene
Box 1: Sources of data compiled in network models
Table S1 presents the main data and sources used to establish specific connections in the GRN models that follow. These sources constitute RNA-seq and microarray results
from studies of germline deletion of genes encoding the high mobility group factor TCF1 (encoded by Tcf7) (28, 76, 77), the basic helix-loop-helix E proteins E2A (Tcf3) and
HEB (Tcf12) (78, 79), and the later-activated zinc finger factor associated with T-cell lineage commitment, Bcl11b (28, 80). In addition, we used studies of acute, stage-specific
deletions of the ETS family subgroup member PU.1 (encoded by Spi1, previously called Sfpi1 in mice) (28, 48); of Lmo2 (81); of GATA3 (28, 82, 83); of Bcl11a (28); of Erg (28);
of Notch1 and Notch2 together (67); and of Runx1 and Runx3 together (51, 84). Although data for cells in the same developmental stages with complete disruption of Ikaros
(Ikzf1) were not available, differentially expressed genes that responded to Ikaros (Ikzf1) zinc finger 4 deletion were also added (85). Finally, we included data from studies of
acute gain of function of factors at stages after they would normally have been shut down, including PU.1 (Spi1) (48), and the transcription factor adaptor Lmo2 (86–88). In
addition, supporting results came from studies introducing into pro-T cells acute antagonists of key transcription factors, including the natural E protein antagonist ID2 (89) or
an artificially constructed dominant repressor form of PU.1 (90). Additional supporting results came from earlier perturbation studies knocking out E protein genes Tcf3 (E2A)
and Tcf12 (HEB) or Bcl11b (71, 79) and studies utilizing progenitor or pro-T cell lines and acute T-cell malignancies to interrogate roles of the early-acting transcription factors
Lmo2 and Hhex (81, 88, 91). For data on normal developmental expression dynamics of these genes in pro-T cells, RNA-seq and single-cell RNA-seq datasets were used (92–
94), corroborated by highly curated microarray data (95). Data used were all from experiments in the mouse system, but the underlying gene expression patterns involved are
largely conserved in human data (94, 96–103)(rev. in (103)). In addition to the data incorporated into Table S1, we consulted data from other studies for TCF1, GATA3, and
Bcl11b target gene regulation as well (16, 63, 83, 90, 104, 105). Finally, note that positive and negative regulatory connections shown in the models indicate a measurable effect in
the indicated developmental window, but usually not a pure Boolean function.
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rearrangements and express for the first time the TCRab that they

will use forever, if they are allowed to live. However, they undergo an

ultra-stringent selection process to reject all cells with inadequate or

highly autoreactive TCR specificity. The rare surviving cells can

finally mature, undergoing divergent programs of positive selection

into CD4 or CD8 single-positive cells before they emerge from the

thymus, associated with “helper” or “cytotoxic” function respectively.

Notably however, most core T-identity program genes that pro-T

cells activate in Phase 2 are irreversibly maintained throughout all

later stages of T cell development and immunological responses.
Frontiers in Immunology 05
4 Gene regulatory network models
for early T cell development
through commitment

As the thymus-seeding precursor cells migrate from the bone

marrow and first enter the thymus, they express transcription factors

inherited from their progenitor cells in the bone marrow. Expression

of many such legacy transcription factors is maintained across

multiple cell divisions. While many progenitor-associated factors
frontiersin.org
B
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FIGURE 1

T cell development stages and transcription factor expression kinetics. (A) Diagram depicts different stages of early thymic T cell development that T-
progenitor cells sequentially go through. Informative surface proteins that are utilized to define each stage are indicated (cKit, CD44, CD25 for ETP to
DN3; CD4 and CD8 for DP). Developmental plasticity to generate alternative, non-T-lineage cells is shown with dotted arrows. Note that these
alternative lineage potentials are silenced after T-lineage commitment. Lineage commitment to a T cell fate distinguishes Phase 1 (before T-lineage
commitment) and Phase 2 (after T-lineage commitment). CLP, Common lymphoid progenitor, LMPP, lympho-myeloid primed progenitor. (B) Graphs
show mRNA expression kinetics of important transcription factors involved in early T cell gene regulation programs. Left: Transcription factors inherited
from the bone-marrow progenitor cells whose expressions gradually decline during T-development (Spi1, Bcl11a, Erg, Lyl1, and Lmo2). Middle:
transcription factors upregulated in pro-T cells by thymic microenvironment (Tcf7, Gata3, and Bcl11b). Right: transcription factors expressed from the
bone-marrow progenitor cells and stably and maintained during T cell development (Ikzf1, Tcf3, Tcf12, Runx1, and Runx3). Gene expression data was
plotted by utilizing publicly available mRNA expression datasets for immune cells with curve smoothing (https://www.immgen.org) (93). (C) Diagram
illustrates transcription factors (arrows) providing distinct forces to different gene expression program modules in individual cells.
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are turned off eventually, some legacy transcription factors maintain

their expression throughout thymic T cell development, but these

often adopt new roles during stage transitions by occupying different

sets of genomic regions from those in hematopoietic progenitor cells.

The co-existence of “inherited transcription factors” together with

“newly induced regulators” in the thymic precursor cells generates

numerous possible combinatorial inputs to different target genes

which dynamically change their expression during developmental

progression in Phase 1 and Phase 2 (Figure 1B). This review focuses

on key driving regulatory factors and responders composing the

Phase 1- and Phase 2-GRNs, in which many components show

dynamic changes throughout developmental progression.
4.1 Gene regulatory network modules in
Phase 1 and Phase 2

The newly proposed GRN that we present here highlights the

observation that in each stage of early T-lineage development, subsets

of target genes for a given transcription factor are often regulated in

parallel ways, collectively composing a specific module that often has

coherent biological function (28, 114). While the definition of a

module is not precise, we use this framework to describe fairly

discrete components of the developmental process which are

regulated distinctly even if the cell is expressing other sets of genes

at the same time. One module (defined by expression of a group of

genes) may remain active consistently throughout a series of stages

while other modules are sharply changing activity, or a module can be

affected coherently by a perturbation that does not affect genes in

other modules within the same cells. As shown below, this gives the

overall process of early T cell development an “assembled” quality.

Key transcription factors often appear to play roles in activity of an

entire module, even while the individual target genes they act upon

also have other regulatory inputs. However, it is noteworthy that a

transcription factor does not define the module on its own. The same

transcription factor may even work in more than one module, as

shown below. Instead, different transcription factor ensembles can be

seen to define distinct modules, working together to drive expression

of shared target genes. They establish positive and negative feedback

loops within a module, for stabilization, or between different modules,

which results in dynamic gene network behavior. This modular

structure is significant because the timing of transitions that

individual cells make along the pathway is very asynchronous, with

cells showing an ability to linger in any of several states for several cell

cycles before progressing (27). The slow pace of differentiation

implies that regulation of the modules that predominate in any

particular stage is fairly stable; however, developmental progression

depends on eventually breaking this stability. In developmental gene

networks, a regulatory state is often stabilized when different

transcription factors with concordant effects on the same module

also support each other’s expression (115), and some examples of this

are shown below. In contrast, inter-module inhibition or repression

between regulators can make expression of different modules unstable

and eventually incompatible.

Mutually exclusive expression of different regulators generates

sharp cell-fate boundaries in binary cell fate decisions and in

embryos, for example (115, 116). However, one notable feature
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of the T cell developmental network linkages is that the repression

which is detected is often incomplete. Many repressive interactions

in this system cause a dampening of expression levels but not a

silencing of the target genes. This “soft” repression function

enables factors with mutually antagonistic activities to coexist in

the cells for days and multiple cell divisions, and it enables

activities of opposing modules to overlap within an individual

cell at the same time. Therefore, distinct sets of transcription

factors can pull and push activities of their target modules in

different directions in the same cell (Figure 1C), and the resultant

sum of the vectorized “forces” instructs cell fate (28). In the

following, we review both the regulatory circuits that maintain

coherent module activity, and also the sources of antagonists that

finally keep them from persisting.

The architecture of the modular subprograms within the T-cell

GRN has become much clearer through recent work. The distinct

subprograms that comprise the early T-cell GRNs can be categorized

as 1) the T-identity module 2), the stem or progenitor module, 3)

conditional access to alternative fates as a side effect of the stem/

progenitor module, and 4) a cell survival and proliferation module.

While the T-identity module needs to be successfully installed to

provide constitutive expression of the core T-cell genes, the second

module must be silenced in order to convert multipotent precursors

to T-lineage committed cells. Finally, the cell survival and

proliferation program in Phase 1 and Phase 2 ensures the

production of sufficient number of immature T cells to

accommodate later positive and negative selection. Because the T-

cell identity module introduces the initiators and overall structure of

the entire process, it is discussed first.
4.2 Installation and specification of the T-
identity module in Phase 1 and Phase 2

Commitment to the T-cell fate involves two major events: 1)

terminal blockade of alternative lineages, concomitant with 2)

acquisition of T-identity gene expression. The gene network

instructing the constitutive expression of the T-lineage defining

genes will be referred to as the T-identity module. Successful

establishment of the T-identity module is pivotal because the core

T-identity established in early thymic developmental phases is

robustly maintained even after these progenitor cells become

mature T cells, long after they leave the Notch ligand-rich thymic

environment. The “T-cell markers” include CD3 clusters and TCR

signaling mediators, as well as transcription factors necessary for the

induction and maintenance of these marker genes. The T-identity

module requires activities of Notch signaling, TCF1, GATA3, Runx

transcription factors, and Ikaros starting from Phase 1, then receives

critical positive inputs from the E protein complex and Bcl11b as pro-

T cells progress through Phase 2. Expression patterns of the key

factors in different immune cell populations are shown in Figure 2A

(data from www.immgen.org (93)).

