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The female reproductive tract (FRT) and remote/versatile organs in the body share

bidirectional communication. In this review, we discuss the framework of the “FRT-

organ axes.” Each axis, namely, the vagina-gut axis, uterus-gut axis, ovary-gut axis,

vagina-bladder axis, vagina-oral axis, uterus-oral axis, vagina-brain axis, uterus-

brain axis, and vagina-joint axis, is comprehensively discussed separately. Each axis

could be involved in the pathogenesis of not only gynecological diseases but also

diseases occurring apart from the FRT. Although the microbiota is clearly a key

player in the FRT-organ axes, more quantitative insight into the homeostasis of the

microbiota could be provided by host function measurements rather than current

microbe-centric approaches. Therefore, investigation of the FRT-organ axes

would provide us with a multicentric approach, including immune, neural,

endocrine, and metabolic aspects, for understanding the homeostatic

mechanism of women’s bodies. The framework of the FRT-organ axes could

also provide insights into finding new therapeutic approaches to maintain

women’s health.
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Introduction

The gastrointestinal (GI) tract and remote organs in the body share bidirectional

communication via immune, neural, endocrine, or metabolic links called the “gut-organ

axis” (1). Organs such as the brain, skin, bone, liver, heart, and kidney have been known to

communicate multidirectionally with the GI tract, and the microbiota appears to be the key

player within these axes. Metabolites produced by the microbiota contribute to the metabolic

phenotype of the host and alter the risk of disease (2–4).

The female reproductive tract (FRT) is composed of the lower FRT (vulva, vagina, and

ectocervix) and the upper FRT (endocervix, uterus, fallopian tubes, and ovaries).

Accumulating evidence has suggested the existence of a vagina-organ axis, such as the

vagina-gut axis and vagina-bladder axis (5, 6). Since the vagina is exposed to various
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pathogens, the physiological condition and microbiota of the lower

reproductive tract are crucial for women’s health (7–11). In addition,

knowledge of the vagina-organ axis may promote further

understanding of not only vaginal health but also the health of

other organs apart from the vagina. For example, a nationwide

study of American women revealed that dysbiotic conditions in the

vagina were significantly associated with periodontitis (12). In

addition to the vagina-organ axis, the uterus-organ axis could also

be involved in a variety of physiological roles. Recent evidence

suggests that the endometrial microbiota appears to be involved in

fertility and uterine-related diseases (13, 14). Therefore, modulation

of the endometrial microbiota via the uterus-gut axis may play a

critical role in fertility (15). In addition, a study showed that short-

chain fatty acids (SCFAs) produced by the maternal gut microbiota

influenced the metabolic programming of offspring during pregnancy

(16), indicating the importance of the uterus-gut axis not only in

fertility but also in the development of offspring. Furthermore, recent

studies have indicated an interaction between the uterus and brain

(17). Overall, the physiological condition of the FRT could be

important for the systemic health of women.

In this review, we discuss the framework of the “FRT-organ axes”,

i.e., bidirectional communication between the FRT and remote/

versatile organs. We provide an overview of each axis, namely, the

vagina-gut axis, uterus-gut axis, ovary-gut axis, vagina-bladder axis,

vagina-oral axis, uterus-oral axis, vagina-brain axis, uterus-brain axis,

and vagina-joint axis. Innate and adaptive immunity regulate the

composition of the microbiota and vice versa (18–22). The

production of antimicrobial peptides and proteins (AMPs) and

mucus is directly triggered via the activation of pattern-recognition

receptors, such as Toll-like receptors and NOD-like receptors, by the

microbiota, while AMPs and mucus can affect the composition of the

microbiota . Immunizat ion with microbes also induces

immunoglobulins (Igs), which regulate the composition of the

microbiota. In addition to such an immunological route, the

neuronal route, the endocrine route, and the metabolic route

connect the FRT and distal organs (17). We also discuss potential

therapeutic opportunities to restore the microbiota, as a variety of

treatments have been tried as approaches to women’s health, and

vaginal probiotics seem somewhat promising (17, 18). Finally, future

directions in this field are discussed.
Microbiota in the FRT

Although the surface area of the vaginal mucosa is much smaller

than that of the gastrointestinal and respiratory mucosa, the presence

of a very large number of bacteria, dominated by a single or a few

species of bacteria, is characteristic. Investigations using culture-

independent techniques have revealed that the human vaginal

bacterial community is dominated by Lactobacillus. The vaginal

microflora is classified into five community state types: L. crispatus

dominant (CST I), L. gasseri dominant (CST II), L. iners dominant

(CST III), L. jensenii dominant (CST V), and CST IV, which contains

anaerobic bacteria, such as Gardnerella vaginalis and Prevotella bivia

(bacterial vaginosis (BV)-associated bacteria), and a relatively low

population of Lactobacillus (23, 24). Many factors, such as age,
Frontiers in Immunology 02
ethnicity, menstrual cycle, lifestyle, immune system, infection, and

probiotics, can affect the composition of the vaginal microbiota [for

review, see (25–27)].

In contrast to the vaginal microbiota, the composition of the

normal endometrial microbiota is still under debate (28, 29). In

particular, whether Lactobacillus dominates in the endometrium

needs to be clarified (14, 30, 31). A recent study revealed that the

directionality of bacterial translocation was from the vagina to the

uterus (32). Compared to that in the vagina, the total amount of

bacteria decreases by more than three orders of magnitude in the

endometrium (median fold change in Cq value was 1.75), which was

previously thought to be sterile (31, 33). Therefore, possible

contamination of vaginal microbiota during sampling may disturb

the results of the investigation of endometrial microbiota, especially

in the detection of dominant species. Although the uterine

endometrium is even smaller and contains very few bacteria in

absolute terms, it appears to play an important biological role in

nurturing fetuses. For example, L. crispatus significantly promoted

invasion of the trophoblast cell line (34). Low amounts of

Fusobacterium nucleatum also promoted the invasion of

trophoblast cells and induced the secretion of mediators for

pregnancy establishment (35). Further studies in this field are

strongly needed to establish adequate reproductive medicine.

Although the placenta has been reported to harbor a microbiota

similar to that of the oral cavity (36), some studies have questioned

the existence of the placental microbiota, especially in pregnant

women at term (37). A recent systematic review using structured

quality bias assessment concluded that the existence of a low biomass

placental microbiota in healthy pregnancies cannot be disproved by

current evidence (38). Compared with the vagina, the fallopian tube

has microbiota with higher diversity (Acinetobacter, Burkholderia,

Comamonas, Coprococcus, Corynebacterium, Enterococcus,

Lactobacillus, Prevotella , Propionibacterium, Pseudomonas,

Staphylococcus) (33, 39, 40). However, little is known about the

roles of the microbiota in the fallopian tube.

In addition to the bacteriome, the virome, mycobiome,

archaeome and candidate phyla radiation also consist of the

microbiome of FRT (30, 41–43). Trichomonas vaginalis, the

causative agent of trichomoniasis, is also a well-known protist

parasite in the vagina (44). The virome in FRT, especially

bacteriophages, appears to be a potential player in the

establishment and maintenance of vaginal dysbiosis (45). However,

little is known about the role of these biomes in FRT-organ axes.
Anatomical overview of the
FRT-organ axes

Anatomically proximal and distal interactions comprise the FRT-

organ axes (5) (Figure 1). The openings of the urethra and vagina are

in close proximity to each other. Therefore, some microbial species

can be transient members of the microbiota between the bladder and

the vagina (vagina-bladder axis). Although the vagina-gut axis is

characterized by distal interactions (5), the rectum is relatively close

to the vagina. Bacteria can also directly migrate from the anus to the

vagina and urethra (5, 46). In addition to bacteria, fungi such as
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Candida albicans may migrate between the anus and the vagina (47).

Furthermore, recent studies indicate that the interaction between the

microbiota and immunity in the small intestine is different from that

in the colon (48, 49), suggesting that we may separate the vagina-gut

axis into the vagina-small intestine axis, the vagina-colon axis, and the

vagina-rectum axis. In this review, however, we still use the phrase

“vagina-gut axis” because few studies have analyzed the microbiota

and its effects on immunity in the small intestine. Some studies have

also reported distal interactions of the FRT with the ovary, oral cavity,

brain, and joints. For example, bacterial translocation could occur

from the oral cavity or gut via the bloodstream to the uterus (5, 28,

50). Microbial translocation also occurs during sexual intercourse,

and some urogenital microorganisms are shared with sexual partners,

which is beyond the scope of this review [for review, see (5, 51)].