4.2.1 Notch signaling as an indispensable driver
Notch signaling is an absolute requirement for initiation and

establishment of the T-identity module. In the absence of Notch

signaling, B cells develop in the thymus instead of T cells, whereas
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constitutive expression of intracellular domain of the Notch (ICN) in

the bone-marrow progenitor cells induce extrathymic T cell

development (118–120). In addition, many if not all thymic seeding

progenitors need to be primed by some level of Notch signaling in the

bone marrow. Whereas Jagged-class Notch ligands expressed in the

bone marrow do not signal as strongly as the Delta-class Notch

ligands in the thymic microenvironment (121–123), this prior

experience seems to be important for the cells to acquire

competence to initiate the T cell program (124) A thymic seeding

progenitor population that had received Notch signaling before
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thymic entry also exists in humans, supporting a physiological

contribution of Notch signaling to T-lineage specification from the

prethymic stages in both humans and mice (97). The stromal cells in

the thymic cortex express the strongest ligands for signaling through

Notch1, mainly Delta-like 4 (Dll4), as well as Dll1 and to a lesser

extent Jagged 2 (Jag2). These engage with Notch receptors (Notch 1-

Notch3) on the thymic precursor cells with varied affinities (122, 125).

This ligand-receptor interaction induces proteolytic cleavages in the

Notch receptor, releasing the ICN to the cytoplasm. Then, the Notch

ICN interacts with DNA-binding transcription factor RBPJk and
B C

A

FIGURE 2

Gene regulatory networks driving the T-identity module. (A) Heatmap shows expression patterns of key transcription factors supporting the T-identity
module across different immune cell types, using the ImmGen MyGeneSet tool (https://www.immgen.org) (93). Bone marrow progenitor (BM progen), B
cells precursors (B progen), B cells, T cells, gd T cells ("gd T cells"), natural killer cells (NK), Innate lymphoid cells (ILC)s, Dendritic cells (DC), Macrophage
(MF), Monocyte (Mo), Granulocyte (GN), Mast cell (MC). See Table S2 for the number keys. (B, C) BioTapestry models (71, 117) of gene regulatory network
relationships described in the text. Evidence for all connections shown is in Table S1. Structure of BioTapestry models: Genes are shown with regulatory
regions (horizontal lines) distinct from their encoded outputs (bent arrow at “promoter”). Connections with arrows represent positive regulation.
Connections ending in blocking lines represent negative regulation. When gene products combine to produce a functional unit, or when activity is not a
simple function of transcriptional output, a “bubble” symbol is placed to represent the emergent function from their collective activities. Both negative
and positive regulation can impinge on such activity bubbles, e.g. ID factors inhibiting E protein activity without necessarily inhibiting the expression of
the E protein coding genes themselves. Double chevron symbol indicates ligand-receptor interactions, here used to represent Notch ligand—Notch
interaction as a source of regulatory input to other genes. Arrows consisting of dotted lines show decreasing or weak activities. These conventions are
used also in Figures 4B, C, 5B, C. (B) Current model for the T-identity module regulator transcription factors in Phase 1 (top) and Phase 2 (bottom). (C)
Current model for the T-identity module downstream molecules in Phase 1 (top) and Phase 2 (bottom). Expression of Il2ra (CD25) indicates
developmental progression from ETP to DN2 and DN3 stages in mice. Surface markers: Thy1, Cd3 clusters genes (Cd3d, Cd3e, Cd3g), Cd247; TCR
signaling molecules: Lck, Itk, Fyn, Fyn, Trat1, Lat, Zap70, Ptcra; TCR rearrangement molecules: Rag1, Rag2, Dntt.
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functions as co-activator, recruiting other transcriptional coactivators

and chromatin modifying enzymes (122, 126).

Although Notch1 is most strongly expressed throughout, acute

deletion of different Notch family genes in pro-T cells shows that

Notch1 and Notch2 cooperate to induce the T-identity module in

Phase 1 cells by activating genes encoding essential transcription

factors (e.g., Tcf7, Myb, Gata3, Hes1), the core-T cell marker genes

(Cd3g, Cd3e, Thy1) and the useful DN2-DN3 stage marker Il2ra (in

mouse; not in human at this stage). Later, in Phase 2, Notch signaling

induces genes necessary for TCR rearrangement and signaling (Rag1,

Rag2, Lck, Ptcra) (67)(Figures 2B, C). Notch actions in the T-cell

identity module are not hit-and-run; the signals must be sustained

through lineage commitment and then to sustain most cells’ viability

into the beginning of b-selection [rev. by (127)]. Notably, however,

the target genes regulated by Notch signals either positively or

negatively change markedly between Phase 1, early Phase 2, and the

end of Phase 2 (67). The shifting but essential roles of Notch signaling

in pro-T cells provide an example of context-dependent shifts in

regulator deployment which are seen for other factors as well (15,

49, 51).

4.2.2 Notch-induced effectors TCF1 and GATA3,
cooperative but nonredundant

Notch-activated targets in Phase 1 cells include genes encoding

TCF1 (Tcf7) and GATA3, which are pivotal for instituting the T-

identity module (Figures 2A, B top). The activation of Tcf7 by Notch

signaling appears to be direct, although its maintenance becomes

Notch-independent in Phase 2 (67, 76). The functional importance of

TCF1 and GATA3 in T-lineage specification is demonstrated by

transgenic animal models that lack Tcf7 or Gata3 expression. Tcf7-

or Gata3-deficiency in pro-T cells abrogates T-cell development from

the earliest Phase 1 stage (76, 77, 82, 104, 128–130). Tcf7 deletion in

bone-marrow derived progenitors using Vav1-Cre caused

developmental arrest at ETP stage and allowed abnormal

transcriptome clusters to accumulate among thymocytes in steady

state, based on single-cell RNA-seq (scRNA-seq) (63). In accord with

these results, another recent single-cell transcriptome study using

dual guide-RNAs (gRNAs) to disrupt Tcf7 or Gata3 specifically in

Phase 1 cells showed that the precursor cells lacking TCF1 completely

failed to enter the normal T-cell developmental trajectory, while those

lacking GATA3 failed to progress properly (28). While Tcf7 and

Gata3 both depend on inputs from Notch signaling and Runx family

transcription factors to be turned on, they also create a possible

stabilization circuit for early T-cell specification by positively

regulating each other as well (28, 77, 82)(Figure 2B).

Despite these positive feedbacks, acute Tcf7 deletion results in

different impacts on the developing pro-T cell population than acute

Gata3 deletion in the same Phase 1 developmental time window,

based on scRNA-seq data. TCF1 and GATA3 regulate distinct target

genes, indicating that these factors do not perform redundant

functions. Also, studies using gain-of-function approaches suggest

that TCF1 overexpression is completely different from the effect of

high dosage GATA3 in pro-T cells. A high level of TCF1 in the mouse

bone-marrow progenitor cells can upregulate essential genes in the T-

identity module, such as Gata3 and Bcl11b, even without Notch

signaling, causing cells apparently to bypass the ETP stage (77). In

contrast, elevated GATA3 levels block T cell development, promoting
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deviation to an alternative, mast-cell lineage in the absence of Notch

signaling, and killing pro-T cells if Notch signaling is sustained (79,

82, 83, 131). This difference in part involves the different impacts

these factors have on genes within proliferation and survival modules

used in Phase 1 cells, including effects on Kit, Il7r and Spi1

(see below).

In pro-T cells, TCF1 and GATA3 instruct T-cell development by

upregulating many T-program genes (Notch1, Notch3, Hes1, Gata3,

Bcl11b, Lef1, Ets2, Il2ra, all Cd3 genes, Cd247, Tcrb, Lat, Fyn, Rag1,

Rag2, and Trat1 by TCF1; Myb, Ets1, Tcf7, and Bcl11b by GATA3)

(Figure 2C). Importantly, both TCF1 and GATA3 are required

together for the initial induction of Bcl11b, which will be important

in Phase 2, suggesting that multiple transcription factor inputs are

non-redundantly required (16).

As TCF1 and GATA3 are necessary to initiate the T-lineage

specification program, the positive regulatory factors inducing these

transcription factors are also critical. TCF1 and GATA3 positively

regulate each other and Runx transcription factors also provide

supportive inputs, as described below. The critical regulatory

elements of the Tcf7 gene in T-lineage cells, 30-40kb upstream of

its promoter regions (132), are also occupied by RBPJk, Runx factors,
GATA3, and TCF1, consistent with direct positive regulation by these

factors (Figure 3 left, in "DN2b/DN3" samples; note that both Tcf7

and Gata3 in this figure are transcribed from right to left). Similarly,

an enhancer region 280 kb downstream of the Gata3 gene, which is

known to be necessary for Gata3 expression in the T-lineage (54), is

occupied by RBPJk, Runx factors, TCF1, Bcl11b, and GATA3 by

Phase 2 (Figure 3 right, “[i.e., "DN2b/DN3"] samples).

The strong force that TCF1 exerts to drive the T-cell program

involves reprogramming of chromatin accessibility and long-range

looping. TCF1 overexpression in fibroblasts opens the chromatin

regions near the T lineage-associated genes, which are naturally

demarcated by repressive histone marks in fibroblasts (135). Recent

studies demonstrate a potent role of TCF1 in chromatin architecture

remodeling in pro-T cells, later DP thymocytes, and mature T cells

(136, 137). In Phase 2, TCF1 occupies key sites in evolutionary

conserved topologically associating domains (TAD), i.e. regions of

chromatin containing clusters of regulatory elements that interact

within the TAD but are usually insulated from other TADs. When

TCF1 binds to the inter-TAD sites along with CTCF (a transcription

factor that can anchor chromatin architecture), this co-occupancy

weakens insulation of the TAD boundaries and enables intermingling

of TADs, potentially allowing new enhancer-promoter interactions.

In addition, TCF1 establishes long-range looping around the T cell

genes and marks the surrounding regions with H3K27ac (136).