Below, we describe each axis in detail.
Vagina-gut axis

Among the FRT-organ axes, the vagina-gut axis is the most

studied and discussed. Reducing the risk of BV (dysbiotic condition
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of the vaginal microbiota) by a healthy diet (52, 53) has enhanced the

importance of the interaction between the GI tract and the vagina.

One of the oldest descriptions of the term “gut-vagina axis” was

referred to by Ravel and Brotman in 2016 (54). Trafficking of bacterial

species across the vagina and gut, as mentioned above, is a unique

aspect of proximal axes compared to other distal axes. Some

Lactobacillus strains are found in both the rectum and the vagina

(55). In a previous study, 63 bacterial species were identified in the

vagina or rectum, 44% of which were found in both organs, and the

genotypes of 68% of the species were identical (56). A recent study

showed that BV-associated bacteria in the vagina and rectum in

pregnant women were individually detected by species-level

Spearman correlation coefficient analysis (57). Furthermore, orally

administered probiotic strains were also detected in the vagina (58–

61). These observations suggest that the rectum could preserve

vaginal bacteria (15, 57) and, possibly, vice versa. Importantly, a

genomic study of L. crispatus and L. rhamnosus from a variety of

sources, including the human gut and vagina, suggested body site-

specific adaptation (62, 63). L. crispatus and L. gasseri from the

reproductive tract and GI tract exhibited source-dependent gene

expression and phenotypic characteristics, such as growth rates,
FIGURE 1

Anatomical overview of the FRT-organ axes. Each axis can be characterized by proximal or distal interactions. Trafficking of bacterial species is a unique
aspect of proximal axes compared to other distal axes. However, distal bacterial translocation might occur systemically via the bloodstream, especially in
pathological conditions accompanied by the dysregulation of epithelial barrier function.
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stress resistance, adhesion properties, and fermentation profiles, in

addition to strain-dependent differences (64). Hence, the preference

of Lactobacillus for each organ should be considered when discussing

the sharing of Lactobacillus by both the rectum and the vagina,

although further research is needed.

In addition to direct bacterial translocation, indirect interaction

between the vagina and gut has also been implicated. Metabolites

produced by the microbiota, such as SCFAs, could be considered

indirect players of the vagina-gut axis. The roles of SCFAs are

prominently different between the vagina and gut [for review, see

(15)]. SCFAs in the gut exhibit beneficial functions, such as

maintenance of barrier functions, while those in the vagina are

associated with dysbiotic and proinflammatory conditions (65).

SCFAs can also influence immune cell subsets and their functions

(66). As SCFAs produced by the gut microbiota can be transferred to

other organs via systemic circulation (67), SCFAs may be involved in

the vagina-gut axis. SCFAs produced by vaginal microbes are thought

to contribute to the development of a dysbiotic environment (65). An

in vitro study showed that excessive SCFAs can be a potential source

of cervicovaginal inflammation (68). Therefore, the circulation of

SCFAs from the gut to the vagina might cause vaginal dysbiosis.

In addition to metabolites, sex hormones contribute to the

vagina-gut axis. The vaginal microbial community can be
Frontiers in Immunology 04
influenced by an estrobolome-mediated mechanism [for review, see

(5, 69, 70)]. Briefly, the estrobolome is defined as the collection of

microorganisms that can metabolize estrogens. For example,

Bifidobacterium, Clostridium, and Lactobacillus are involved in the

deconjugation/conjugation of estrogens (71, 72). The estrobolome

can deconjugate hepatically conjugated estrogens in the GI tract.

Deconjugated estrogen is then reabsorbed to the systemic circulation.

Circulating estrogen reaches the distal epithelium of the vagina and

alters the physiological characteristics of vaginal epithelial cells, such

as glycogen and mucus production. Increased glycogen supports

Lactobacillus dominance in the vagina, as glycogen can serve as an

important energy source for lactobacilli (73, 74). Thus, the amount of

estrogen-metabolizing bacteria in the gut microbiota can affect the

amount of Lactobacillus in the vaginal microbiota. The proposed

mechanisms of vaginal microbiota shaping via the vagina-gut axis are

shown in Figure 2.

One of the most important immunological roles of the vagina-gut

axis is to shape the components of the vaginal microbiota. Some

factors, such as AMPs secreted from epithelial or immune cells from

the mucosal site of hosts, regulate the microbiota and vice versa (21,

26). IgA also regulates the composition of the gut microbiota (18–20,

22). IgA is the principal antibody class secreted in mucosal fluid (75,

76). The origin of most IgA in the gut is as a B-cell response to
FIGURE 2

Proposed mechanisms of vaginal microbiota shaping via the vagina-gut axis. Many factors, such as age, ethnicity, menstrual cycle, lifestyle, immune
system, infection, and probiotics, are known to affect the composition of the vaginal microbiota. However, why the human vaginal microbiota is often
dominated by a single or a few strains of Lactobacillus is still unknown. Tolerance and promotion of Lactobacillus dominance in the vagina might be
regulated via the vagina-gut axis. Immunization with Lactobacillus might occur both in the vagina and the gut. The collection of microorganisms that can
metabolize estrogens (coined the estrobolome) can deconjugate hepatically conjugated estrogens in the gastrointestinal tract. Deconjugated estrogen is
then reabsorbed to the systemic circulation. Circulating estrogen will affect the distal epithelia of the vagina, resulting in glycogen and mucus
production. Then, increased glycogen supports Lactobacillus dominance in the vagina because glycogen can serve as an energy source for lactobacilli.
AMPs: antimicrobial peptides and proteins. The established pathways are represented by solid lines. The proposed mechanisms are represented by
dotted lines. The estrobolome-driven pathway is represented by green lines.
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commensal bacteria (77). However, unlike other mucosal tissues, the

IgA level is lower than the IgG level (78, 79), and IgG instead

dominates antigen-specific antibodies in the vagina (80). This

difference can indicate a different defensive function between the

vagina and other mucosal tissues (81). IgA and IgG appear to be

stably associated with cervical mucus, while only IgG appears to be

associated with cervicovaginal mucus (82). IgA-Seq (bacterial flow

cytometry with 16S rRNA gene sequencing) revealed that lactobacilli

were coated with IgA in vivo (83). In contrast, most bacteria in the

Firmicutes phylum were not coated with IgA (83). Of note, Breedveld

and colleagues recently reported that higher levels of bacterial IgA

coating were observed when the vaginal microbiota was dominated by

L. crispatus compared with non-L. crispatus-dominated microbiota

(84). The bacterial IgA coating might modulate biogeography,

metabolic processes, proliferation, and survival in mucosal tissue by

modifying bacterial gene expression (85, 86). IgA coating is proposed

to promote adhesion to the mucus layer and facilitate the formation of

bacterial biofilms on the mucosal surface, which is important for

bacterial colonization in the gut (87). Therefore, similar to its

regulatory function in the GI tract, IgA could play a role in

maintaining the L. crispatus-dominated microbiota (84). A previous

study showed that genetic variants of IL-5 were associated with the

abundance of Prevotella spp. in the vaginal microbiota (88). As IL-5 is

implicated in IgA responses (89), host genetics could affect the vaginal

microbiota via immunological regulation. Furthermore, competition

among Lactobacillus species of the vaginal microbiota appears to be

less likely to occur (90, 91). These studies might support the

importance of host factors, rather than bacterial competition of

lactobacilli, in shaping the Lactobacillus-dominant vaginal

microbiota (91).

Furthermore, questions arise about the immunization of vaginal

Lactobacillus, specifically when and where immunoglobulin binding to

Lactobacillus could be induced. The components of the vaginal

microbiota dramatically change throughout a woman’s life (15, 69).