4.2.3 Multitasking positive roles of Runx
family factors

Runx transcription factors are broadly expressed in all

hematopoietic lineage cells, but they exert context-specific functions

by switching their interaction sites across the genome. The expression

of Runx1 and Runx3 is established prior to the thymic entry, and

these two paralogs are co-expressed within individual Phase 1 and

Phase 2 pro-T cells alike (51, 93, 94). The sum of Runx1 and Runx3

activities, measured by total binding by ChIP-seq, is maintained

stably throughout the early T-lineage developmental process,

suggesting that overall Runx availability between Phase 1 and Phase
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2 does not dynamically change (51). However, the DNA binding

profiles of Runx factors from hematopoietic stem cells (HSCs), ETP,

DN3, DP, naïve CD4 T cells, and regulatory T cells (Tregs)

demonstrate that a large fraction of the Runx binding sites displays

highly cell type-specific occupancy (84). The sites occupied by Runx

factors in ETPs are almost as different from those in DN3 cells as the

sites occupied in completely different hematopoietic lineages,

explaining the fact that Runx factors positively or negatively

regulate substantially different sets of target genes in Phase 1 pro-T

cells than in Phase 2 pro-T cells (51). Thus, the gene network role of

Runx factors within the T-identity module changes with increased

developmental progression, like the role of Notch signaling.

Due to functional redundancy between Runx1 and Runx3 in the

pro-T cell stages, their roles in early T-developmental stages were

previously under-detected when only one of the paralogs was

disturbed. However, upon disruption of CBFb, the common co-

factor of all Runx factors, almost all stages of pro-T cells disappear,

demonstrating the importance of Runx factors in early stages of

thymic T-development, and NK cell development as well (138).

Accordingly, acute deletion of Runx1 and Runx3 together in Phase

1 or Phase 2 pro-T cells results in a severe developmental block and

dysregulation of developmentally important genes. The Runx target

genes defined by stage-specific loss-of-function and/or gain-of-

function reveal the striking positive influence of Runx1 and Runx3

on regulating the core T-cell identity genes, which include Tcf7,

Gata3, Hes1, Bcl11b, Myb, Ikzf1, Tcf12, Lef1, and Ets1 (transcription

factors); Cd3g, Cd3d, Cd3e, Cd247, and Thy1 (T cell surface markers);

Lck, Lat, Fyb, Trat1, and Rag2 (TCR signaling and rearrangement

molecules) (51)(Figures 2B, C).

Of interest, cell-type-preferential Runx binding sites show

distinct, stage-specific enrichment profiles for motifs of other
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factors, including PU.1, E2A, ETS, or TCF/HMG factors, suggesting

that Runx factors may be cooperating with distinct partners to be

recruited to these different binding sites in a cell-type specific manner

(84). Indeed, Runx factors are identified as “popular” functional

collaborators of other factors in Phase 1 and Phase 2, as they work

with PU.1 in Phase 1, and at least with GATA3 and Bcl11b in Phase 2

(48, 71, 133). As Notch/RBPJk binding sites are frequently co-

enriched with Runx motifs (67), and there is substantial overlap

between Notch and Runx-regulated target genes (Figure 2), it is likely

that Runx interacts functionally at some sites with Notch/RBPJk as

well. Runx interacting co-factors can indeed alter Runx binding site

choices. PU.1 binding accompanies Runx binding at a major fraction

of its Phase 1 sites. If added to Phase 2 cells, where Runx binds

different sites, PU.1 recruits Runx1 to its binding loci even though

these sites possess lower quality Runx motif sequences than the

starting Phase 2 sites (133). This PU.1-mediated Runx

redistribution actually depletes Runx occupancy from the higher

quality Runx binding sites, but this can be rescued by increasing

the Runx availability levels (84). Notably, introducing additional

Runx1 to Phase 1 pro-T cells results in precocious Runx DNA

binding to post-commitment specific sites, which hastens activation

of some Phase 2 targets of Runx factors and accompanies substantial

acceleration in developmental progression. These results show that

multiple co-factors may compete for the limited amount of Runx

factors, and that this competition has a strong impact on the Runx

DNA binding site choices as well as T-development speed.

4.2.4 Ikaros family factors: A universal
lymphoid requirement

A zinc finger protein, Ikaros is encoded by Ikzf1 and highly

expressed in lymphoid progenitor cells. Thymic progenitor cells
FIGURE 3

Transcription factors and chromatin state markers in Tcf7 and Gata3 enhancer regions. UCSC genome browser tracks show transcription factor
occupancy, histone markers, and chromatin accessibility profiles near the Tcf7 locus (left) and Gata3 locus (right) in the indicated stage (67, 84, 93, 101,
133, 134). H3K4me2 represents active enhancers and H3K27me3 marks repressive chromatin regions. Unst STAT5B: unstimulated STAT5B, IL-7 STAT5B:
IL-7 stimulated STAT5B.
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maintain a stable level of Ikzf1 expression throughout all stages, and

Ikaros is necessary for normal T-development as well as B and innate

lymphoid cell development (139–142). An impaired form of T cell

development survives a complete Ikzf1 null mutation (143), but this is

likely due to redundancy with its relative, Ikzf2, which is also

expressed in early T-cell precursors (144, 145). Disruption of zinc

finger 4 of Ikzf1 affects DNA binding, resulting in different

developmental defects, which range from DN2/DN3 cellularity loss,

abnormal b-selection, and delayed progression, to T-cell lymphoma

(85, 142). Notably, Ikaros target genes are highly context dependent,

and distinct sets of genes were uniquely regulated in Phase 1 vs. Phase

2, and beyond. The positive targets affected by the zinc finger 4

deletion at least include Lef1, Spib, Ptcra, Cd8a, Cd8b1, Rag1 and

Rag2, while its negative targets include Cd4, all relevant both to Phase

2 (Figures 2B, C lower panels) and to the orderly transition of the cells

succeeding in b-selection to later stages. Other evidence has also

indicated that Ikaros can act as a quantitative damper on Notch

signaling in this transition (146, 147). Some Notch-induced genes

antagonized by Ikaros acquire H3K27me3 histone marks in DN3

stage by Ikaros-mediated Polycomb repressive complex 2

recruitments to these regions (134). However, the importance of

Ikzf1 for prethymic lymphoid precursor development (148) makes it

important to revisit the targets and gene regulation mechanisms of

Ikaros by stage-specific perturbation specifically in the earlier T-

lineage context as well.

4.2.5 Basic helix-loop-helix E proteins, E2A
and HEB

E proteins are class I basic helix-loop-helix (bHLH) family

members and among them, E2A (encoded by Tcf3), E2-2 (encoded

by Tcf4), and HEB (encoded by Tcf12) contribute to early thymic T

cell development (78, 149–153). As E proteins form homodimers or

heterodimers with other bHLH or HLH family member proteins,

their activity is regulated by the expression of the other

heterodimerization partners as well as of the E protein coding genes

themselves. For instance, ID-family transcription factors harboring an

HLH domain but not a basic region specifically antagonize the DNA-

binding activity of E proteins (154). Also, under pre-leukemic

conditions, Lmo1, Lmo2, Lyl1, and SCL are suggested to sequester

E protein activity in thymic progenitor cells (155–157). In pro-T cells,

E2A/HEB activity sharply increases between DN2a and DN3, as

measured by target gene effects (Figures 2B, C, compare upper vs

lower panels), even though E2A itself is relatively unchanging across

Phase 1 and Phase 2, and HEB level only increases by about fourfold

(78, 93). Since there is no detectable decrease in ID protein expression

across this interval, it is possible that before this transition, stem/

progenitor-associated partners like Lyl1 or SCL were previously

sequestering these E proteins into complexes with alternative

activities (see below).

The E2A/HEB heterodimer is essential for activating many genes

involved in the T-identity module, especially as the cells move into

Phase 2 (Notch1 Notch3, Tcf3, Tcf12, Cd3d, Cd3e, Fyb, Ptcra, Lck,

Rag1, Rag2). E2A and HEB directly bind to enhancer regions near

Notch1, Notch3, Rag1, and Rag2, and these regions require E proteins

to increase chromatin accessibility during the Phase 1 to Phase 2
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transition (78). A recent study shows that E2A activates expression of

the Rag1 and Rag2 recombinase genes through distinct enhancer

regions in pro-T cells, transforming the spatial organization of

chromatin around the Rag1-Rag2 locus (158). E protein activity

subsequently enforces proliferation arrest and TCR gene

rearrangement quality control at the b-selection checkpoint (159).

4.2.6 Bcl11b and the Phase 1–Phase 2 transition
The onset of Bcl11b expression in thymic pro-T cells precisely

marks commitment to the T cell fate (16). This is a relatively late event

which is tightly linked to the Phase 1-Phase 2 transition (Figures 2B,

C, lower). Bcl11b-deficient animals reveal that many genes crucial for

T cell identity are Bcl11b-dependent (Cd3g, Cd3d, Cd3e, Lat, Ptcra,

Zap70, Notch3, Hes1, Dntt) (80). Consistent with these results, Bcl11b

deficient pro-T cells fail to assemble TCRb and cannot progress

beyond Phase 2 due to a defect in establishing the T-cell program (71,

80, 160). Many genes likely to be direct activation targets of Bcl11b

(possessing Bcl11b binding near their putative regulatory domain) are

also sensitive to the deletion of Runx1, indicating that this partner

factor may also participate in Bcl11b-mediated positive gene

regulation (80).

Bcl11b not only requires multiple positive inputs for its expression

(TCF1, GATA3, Notch, and Runx) but also needs to undergo a major

chromatin change (161), involving a compartment flip of at least 1

megabase (162) and removal of Polycomb repression marks (163), in

order to be activated. This makes its advent later than might be

predicted from gene network considerations alone. Like germline

Bcl11b knockouts (164–166), disruption of the Bcl11b locus at pre-

commitment stage (using Vav1-Cre or retroviral Cre) or immediately

post-commitment (using proximal Lck-Cre) results in impaired

developmental progression from DN2 to DN3 stage (80, 167).