Similar to a mother’s vaginal microbiota, the meconium of newborns

delivered vaginally contains microbes such as Lactobacillus and Prevotella

(92), suggesting that one of the sources of the infant’s gut microbiota

would be the mother’s vaginal microbiota. Interestingly, L. crispatus from

the mother’s vagina might play an important role in establishing the

mucosal barrier function of the infant gut (93). In contrast, after birth and

during childhood, the vaginal microbiota does not resemble that of the

mother and contains streptococci, enterococci, and anaerobes with high

microbial diversity, and Lactobacillus is deficient (94). Therefore, the

immunization of Lactobacillus, which will be the dominant vaginal

species, is less likely to occur in the vagina before puberty. Instead, as

the rectum could preserve vaginal bacteria (15), immunization of vaginal

Lactobacillus after puberty might occur in the gut before puberty. After

puberty, with an increase in circulating estrogen levels and accumulation

of glycogen in the thick vaginal epithelium as an energy source for

Lactobacillus (73, 74), the vaginal microbiota is dominated by one or a

few Lactobacillus species. After menopause, the estrogen level decreases,

resulting in a reduction in Lactobacillus abundance.

After puberty, immunization with Lactobacillus might also occur

in the vagina, in addition to the gut. Although the importance of the

local immune structures in the vagina is still under investigation (95),

the vaginal microbiota can stimulate the mucosa continuously.

Therefore, B cells that respond to vaginal commensal organisms
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might be recruited to the vaginal mucosa, and IgG and IgA secreted

from these B cells might have a role in shaping the microbiota in the

vagina. Furthermore, L. crispatus might have immunomodulatory

capabilities mediated by the S-layer protein, which comprises the

outer surface layer of the bacteria (96). In addition, S-layer protein

was reported to be a mediator of Lactobacillus adhesion to epithelial

cells (93, 96, 97).

Although the mechanism of immunizing with Lactobacillus as a

component of the vaginal microbiota is uncertain, investigations of

genital mucosal antibodies after vaginal challenge with pathogens

have provided some insights. In mice, after vaginal infection

immunization with herpes simplex virus 2 (HSV-2), circulating

antibodies rarely entered the vaginal lumen, and this primary

infection did not recruit plasma cells in the vaginal mucosa (98).

However, after secondary vaginal challenge with HSV-2, induction of

CXCL9 and CXCL10 by IFN-g from tissue-resident memory T cells in

the vagina recruited circulating memory B cells to the vaginal mucosa

in a CXCR-3-dependent manner, and the B cells secreted virus-

specific IgG and IgA into the vaginal lumen (98). In macaques, two

vaginal challenges and three oral Simian immunodeficiency virus

challenges induced virus-specific IgA and IgG antibodies in the

vaginal fluid and serum (99). This vaginal IgA had a J chain and a

secretory component, indicating that it was of secretory origin (99). In

humans, vaginal vaccination with the cholera toxin B subunit

increased the concentrations of IgG and IgA in cervical secretions,

while nasal vaccination showed less induction of IgG and IgA (100).

In contrast, more induction in vaginal IgA secretions was observed

when the antigen was administered nasally (100). To date, however, a

mechanism for establishing a vaginal microbiota has not

been developed.

The vagina-gut axis appears to be involved in disease

development. The presence of G. vaginalis in the gut microbiota

significantly increased the odds of irritable bowel syndrome (IBS)

(101). Gardnerella was significantly more enriched in the gut

microbiota of patients with ulcerative colitis than in patients with

Crohn’s disease (102). These results may represent translocation or

contamination of bacteria from the vagina before or during sampling.

However, a significant link between inflammatory bowel disease

(IBD) and the urogenital biofilm of G. vaginalis in urine specimens

suggested dysfunction of the vaginal epithelial barrier (103). Recent

studies have also indicated the association of vaginal dysbiosis and

IBD in pregnant women. Pregnant women with IBD had a risk for BV

and Candida colonization (104). Although the causal relationship was

unknown, the prevalence ofMycoplasma and/or Ureaplasma was also

significantly higher in pregnant women with IBD than in pregnant

women without IBD (105).

The link between BV and IBD might also be explained by

lipopolysaccharide (LPS), a component of the membrane of gram-

negative bacteria. As a consequence of the downregulation of

intestinal barrier integrity induced by gut dysbiosis accompanied by

IBD, LPS can translocate into the systemic circulation (106, 107),

causing acute or chronic inflammation at distal sites (108). Although

there is no evidence showing that vaginal dysbiosis could increase

circulating LPS, LPS from the gut might cause/worsen inflammation

at the vagina.

Furthermore, infection of G. vaginalis in murine vaginas

increased the concentration of TNF-a and myeloperoxidase activity
frontiersin.org
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and decreased the concentration of IL-10 in colon tissue (109). This

infection also decreased the Bacteroidetes composition and increased

the Proteobacteria composition in the gut microbiota (109). Overall,

vaginal dysbiosis might be a trigger/aggravating factor of these bowel

diseases and perhaps vice versa.

An association between the gut microbiota and cervical cancer

has also been suggested. Altered diversity and composition of the gut

microbiota of patients with cervical cancer have been reported (110).

SCFAs inhibited the proliferation of HeLa cells (human cervical

cancer cell line) via the downregulation of free fatty acid receptor 2

expression (111). Therefore, such metabolites produced by the gut

microbiota could indirectly affect the progression of cervical cancer

(72). Oral lactic acid bacteria (LAB)-based mucosal human

papillomavirus (HPV) vaccines may influence the course of cervical

cancer (persistent infection with HPV is associated with oncogenesis

of cervical cancer) through the flow of immune signals from the gut to

the vagina (112). In addition, a meta-analysis showed a causal link

between cervical cancer and vaginal dysbiosis (113). Therefore,

another indirect link between cervical cancer and the gut

microbiota can be postulated if vaginal dysbiosis is induced via the

vagina-gut axis.

To consider the mechanism of the vagina-gut axis, one suggestive

example is Helicobacter infection in the stomach. H. pylori is highly

virulent in the stomach (114), and some studies have shown an inverse

correlation between H. pylori infection and IBD onset, indicating that H.

pylori could induce systematic immune tolerance and the suppression of

the inflammatory response (115). In contrast, recurrent BV can be cured

after antibiotic therapy for H. pylori (116). Although antibiotic therapy

for H. pylori can directly change the vaginal flora, H. pylori-induced

systematic immune tolerance might promote colonization of pathogens

in the vagina. Therefore, these studies might represent a double-edged

sword of gastric H. pylori infection to modulate systemic mucosal

immune modulation, including the vagina-gut axis.
Uterus-gut axis

The uterus has unique immune regulation (117, 118). However,

how uterine immunity and its microbiota interact with each other

requires further investigation. The hematogenous spread of bacteria

from the gut to the uterus has been reported (28). Recently, an

association between the gut microbiota and preterm birth has been

highlighted. Reductions in Bifidobacterium, Clostridium, and

Bacteroides have been observed in the gut microbiota of patients

with preterm birth (119, 120). As these bacteria have many anti-

inflammatory properties, such as inhibition of LPS-induced NF-kB
activation, IL-8 and COX-2 production, and induction and activation

of IL-10-secreting regulatory T cells, a reduction in these bacteria

could lead to increased susceptibility to inflammation-induced

preterm birth (46).

The estrobolome is involved in not only the vagina-gut axis but

also the uterus-gut axis. Endometrial hyperplasia and cancer are

estrogen-dependent (29). Therefore, the estrobolome in the gut can

influence the development of these estrogen-dependent diseases (5,

17, 70, 72).

Active IBD can impair fertility, probably via multifactorial

mechanisms, including pelvic inflammation of the ovaries and
Frontiers in Immunology 06
fallopian tube (121). The change in endometrial microbiota

accompanied by IBD remains unknown, although predominant

taxa in the endometrial microbiota for different gynecological

disorders have gradually become clear (14). LPS from the gut might

impair fertility and preterm birth by inducing apoptosis of embryonic

cells, delaying stromal cell proliferation, and modulating

hormones (122).

Interestingly, SCFAs from the maternal gut microbiota affected

the metabolic phenotype of offspring in mice during pregnancy (16).

Therefore, the uterus-gut axis can play roles not only in fertility but

also in the development of offspring.
Ovary-gut axis

Ovarian functions, including ovulation and lutein body

formation, are precisely controlled by pituitary hormones but are

also affected by intestinal functions, including the microbiota. For

example, IBD can be a risk factor for ovarian dysfunction, including

premature ovarian failure (123). Furthermore, patients with

polycystic ovary syndrome (PCOS), which is often accompanied by

hyperandrogenism, showed reduced diversity and different

phylogenetic compositions of the gut microbiota (124, 125).