The impact of Bcl11b has a notable overlap with the effects of E

proteins. However, their overlapping target genes require inputs from

both Bcl11b and E proteins, as E proteins and Bcl11b do not directly

regulate each other nor bind frequently to linked sites. Bcl11b does

protect E protein activity indirectly by repressing Id2, but this effect

may only account for a select minority of the overlapping gene

regulation effects (80). Thus, the T-identity module is initiated from

Phase 1 by activities of Notch, TCF1, GATA3, Ikaros, and Runx

factors, and further specified and strengthened by E protein factors

and Bcl11b in Phase 2.

Entry into the T-cell program also requires additional factors

which still require better characterization to determine the genes

they regulate in early pro-T cells specifically. These other critical

regulators include the bifunctional transcription factor Myb (168–

170), the zinc finger repressor Gfi1 (171, 172), and ETS (E twenty-

six) family transcription factors, which bind a motif that is among

the most highly enriched in the active chromatin regions in all early

pro-T cell subsets (51). Although single knockouts of ETS factors

have not given strong phenotypes in pro-T cells, a large number of

ETS family members with near-identical DNA binding specificities

are expressed in overlapping patterns in these cells (173, 174),

indicating that their function is probably reinforced by

redundancy. Future work is needed to place these factors in the

T-identity gene network module, and to elucidate how the T-
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1108368
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shin and Rothenberg 10.3389/fimmu.2023.1108368
identity module is robustly maintained later throughout all subsets

of conventional T cells.
4.3 The stem or progenitor module

The T-cell identity program is not established on a blank slate, but

rather intrudes on a previously established progenitor-associated gene

regulation program when the cells enter the strong Notch signaling

environment of the thymus. Many transcription factors handed down

from hematopoietic stem cells to pro-T cells contribute to the

progenitor program in Phase 1, then they are repressed after T-

lineage commitment. A failure of silencing the stem/progenitor

module regulators in the later T-developmental stages is often

linked to various types of leukemia as well as failure of

developmental progression (175). This group of transcription

factors includes PU.1, Lmo2, Lyl1, Hhex, Bcl11a, Erg, Mef2c, Meis1,

Hoxa9, and possibly also Etv6, Mycn, and Hopx (Figure 4A), and

these factors regulate both common and unique sets of genes (28, 48,

90–92, 175–183).
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4.3.1 PU.1: A positive driver sustaining the stem or
progenitor state

The best-studied legacy regulator involved in the progenitor module

is an ETS family transcription factor, PU.1, encoded by Spi1. PU.1 also

acts in a pioneer factor-like way to set much of the chromatin

accessibility landscape in Phase 1 cells (48). This mode of action is

similar to its mechanism of function in myeloid cells (184), although

deployed to somewhat different sites. The expression of PU.1 is highest

in ETP, then gradually declines as pro-T cells transition to Phase 2. PU.1

provides strong and broad positive inputs to a large number of other

progenitor-associated transcription factor coding genes (Lmo2, Lyl1,

Bcl11a, and Mef2c)(Figure 4B) and genes encoding progenitor cell-

related surface molecules (Cd34, Cd44, and Egfl7)(Figure 4C). The DNA

binding profile of PU.1 in hematopoietic stem and progenitor cells

(HSPC) vs. thymic precursor cells (ETP, DN2a, and DN2b cells) shows

that at least 50% of the PU.1 DNA binding sites in HSPCs remain

occupied by PU.1 in ETPs, which may provide continuity with PU.1’s

function supporting the stem/progenitor program in pro-T cells (84).

Many of the genes functionally regulated by PU.1 in Phase 1 pro-

T cells encode molecules used in myeloid cells as well, including
B C

A

FIGURE 4

Gene regulatory networks controlling the stem or progenitor module. (A) Heatmap illustrates expression patterns of important transcription factors
involved in the stem or progenitor module. Heatmap includes the same immune cell populations as Figure 2A. (B, C). Gene regulatory network models
as in Figure 2. (B) Current model for key transcription factors shaping the stem or progenitor module in Phase 1 (top) and Phase 2 (bottom). (C) Current
model for the stem or progenitor module downstream molecules in Phase 1 (top) and Phase 2 (bottom). Growth factor receptors: Flt3, Kit; Growth factor
molecule: Egfl7; ETP marker genes: Cd34, Cd44.
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receptors for myeloid-cell promoting cytokines (185). In

hematopoiesis, the importance of PU.1 for myeloid lineage and

dendritic cell fates is well-known, where it establishes chromatin

accessibility and induces lineage specifying gene expression through

collaborations with C/EBPa and IRF4/8 (15, 186–192). However,

strong Notch signaling in the thymus restricts the full actions of PU.1,

ensuring that pro-T cells do not actively follow the myeloid

developmental path (89, 193, 194). In part, Notch signaling acts to

silence expression of the partner PU.1 uses for several myeloid

programs, C/EBPa, via the Notch-activated repressor Hes1 (105).

Thus, in the context of strong Notch signaling, even moderately

elevated levels of PU.1 can be tolerated within early T-cell

precursors (89).

PU.1 maintains the stem and progenitor state both by direct

positive regulation of targets in the same module, and by inhibition,

direct or indirect, of the activity of factors promoting progression to

T-cell commitment. The single-cell perturbation analysis study

previously cited found that while PU.1 did not affect TCF1 or

GATA3, it reduced the expression of later-acting progression-

associated regulators, including HEB (Tcf12) (28) (Figure 4B), with

strong impacts on their predicted target genes as identified by the

SCENIC algorithm (39). Thus, without diverting T lineage

development, PU.1 could act as a brake on the speed of

differentiation along the T-cell pathway.

4.3.2 Lmo2, Lyl1 and the connection of stem-ness
to leukemia

Other critical regulators of the stem or progenitor module are

Lmo2 and the bHLH factor Lyl1. These form a complex with E

protein (e.g. E2A or HEB), a GATA family factor, and an Ldb1

“bridge”, in which the Lyl1/E protein heterodimer interacts with DNA

and the association of Lmo2 with Lyl1 stabilizes the complex (155,

156, 195, 196). In hematopoietic stem and progenitor cells, the

complex often involves the related bHLH factor SCL instead of Lyl1

(197, 198). Lyl1 (or SCL) heterodimerization with an E protein like

E2A or HEB confers an altered DNA binding specificity, such that

Lyl1/E2A or SCL/E2A dimers bind different genomic sites than E

protein/E protein dimers (156). Of note, the Lyl1/E2A complex in

prethymic precursors appears to be important to support lymphoid

programs and T cell potential, and to generate true lymphomyeloid

primed progenitors (LMPPs) expressing genes shared with ETPs,

such as Flt3, Dntt, Bcl11a, and even Notch1 itself (199). During early T

cell development, Lyl1 is important to make ETP to DN2a

progression possible and to turn on Gfi1 (200), which encodes a

zinc finger repressor protein that is crucial for survival of early

lymphoid progenitors in the presence of Notch signals (172).

Recent studies also show a supportive role of Lmo2 in maintaining

the T-lineage competence of immortalized progenitor-like cells (81,

195). Thus, although silenced in mature T cells, Lmo2 and Lyl1

contribute to the T-lineage developmental competence of

hematopoietic progenitors.

However, overexpression of Lmo2 or Lyl1 in thymocytes does not

drive the T cell program. Instead, it causes T-cell lymphoma/leukemia,

and when Lmo2 is involved, it causes increased expression of genes

associated with progenitor fates (86–88, 201–203)(Figures 4B, C, top).

Under these conditions, the Lmo2/Lyl1 protein complex directly

activates Hhex, which upregulates Kit expression (encoding the
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growth factor receptor cKit) and promotes self-renewal (91) at the

expense of T-lineage differentiation. The Lyl1/Lmo2 complex can also

upregulate Spi1 (encoding PU.1) itself (88). Such gain of function

phenotypes suggest that Lyl1 and Lmo2 could be regulating the same

genes in normal Phase 1 pro-T cells, although the definitive tests still

need to be done. Of note, Lmo2 expression normally declines in ETPs

much earlier than expression of Lyl1. However, PU.1 provides positive

input to both, in a positive feedback circuit (Figure 4B, top): acute

disruption of Spi1 in Phase 1 pro-T cells downregulates both Lmo2

and Lyl1 expression, while ectopic expression of Spi1 in early Phase 2

increases Lmo2 expression (48, 89). This suggests that PU.1 at high

levels can re-activate Lmo2 for a limited time even after T-

lineage commitment.

4.3.3 Distinct developmental roles for viability-
critical factors Bcl11a and Erg

Acute CRISPR/Cas9-mediated target gene disruption in Phase 1

pro-T cells has demonstrated previously unknown roles of Bcl11a and

Erg (28), both factors that have been difficult to study in T-lineage

cells with conventional knockouts because of their essential roles in

hematopoietic progenitor cell survival. Bcl11a is a zinc finger factor

that has expression closely associated with lymphoid potential in

progenitors, in B lineage cells, dendritic cells (especially pDC), and

Phase 1 pro-T cells, then parallels PU.1 (Spi1) in its downregulation in

T lineage cells. Thus, its expression pattern in pro-T cells is the

opposite of that of its relative Bcl11b. Germline Bcl11a integrity is

known to be essential for lymphoid development, but has mainly been

implicated in survival for lymphoid cells (92, 180). Erg, an ETS factor

similar to Fli1, is expressed specifically in stem and progenitor cells,

granulocytes, mast cells, and pro-T cells through Phase 1, shutting off

later than PU.1 and Bcl11a in Phase 2 [data for both from (93)]. At

the single-cell transcriptome level, Bcl11a and Erg both contribute to

the stem and progenitor module (28, 92, 94).

The recent data from single-cell transcriptome analysis shows that

acute loss of Bcl11a in ETPs accelerates T lineage developmental

progression along a largely physiological path. The loss of Bcl11a

causes downregulation of progenitor-associated genes (Mef2c, Lmo2,

Hoxa7, and Egfl7) together with upregulation of the T-lineage

promoting regulatory gene Gata3 (28). While Bcl11a knockout

effects parallel those of Spi1 (PU.1) knockouts, they are not

identical, indicating distinct if overlapping sets of targets. In

contrast to Bcl11a, the proto-oncogene Erg has not been implicated

in any positive role specific to lymphocyte development before, as it is

a sharply dose-sensitive regulator that is indispensable for survival of

hematopoietic stem cells and for the embryo (181, 204). With acute

Cas9-mediated deletion and in the presence of anti-apoptotic Bcl2,

however, a striking effect of Erg knockout can be seen specifically in

Phase 1 pro-T cells. First, expression of other stem/progenitor

signature genes (Mef2c, Lmo1, Lmo2, Egfl7, and Meis1) is markedly

decreased in the Erg-knockout cells. Second, the loss of Erg most

prominently shifts the entire developmental trajectory of the Phase 1

pro-T cells to a novel path of development, one in which normally-

unused genes Klf4, Id1, and others increase expression aberrantly

(28). Thus, in contrast to Bcl11a and PU.1, Erg does not only sustain

the stem/progenitor program but also blocks a particular cryptic,

alternative pathway that was not known to be available before in T-

cell developmental conditions.
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4.3.4 The unknown “prethymic activator” and
additional contributors

The stem/progenitor module regulators in Phase 1 thymocytes

very likely are preserved from the particular minority of multipotent

progenitors that achieve success in colonizing the thymus, and so it is

likely that some of these factors contribute positively to this very early

event. As noted above, progenitor factors PU.1, Bcl11a, and Lyl1 are

crucial for the generation of bone marrow cells competent to go to the

thymus, and the Lyl1 partner Lmo2 is similarly essential to preserve T

cell developmental potential in immortalized progenitor cells.

However, it is not clear exactly which of their direct gene regulatory

targets are the decisive ones for priming the ability to enter the

thymus, thus separating T cell precursors from most ILC precursors.

More inputs are also needed to explain the expression patterns of Flt3,

Cd34, Cd44, Egfl7, and possibly Kit. Thus, a crucial early potentiating

mechanism for T-cell development remains undefined.

Other factors expressed during the Phase 1 period could also

contribute important regulatory inputs to targets in the stem/

progenitor module, including Mef2c, Meis1, Hoxa9, Etv6, Hhex,

and Mycn. These are all implicated in T-ALL (reviewed in (205)),

similarly to Lyl1 and Lmo2 (86–88, 91), but are not yet adequately

explored in the normal pro-T cell context. Hoxa9 is implicated in

generating lymphoid-competent multipotent precursors (206) and

has been reported to synergize with Runx1 to drive induced

pluripotent cells towards a T cell pathway (207). Hhex is also

required for generation of lymphoid-competent cells and has been

suggested to play roles in sustaining a T-lineage competent state (208,

209), although it delays T-lineage developmental progression by

stimulating extra self-renewal (91). Mef2c, also robustly expressed

in early ETPs (94), may actively oppose the T cell program. Like PU.1

at high levels, Mef2c is reported to block T cell development by

antagonizing Notch signaling (182), although it remains to be seen

whether this is also true of Mef2c at natural levels in nonmalignant

cells. One problem with determining the roles of these factors in

normal pro-T cells has been technical: as the roles of these factors are

confined to early stages, it has been difficult to disrupt or neutralize

them within the T-lineage differentiation context faster than they are

downregulated naturally. Thus, while the stem/progenitor module

presented here already includes mutual activation and feed-forward

network circuit motifs (PU.1 and Lmo2/Lyl1; PU.1 and Bcl11a on

common targets) that could produce metastable persistence, it is

likely that other module participants could further reinforce this

system property.

4.3.4 Turning off the stem/progenitor module
The repressive forces antagonizing the stem or progenitor module

also begin in Phase 1, and they fully suppress this program in Phase 2.

This antagonism is mediated by a distinct set of T identity-associated

regulators, primarily Runx transcription factors (Runx1 and Runx3),

TCF1, and GATA3 (Figure 4, lower panels). Although PU.1 utilizes

Runx transcription factors as its predominant binding partners, Runx

factor activities most commonly oppose the actions of PU.1 on

individual shared functional target genes (48, 51, 133). Runx

transcription factors are also potent at counteracting the stem/

progenitor module by repressing the majority of key transcription

factor coding genes supporting this program (Mef2c, Lmo2, Lyl1,

Bcl11a, Tal1, andMeis1) in a highly concentration-sensitive way (84).
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As the cells pass from Phase 1 to Phase 2, Runx1 begins to collaborate

with GATA3 to repress Spi1 (PU.1) (51, 210) and turns off the

downstream target genes of PU.1 as well, Cd34 and Cd44 (51).

TCF1 and GATA3 are not only indispensable for the T-identity

program but also a source of discrete inhibitory inputs to the stem or

progenitor module. Intrathymic Notch signaling activates TCF1 and

GATA3 early in the ETP stage (76, 77, 82, 128, 132, 135, 211, 212),

and they are co-expressed with genes associated with the progenitor

module in individual ETPs and DN2a cells in mouse (94). Acute

deletion of Tcf7 causes pro-T cells to stay behind at a progenitor-like

state with sustained high expression of the genes associated with the

stem/progenitor module (Cd34, Mef2c, Bcl11a, Lmo2, and Hhex),

instead of progressing toward the T-lineage commitment stage. The

contribution of GATA3 to this module is partially mediated by its

repression of Bcl11a within the Phase 1 cells (28)(Figure 4B, lower). In

addition, it plays a seemingly direct role in silencing Spi1 during T-

lineage commitment. A recent study shows that in mice, GATA3 and

Runx1 together interact with a specific regulatory element in intron 2

of Spi1 (PU.1) to cause and maintain PU.1 repression in Phase 2

(210). Although a different mechanism is apparently used in humans

(213), forced expression of GATA3 in pro-T cells silences Spi1

prematurely (and blocks access to myeloid developmental fates) in

mouse and human cells alike (83, 102, 104). Moreover, GATA3

inhibits an additional set of progenitor genes (Hopx, Hoxa9, and

Flt3), all associated with self-renewal (28), which are not strongly

repressed by Runx factors (Figures 4B, C, lower).

Together, the activity of the stem and progenitor module in early

period of Phase 1 is maintained by the integrative efforts from PU.1,

Lmo2 and Lyl1 complex, Bcl11a, and Erg, and potentially also Hhex,

Etv6, Meis1, and Hoxa9. However, Notch signaling and Runx factors

start to offset this activity from early ETP stage. As Notch and Runx

factors activate TCF1 and GATA3, these factors provide additive

force against the progenitor module. As a result, the major positive

regulators in this module are downregulated with Lmo2 first, followed

byHhex,Mef2c, Bcl11a, and then Spi1, Lyl1, and last Erg. This process

pushes the Phase 1 precursor cells finally out of the progenitor state as

they develop.
4.4 The effector and innate lymphoid
modules in Phase 1 and Phase 2

Developmental potential for the B cell and myeloid cell fates

depends on factors exogenous to the T cell program, like EBF1 and

Pax5 for the B cell program, C/EBP factors for the neutrophil and

macrophage programs, and IRF family factors for macrophage

and dendritic cell programs. The B-cell option becomes unavailable

relatively quickly for T-cell cohorts that have access to it at all (214),

potentially associated with the early loss of Mef2c (182), and the

myeloid-related options are less prominent by the time pro-T cells

reach the DN2a stage. Instead, the NK and ILC lineage potentials

become more preferred alternative lineage choices in DN2a cells,

especially in the absence of Notch signaling (16, 94). The gene

network components supporting the NK and ILC fates will be

referred to as “the effector and innate lymphoid module” here.

Notably, the effector/innate lymphoid module is often fueled by the

same transcription factors necessary for the T-identity module, such
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as Runx factors, TCF1, and GATA3, whose expression is maintained

in all T-lineage cells. The distinctive transcription factors separating

the effector and innate lymphoid module from the T lineage include

ID family proteins (mostly Id2), PLZF (encoded by Zbtb16), NFIL3,

RORa, and Fos/Jun family members (Fos, Fosb, Jun) (215–225).

Although some of these can be activated by acute stimuli, these

genes are generally not highly expressed in ETPs, with a few

exceptions (Figure 5A).

4.4.1 Crossover roles for T-lineage factors in an
“effector or innate lymphoid” module

Runx1 and Runx3 generally antagonize the stem/progenitor

module in ETPs and generally favor T-lineage progression, but they

also globally activate another distinctive program, including a suite of

regulatory genes associated with effector and innate lymphoid cells

plus downstream genes associated with innate lymphoid cells, gd T

cells, and other effectors. In fact, Runx factors, especially Runx3, are

indispensable for the normal development and functions of ILCs

(218, 226–228). A modest increase of Runx1 levels in Phase 1 pro-T

cells quickly upregulates the innate lymphoid cell-associated

regulators Zbtb16 and Nfil3. In addition, effector genes associated

with innate-lymphoid cells (Fcer1g, Nrgn), gd T cells (Cd163l1), and
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mast cells (Cpa3, Cd63), and the rarely-expressed Fgf3, are

upregulated by Runx1 overexpression and inhibited by Runx1/

Runx3 double knockout (84). Although this gene set does not

mimic markers of a known mature cell type, its highly coherent

regulation, described in this section, suggests a specific alternative

developmental program. The association with NK or ILC

programming, based on Zbtb16 and Nfil3, is supported by

the developmental behavior of Runx-overexpressing cells

(84). Consistently, if Notch signaling is withdrawn, Runx1

overexpression in ETPs causes preferential diversion to the NK-

associated lineage at the expense of the myeloid lineage choice.

However, Runx factors do inhibit all ID proteins (Id1, Id2, Id3) as

long as Notch signaling is present, keeping the full innate program

conditionally on hold. Hence, the activity of Runx proteins in Phase 1

guides pro-T cells out of the progenitor state and blocks the myeloid

program, while driving cells towards lymphoid fates by upregulating

both T- and ILC-associated genes (84).

Although GATA3 and TCF1 are essential for generating

functional T cells, recent studies have shown their roles in ILC

development as well (132, 229–233). GATA3 is necessary for

development of all helper-like ILC subsets and their functions

(232–234), and ILCs may express much higher levels of Gata3 than
B C

A

FIGURE 5

Gene regulatory networks regulating the effector or innate lymphoid module. (A) Heatmap represents expression patterns of transcription factors
supporting the effector or innate lymphoid module. Heatmap shows the same immune cell populations displayed in Figure 2A. (B, C). Gene regulatory
network models as in Figure 2. (B) Current model for transcription factors regulating the effector or innate lymphoid module in Phase 1 (top) and Phase 2
(bottom). (C) Current model for the effector or innate lymphoid module downstream molecules in Phase 1 (top) and Phase 2 (bottom). Growth factor,
immunoglobulin, scavenger, or chemokine receptors (Fgf3, Fcer1g, Cd163l1, Il2rb, Cxcr5), enzymes (Cpa, Gzma), and signal transduction associated
molecules (Cd63, Nrgn) involved in immune cell effector function and innate lymphoid cells are shown. Not all genes discussed in the text are shown.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1108368
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shin and Rothenberg 10.3389/fimmu.2023.1108368
pro-T cells (Figure 2A). The early ILC progenitor (EILP) population

is also dependent on TCF1 upregulation, in which TCF1 provides

positive inputs to key ILC genes while blocking DC development from

EILP (229, 235). During early thymic T-development, GATA3 and

TCF1 positively function in the effector and innate lymphoid module

by activating the gene encoding the GATA cofactor Zfpm1 (by TCF1

and GATA3)(Figure 5B, top), and also activating non-T effector

molecules Cpa3, Cd63, and Fcer1g (by GATA3), and Fgf3 (by TCF1

and GATA3)(Figure 5C, top; Table S1). Of interest, TCF1-regulated

genes in EILPs often overlap with TCF1 targets in pro-T cells,

suggesting that it generally promotes a T or innate lymphoid

program. Many of the non-T targets are inhibited by Bcl11b in

pro-T cells in Phase 2 (Table S1, also see below). The physiological

relevance of this pathway is shown by the fact that normal ETP-DN2a

pro-T cells within the mouse thymus transiently express all of these

genes (in a “wave”) before commitment to the T-cell pathway (94).

This suggests that TCF1 may provide some extent of common inputs

to the effector and ILC program in both EILPs and Phase 1 pro-

T cells.

4.4.2 A relay of repression mechanisms between
Phase 1 and Phase 2

If these genes truly provide access to ILC potential, then they

should be silenced to ensure lineage specification to the T cell fate.

First, Notch signaling widely represses the genes associated with the

innate lymphoid/effector module (Id1, Id3, Nfil3, Rora, Il2rb, and

Cpa3, Cd163l) (Figures 5B,C, lower panels). In addition, this module

gets repressive inputs from two distinct, seemingly opposite groups of

transcription factors. The first group, consisting of PU.1 and Bcl11a,

inhibits the effector and common lymphoid program in Phase 1, and

then hands over this job to the second group of transcription factors

in Phase 2, which are E protein complexes and Bcl11b.

PU.1 shows strikingly powerful opposition to the effector and

innate lymphoid module by inhibiting ID proteins, Jun family

members, as well as other ILC-associated transcription factors

(Zbtb16, Id2, Id3, Nfil3, Jun, Jund, Rora, and Pou2af1). In addition,

multiple downstream molecules in this module (Fcer1g, Fgf3, Gzma,

Gzmb, Il2rb, Cd63, Nrgn, Cxcr5, Cd163l1, and Cpa3) are negatively

regulated by PU.1 (28, 48). Similar to PU.1, but to a weaker extent,

Bcl11a also functions to inhibit expression of the lymphoid/effector

module (Zbtb16, Gzma, Gzmb, Cd63, Zfp105, Fgf3, Cpa3, Fcer1g, and

Nrgn). Notably, Bcl11a and GATA3 inhibit each other (28). This

suggests that PU.1 and Bcl11a are not generally permissive to all of the

non-T lineage potentials in Phase 1, but in fact provide a critical

counterbalance to keep pro-T cells from deviating to the ILC-lineage

when excessive activity of Runx factors, GATA3, and TCF1 pushes

the cell state towards the effector like-lymphoid lineage.

As pro-T cells progress to DN2 stage, PU.1 and Bcl11a expression

declines, and the role of repressing the effector and innate lymphoid

module devolves upon E protein complexes and Bcl11b. The E2A/

HEB complex provides strong opposing force to the effector and

innate lymphoid module by inhibiting expression of key ILC and

innate-like lymphoid transcription factors (Zbtb16, Id2, Nfil3, Ikzf2,

Sox5, Junb, and Rora) as well as by damping down expression of

Gata3 (78, 79). In addition, E protein activity is important for Notch1

expression, which is also necessary for preventing ILC potential from

being expressed (78, 236). These E protein effects would all be
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countered by ID2, explaining in part why ID2, despite its inability

to bind DNA, is so important for NK and ILC development. Tcf3/

Tcf12 (E2A and HEB) double-deficient ETPs display an abnormal

chromatin accessibility signature, which mimics the ATAC-profile of

ILC2-precursor cells in the bone marrow (78). In accordance with

this, disruption of E protein function by deleting Tcf3 and/or Tcf12 or

by overexpressing their antagonistic factor ID proteins results in

abnormal ILC- and NK-like cell development in the thymus (78, 89,

236–238). These results reaffirm that the E2A/HEB complex is

necessary to block developmental access to the innate lymphoid-

like functionality.

However, later in T cell development, the balance of E proteins to

ID proteins is repeatedly tipped whenever the TCR complex is

stimulated (239–241). Thus, E protein activity levels alone cannot

guarantee that the cells will stay within the T cell lineage long-term.

Another indispensable transcription factor repressing the innate

lymphoid/effector module is thus Bcl11b. The onset of Bcl11b

expression in early thymic T-development closely coincides with T-

lineage commitment, and Bcl11b plays pivotal roles afterward for

establishing T-cell identity (16, 28, 80, 165, 166). The most abundant

Bcl11b interaction co-factors include multiple repressor complexes,

and, during T lineage commitment, Bcl11b broadly represses the NK

and innate lymphoid cell programs (80, 166, 167). This is achieved by

blocking expression of multiple regulators (Zbtb16, Id1, Id2, Nfil3,

Rora, Zfp105, and Pou2af1) as well as downstream genes (Gzma,

Cpa3, Il12rb, Fgf3, Cd163l1, Nrgn, Fcer1g, Cxcr5, Cd63, and Il2rb) in

the effector and innate lymphoid modules (80).

A recent single-cell transcriptome analysis highlights that Bcl11b-

deficient pro-T cells begin to swerve out of the conventional ab T cell

pathway with Id2 derepression and abnormal activation of AP-1

factor-associated genes (28). This leads to a cascade of regulatory

changes, shown in part in Table S1 by separate comparisons between

WT and Bcl11b-knockout cells in specific single-cell clusters: the

slight initial differences detected as the paths first separate, within

cluster 5; and the widening divergences mid-cascade in the

comparisons between clusters 2 and 0. At the end of this cascade

in the Bcl11b-knockout cells, further upregulation of Id2 culminates

with a shutoff of Notch signaling and upregulation of Rora, as the cells

leave the T cell pathway (28). Consistent with this dysregulated

transcriptional program, Bcl11b deletion results in abnormal

lineage-conversion to an NK-like population (called induced T-to-

natural killer, ITNK cells) in the thymus, which express genes

associated with conventional NK cells and show cytolytic activity to

tumor cells and even to OP9 stromal cells (166, 167). Combinatorial

deletion of Bcl11b and Id2 or Bcl11b and Zbtb16 shows that Bcl11b-

mediated negative regulation on these transcription factors is

necessary to block alternative lineage choices to NK- and ILC-like

fates (80).

In summary, the effector and innate lymphoid module represents

a battery of genes that are remarkably consistently regulated by the

activities of factors that cut across their usual progenitor vs. T-identity

roles. These genes are activated by three of the same inputs that drive

the T-identity module, i.e., Runx factors and the Notch-induced

factors GATA3 and TCF1, but they are restrained from expression

normally by three distinct sets of antagonists: 1) the progenitor factors

PU.1 and Bcl11a, 2) the climax T lineage commitment factors Bcl11b

and E proteins, and 3) environmental Notch signaling itself. The
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Notch, GATA3, and TCF1 inputs form a classic “incoherent feed

forward” motif (242) as the inducer and the factors it induces exert

opposite effects on this module. The silencing of these genes by

progenitor factors early switching over to Bcl11b and E proteins later

clearly leaves a window of vulnerability, in which these genes may be

activated transiently, and indeed this is when the genes in this module

show a burst of activity in normal late-Phase 1 cells (precommitment

DN2a cells). To the extent that these genes indeed indicate

competence to switch to a different developmental branch than

normal ab T cells, this discontinuity in repression provides a

window of opportunity.
4.5 Cell survival and proliferation module

The thymus generates about 50 million immature T cells per day,

and then outputs 1-2 million mature T cells after selection per day in

the young adult mouse, although only a few hematopoietic progenitor

cells enter the thymus every day (243, 244). This yield is supported by

remarkable cell expansion before various checkpoints and selections.

Hence, the program supporting cell proliferation and survival is a

critical component of Phase 1 and Phase 2 GRNs.

4.5.1 Cytokine receptor-driven survival and
proliferation

In Phase 1, growth factors Flt3-ligand and cKit-ligand are

necessary to yield optimal number of output pro-T cells (110, 245–

248). The expression of Flt3 receptor is limited to the least mature

ETP population, whereas cKit is expressed in a range of cells from

ETP to DN2a (cKithigh)/DN2b(cKitintermediate) stages until T-lineage

committed cells eventually downregulate it in Phase 2 (94, 110, 249).

Among two forms of cKit-ligand or stem cell factor (SCF), membrane

bound and secreted forms, the membrane-bound form of SCF is

necessary for sustaining the Phase 1 population size. The SCF in

thymic endothelial cells is particularly important for the ETP

population, whereas membrane-bound SCF in thymic epithelial

cortex cells is more important for DN2 cells than ETPs (250).

However, the exact molecular mediators linking Flt3 and cKit

signaling to the proliferation/survival transcriptional programs

remain unclear.

In late Phase 1 and Phase 2, IL-7 signaling plays an essential role

in cell survival and proliferation. The exact time windows affected

could be complex. Fate-mapping studies tracing the origin of thymic

T cells suggest that all T cells are derived from precursors expressing

IL-7 receptor (IL-7Ra) at some level; in steady state, mice deficient in

IL-7 or IL-7Ramanifest severe defects in thymic cellularity due to cell

cycle arrest and high apoptosis rates (251–255), with a relative

emptying of the pro-T cell niches (256). Some thymus-seeding cells

in humans as well as mice indeed come from IL-7Ra+ prethymic

precursors (termed Common Lymphoid Precursors or IL-7R+

LMPPs) (97, 257–260), especially in fetal thymus (261, 262).

However, the great majority of ETPs in postnatal mice do not

appear to express this cytokine receptor at RNA level (93, 94).

Instead, the expression of IL-7Ra in the thymic precursor cells

sharply increases at the late stage of Phase 1 (ETP to Bcl11b- DN2a

transition stage), peaks at around T-lineage commitment (Bcl11b+

DN2a and DN2b stage), and then gradually decreases as pro-T cells
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develop through DN3 and DN4 stages (263–265). During the DN2a/

2b phases, Il7r expression overlaps with Kit expression. The dynamic

kinetics of IL-7R expression coordinated with the developmental

progression may provide the maximum efficiency for the cell

expansion during the time that it is most needed.

In the case of IL-7R signaling, the main mediators are known. The

Jak3-STAT5 pathway and Jak3-NFAT2 pathways are directly

activated by IL-7 signaling, and both upregulate anti-apoptotic

genes Bcl2 and Bcl2l1 (266, 267). Consequently, ectopic expression

of Bcl2 or deletion of Bim (proapoptotic molecule) provides partial

rescue for the severe cellularity loss in IL-7 signaling-deficient mice

(266–268). STAT5 target genes specific to the pro-T cell compartment

were defined in a recent study by using Cas9/CRISPR to knock out

both Stat5a and Stat5b in pro-T cells expressing a Bcl2 transgene to

minimize the survival defect in STAT5-knockout cells (269). In this

system, both uncommitted and newly committed pro-T cells could be

compared from control and double-knockout populations. Knocking

out Stat5a and Stat5b simultaneously resulted in dysregulation of

genes associated with cell cycle, cytokine signaling feedbacks, and the

mTOR/metabolic pathway. Surprisingly, however, these knockouts

showed minimal changes in key transcription factors specifying T-cell

identity, either before or after commitment. This suggests that the cell

survival/proliferation module in Phase 2 is not necessarily intimately

linked to the cell-identity specifying modules, in contrast to results in

peripheral T cells (270). Thus, cytokine responses via STAT5 do not

appear to instruct pro-T cell state changes via lineage-specifying

transcription factor changes.

4.5.2 Survival and proliferation effects of lineage-
determining transcription factors

Nevertheless, certain lineage specifying transcription factors also

exert population effects in Phase 1 and/or Phase 2. The effects of Phase

1 and Phase 2 transcription factors on well-established growth control

genes in these cells are summarized in Table 1, based on data in Table

S1. Notch signaling, PU.1, Lmo2/Lyl1 complex, TCF1, and GATA3

are not only involved in the cell identity-specifying modules, but are

also essential for regulating the size of the Phase 1 pool. Notch

signaling induces proliferation of thymic progenitor cells both in

humans and mice (271–273). Notch activation target genes include

Myc, which is potent at driving cellular proliferation (67). Also, gene

set enrichment analysis suggests that loss of Notch signaling enriches

expression of genes associated with apoptotic programmed cell death

pathways (67).

In Phase 1, acute deletion of PU.1 can result in a ~5-10-fold

reduction in Phase 1 cell number from the in vitro culture system,

which cannot be fully restored by forced expression of anti-apoptotic

molecule Bcl-xL (90). PU.1 activates genes associated with cell cycle

progression (Ccnd1 and Cdk18) and supports expansion of both ETP

and DN2 cells, suggesting that PU.1 is still needed for optimal cell

proliferation even after some genes in T-identity modules are

upregulated in DN2 stage (48, 90, 133). Another important early

Phase 1 transcription factor involved in cellular proliferation is Lmo2.

Lmo2 interacts with DNA replication complexes to regulate the DNA

synthesis rate in hematopoietic progenitor cells, and it increases the

pool of self-renewing population in Phase 1 in a gain-of-function

setting (86, 274, 275). Also, Lmo2 upregulates Bcl2 expression in pro-

T cells, which contributes to maintain the size of the Phase 1 cell pool
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(81), consistent with the effect of the Lmo2 partner Lyl1 on the ETP-

DN2a pool size in vivo (200). Consistently, constitutive expression of

Lmo2 in bone marrow progenitor cells results in higher frequencies of

ETPs in cell cycle upon bone marrow chimera reconstitution, which

leads to T-ALL due to the accumulated number of ETP-like cells in

the thymus (275).

TCF1 is critically important for supporting survival and

proliferation of T lineage-competent cells starting from Phase 1. In

the absence of Tcf7, the overall thymic DN cellularity is severely

impaired and thymic progenitor cells display reduced frequency of

cells in cell cycle (276, 277). In addition, Tcf7-deficient ETPs

downregulate genes associated with DNA damage response and

show increased cell death; constitutive expression of survival factor

Bcl-xL does not rescue the early developmental defect resulting from

Tcf7-deficiency (76, 77). This effect is strong enough to raise the

concern that even when supported with a Bcl2 transgene, many cells

in the pro-T population that survive Tcf7 knockout could be

irrelevant bystander cells if the true T-precursors were annihilated.

Another key transcription factor positively contributing to the

proliferation/survival module is GATA3 (82, 128, 278). Acute

knockdown of GATA3 expression using shRNA causes severe loss

of the ETP population, ascribed to a cell intrinsic defect in

proliferative capacity. Of note, transgenic expression of anti-

apoptotic factor Bcl2 can rescue ETP survival in these cases, but

not sufficiently to restore normal T cell development (82).

In contrast, the recent study deleting Erg using CRISPR-Cas9 has

highlighted a further unexpected role of Erg in regulating cell

proliferation in pre-commitment stage (28). The loss of Erg in
Frontiers in Immunology 17
Phase 1 not only pushes the cells to exit faster from the ETP state,

but also results in a large burst of progeny with upregulated Myc

family activity (28), as assessed by the SCENIC algorithm (39). This

suggests that Erg may function normally as a “brake” for the

proliferation program in Phase 1.

At the later stage of Phase 2, pro-T cells need to slow down

cellular proliferation to prepare for TCRb assembly, which involves

cleavage and rearrangement of DNA strands in the G1 cell-cycle

phase. The E protein complex provides antagonizing forces against

the cell survival and proliferation module near the end of Phase 2.

E2A/HEB double knockout mice and E2A/LAT double knockout

mice (transgenic mice unable to signal through TCRb) display

hypercellularity in the thymus, because of aberrant proliferation of

DN3 cells which cannot maintain cell cycle arrest (159, 279). Hence, E

protein-deficient mice are highly susceptible to T-cell lymphoma

(149, 280).

In summary, cell cycle and survival controls greatly shape the

output populations of the T-cell specification gene regulatory

network, and the network regulators indeed influence cell cycle

state directly. As shown in Table 1, the positive and negative

regulatory inputs to these growth control genes extend across the

dichotomy between progenitor-associated and T-specification factors,

emphasizing the importance of modulating expression of this gene set

correctly. However, the main environmental signals controlling

proliferation via IL-7R and STAT5 apparently do not directly affect

the network architecture itself.
5 Constraints on network state
changes by three-dimensional
(3D) chromatin configuration and
chromatin states

In classic gene network analysis, it is assumed that any sites with

binding motifs for specific factors can be bound any time that those

factors are expressed. However, this is not necessarily true in post-

embryonic mammalian developmental systems, where chromatin

configurations can pose a constraint. Examples from reprogramming

to pluripotency have clearly shown that a concerted, multi-factor,

stepwise process is needed to alter chromatin states to make many

transcription factor binding sites accessible (281–283). In the T cell

specification gene regulatory network, at least one important gene reveals

how strong the accessibility constraint can be, separate from the

availability of trans-acting factors, to affect the response of a target

gene to its regulators. The Bcl11b gene requires positive inputs from four

known factors, TCF1, Runx1, GATA3, and Notch, but all four of these

inputs are available already in ETP stage, whereas Bcl11b is not activated

normally until late DN2a stage, which is days later in cells from young

adult mice. When the two different alleles of Bcl11b were tagged with

distinct fluorescent reporter proteins in the same cell nucleus,

longitudinal live imaging and flow cytometry showed that the two

alleles do not necessarily get activated at the same time. Instead, in

individual cells from the same mouse, the two Bcl11b alleles were

activated in a non-coordinated, stochastic manner in which activation
TABLE 1 Inputs to growth control genes from developmental network
regulators.

Growth control
-related gene

TFs activating TFs repressing

Il7r ? Bcl11b, Ikaros, Lmo2,
STAT5a/STAT5b

Jak2 PU.1 E2A

Jak3 ? ?

Kit Lmo2 Bcl11b

Myc family

Bmyc Bcl11b, PU.1 Runx, TCF1

Myc Notch, E2A Runx

Mycn E2A, Lmo2, Runx Bcl11a

Stat5a* E2A, GATA3,
Lmo2

?

Stat5b E2A, Lmo2 ?
Relationships shown are compiled from Table S1. TFs activating: loss of function of the
indicated transcription factors causes the growth control gene expression level to go down.
TFs repressing: loss of function of the indicated transcription factors causes the growth
control gene expression level to go up.?, denotes that the regulators were not identified
because the indicated gene did not meet the statistical criteria threshold as differentially
regulated by any of the perturbations studied in Table S1. Note: Bcl2 is not listed as a target
gene because a Bcl2 transgene was present in many of the studies in Table S1.
*Stat5a RNA levels are also reduced in Stat5a, Stat5b double knockout samples, but it is not clear
whether this is an autoregulatory transcriptional effect or due to nonsense-mediated decay.
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of the second allele could be delayed by for 1-4 day(s) after the first (161).

This suggests that even though all trans-acting transcription factors may

be fully capable to turn on one allele, slow cis-acting mechanisms

affecting the chromatin state, such as removal of repressive histone

marks and accumulation of cis-acting non-long coding RNA (10, 163),

also need to operate properly on each allele separately before the gene

responds. Such mechanisms could greatly affect the dynamics of network

state switching even without affecting the topology of the

regulatory relationships.

The mechanisms involved affect chromatin at two size scales. The

mammalian genome has two different types of long-range interaction

regions at large scales, the “A” and the “B” compartments, which

correspond roughly to active and silent chromatin respectively (284,

285). Within a compartment, chromatin folds into topologically

associated domains (TADs), in which DNA interactions such as

enhancer-promoter looping preferentially occur within the same

TAD (286, 287). During T-lineage commitment, pro-T cells

reorganize compartments as well as the TADs within them (162).

The genomic regions manifesting compartment reprogramming

represent only a small fraction, but when this “compartment flip”

occurs, it is near developmentally important genes. For instance, the

major enhancer regions about ~850kb downstream of Bcl11b show a

dramatic 3D compartment flipping as the gene is activated: these

regions lie in an inactive compartment (compartment B) in HSPC,

ETP, and DN2a stages, but the compartment status sharply changes

to active (compartment A) across the region as Bcl11b turns on (162).

Consistently, this genomic region also physically migrates from the

nuclear lamina at the progenitor stage to the nuclear interior as pro-

T cells reach the DN3 stage (10). Similarly, particular genomic

regions near Phase 1-specific genes Meis1, Cd34, Mef2c, and Bcl11a

display active-to-inactive compartment flip (A-to-B), while enhancer

regions of Ets1 and Gata3 gradually convert from the inactive to the

active compartment (B-to-A) as these genes are accessed by

new enhancers.

Although not directly tested, these concerted large scale

chromatin 3D architecture changes may create barriers for some

transcription factors. For instance, Runx transcription factors can

choose different stage-specific DNA binding sites across the genome

as noted before (51), and interestingly, local chromatin accessibilities

do not serve as major barriers. However, at a larger scale, Runx factor

binding is almost excluded from the inactive B compartment, and

even when Runx levels are experimentally raised, Runx1 still does not

occupy genomic regions within the inactive compartments (84). It

remains to be elucidated by which mechanism pro-T cells reprogram

the compartment-level genome organization, and how this shapes

transcription factor activities and gene expression program.

At a smaller scale, for accurate gene regulation, pro-T cells undergo

dynamic, concerted changes in intra-TAD interactions, chromatin

accessibilities (determined by ATAC-seq or DNase-seq), and re-

establishment of histone marks (92, 93, 162). These changes are

particularly pronounced during T-lineage commitment, i.e. the DN2-

to-DN3 transition, suggesting that epigenetic marking is coordinated to

drive cell state conversion (52, 93, 162). Chromatin accessibility in Phase

1 is largely governed by PU.1, which can bind closed chromatin sites and

open them, then keep its binding sites from closing (48). As PU.1
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expression declines when pro-T cells progress from ETP to DN2b stages,

many PU.1 binding sites lose chromatin accessibility; this supports a

pivotal role of PU.1 in maintaining the Phase 1-preferential open

chromatin regions (48). By contrast, many of the long-range loops

near the T-identity genes appear to be dependent on other factors,

which include TCF1, Bcl11b, and E2A (136, 158, 162). Thus, the

epigenetic dynamics modulating gene network action are affected by

both current trans-acting transcription factor activity and baseline cis-

regulatory chromatin states.
6 Concluding remarks

To convert progenitor cells possessing multilineage developmental

potential to T-lineage committed cells, each cell needs to silence the stem/

progenitor module and block activation of the effector/innate lymphoid

module, while launching the T-identity module. These modules of

coherently co-regulated genes are valuable to recognize as distinct units

of developmental programming, because in various situations an effect on

a population survival module, for example, can be completely distinct

from an effect on a differentiation module per se, even if both could alter

the output of the process. Noting that correct development requires both

activation of a differentiation module and repression of a progenitor state

module, potentially through separate mechanisms, can be valuable to

shed light on perturbed development as seen in leukemias and

lymphomas. As discussed above, different combinations of

transcription factor activities generate distinct forces on each gene

regulatory module, which in turn determines the state of a given cell.

While the network models shown here are most likely lacking some key

components that have not yet been closely studied, their structure already

helps to bring several principles into focus.

Transcription factor cooperation within a module can be

stabilized by positive feedback loops. For instance, TCF1 with

GATA3, and GATA3 with Myb provide cycles of activating

connections to each other, which support the T-identity. Similarly,

PU.1 and Lmo2 positively regulate each other, and this positive

feedback loop needs to be disrupted by receiving inputs from other

transcription factors to silence the stem/progenitor module, in order

for T-lineage development to progress. The relative stability of

relationships within a module can provide insight into why cells

appear to undergo multiple cell cycles within each substage in Phase 1

before moving to the next (74, 94, 243).

Notably, mutually repressive connections are also seen in this

system, and they often result in inter-module antagonism. For

example, Bcl11a and GATA3 repress each other, which generates

antagonism between the stem/progenitor module vs. the T-identity

module. In addition, E2A/HEB complex and ID2 inhibit each other,

which is a critical determinant of gene expression programs favoring

the T-identity module vs. the effector/innate lymphoid module.

However, direct mutual repression is far less prevalent in these T-

cell specification network circuits than would be expected from classic

GATA-PU.1 opposition models of cell fate decision (116). In more

frequent cases, activity of a factor like PU.1 inhibits expression of a T-

identity gene like Tcf12 (HEB), while GATA3 clearly represses Spi1 in

a dose-dependent way, in one-way antagonistic relationships.
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The opposition between different modules is also driven by

indirect circuits regulating target genes. Although Notch signaling

does not regulate expression of PU.1 itself, Notch signaling broadly

inhibits PU.1-activated target genes; whereas PU.1 downregulates

Notch-induced genes (67, 89). Interestingly, Runx-inhibited target

genes also show striking overlap with the genes positively regulated by

PU.1, which is surprising, considering that PU.1 physically interacts

with Runx factors to co-bind to PU.1 target genes (51, 133). Thus,

collaborative binding does not necessarily imply concordant

functional impacts. At DN2b stage, morever, Runx1 and GATA3

cooperatively repress PU.1 itself. Therefore, Notch signaling and

Runx factors together oppose PU.1 activities, which generates

antagonisms between the T-identity vs. the stem/progenitor module.

Notch signaling and Runx factors show mosaic patterns of

cooperation. Notch and Runx factors commonly activate the genes

necessary for the T-identity module and co-occupy shared genomic

regions in Phase 2. However, Notch signaling opposes Runx activities

supporting the effector and innate lymphoid module. Similarly, Notch

signaling works in an incoherent feed-forward circuit to repress the

effector and innate lymphoid module genes that are being activated by

the Notch-activated factors TCF1 and GATA3. Thus, rather than

working in a linear pathway, transcription factors act combinatorially

to distinguish different programs.

The effector and innate lymphoid module is actively suppressed

by different cohorts of transcription factors throughout Phase 1 and

Phase 2. In Phase 1, PU.1, Bcl11a, and Notch signaling collectively

inhibits this module, but then E2A/HEB complex and Bcl11b take

over this task as Notch signaling continues in Phase 2. It is important

to note that E2A/HEB activity is regulated by competitive complex

formation. In Phase 1, Lmo2 and Lyl1 must partner with E protein,

which may sequester the E2A to bind alternative genomic sites. In

addition, ID proteins (mainly ID2) expressed at any stage are also

capable of trapping bHLH factors into non-DNA binding complexes.

Thus, liberating E2A/HEB heterodimer activity by inhibiting their

competitors is critical for suppressing the effector and innate

lymphoid module and supporting the T-identity module.

Together, the gene regulatory network modules and transcription

factors shaping each module activities reviewed here highlight how

transcription factors collaborate to initiate, stabilize, synergize,

oppose, or silence different gene expression programs. These intra-

module and inter-module dynamics suggest how T-cell fate

specification is instructed by gene regulatory network architecture.
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