Bacteroidaceae, Bacteroides, Coprococcus, Escherichia/Shigella,

Faecalibacterium prausnitzii, Lactobacillus, Parabacteroides, and

Prevotella were identified as the most common bacterial alterations

in PCOS patients (126). Interestingly, SCFAs restored ovarian

function in a PCOS rat model (127). Insulin resistance with

abnormal SCFA metabolism by the gut microbiota might be

associated with PCOS (128). Therefore, regulation of SCFA by the

gastrointestinal/vaginal microbiota could be involved in the

pathogenesis of PCOS. In addition, as IL-22 produced by intestinal

group 3 innate lymphoid cells (ILC3) reversed insulin resistance

(129), interactions among the gut microbiota, bile acid, and IL-22

appear to have roles in the pathophysiology of PCOS (130). A chronic

inflammatory state and disrupted gut mucosal integrity caused by gut

dysbiosis are other inducible candidates for PCOS (131). A previous

study also showed that an increased prevalence of BV was found in

patients with PCOS (132). Hence, the vagina-gut axis in addition to

the ovary-gut axis might be important in PCOS patients (131).

In addition to PCOS, the gut microbiota can modulate ovarian

cancer. The presence of sex hormone receptors in many putative

tissues of origin for ovarian cancer suggests potential roles for sex

hormones in the origin and promotion of ovarian cancer (133).

Therefore, the estrobolome in the gut might have an important role

in the induction of estrogen-dependent ovarian cancer (72).

In terms of reproduction, LPS from the gut might affect not only

the uterus but also the ovary. LPS can activate macrophages in the

ovaries, which produce cytotoxic proinflammatory cytokines (134,

135). These cytokines could exert autocrine/paracrine effects causing

regression of the ovary (122).
Vagina-bladder axis

Common genera of the urinary microbiota are Citrobacter,

Escherichia, Enterococcus, Prevotella, and Streptococcus (136, 137).
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Corynebacterium and Streptococcus are reported to be more abundant

in men, and Lactobacillus is more abundant in women (137). The

urinary microbiota shares 62.5% of species with the gut microbiota

and 32% with the vaginal microbiota (137). As urine samples showed

substantial concordance to paired mid-vaginal samples regarding

bacterial composition, the genitourinary microbiota could be a good

indicator for the overall composition of the vaginal microbiota (138).

A typical starting point of a urinary tract infection (UTI) is

periurethral contamination by a uropathogen residing in the gut

(139). Then, the uropathogen colonizes the urethra and subsequently

migrates to the bladder. Therefore, dysbiotic states with pathogenic

microbes in the gut would increase the risk of UTI (140). Similar to

this gut-bladder axis, vaginal dysbiosis may prompt a UTI via the

vagina-bladder axis as a reservoir for uropathogens such as E. coli (6).

Although G. vaginalis is a rare cause of symptomatic UTI, an in vitro

study showed that G. vaginalis altered bladder gene expression and

increased susceptibility to subsequent UTI caused by uropathogenic

E. coli (141). Compared to women without BV, those with BV have a

significantly increased risk of UTI, with an odds ratio of 13.75 (142),

and a clinical trial showed that the efficacy of intravaginally

administered L. crispatus probiotics reduced the recurrence of UTI

(143). Furthermore, as G. vaginalis is often detected in the urinary

microbiota (141), the urine microbiota may prompt BV via the

vagina-bladder axis as a reservoir for G. vaginalis.
FRT-oral axes

Following the GI microbiota, the oral cavity harbors the second

most diverse and largely populated microbiota in the body (144).

Different sites and conditions in the oral cavity have different

microbial compositions (145–147). Marginal gingival biofilms

contain Corynebacterium, Streptococcus, Neisseria, Fusobacterium,

Leptotrichia, Porphyromonas and Haemophilus, while dorsal tongue

biofilms contain Rothia, Veillonella, Actinomyces, Streptococcus, and

Neisseria (148). Cooperation of the oral microbiota and the host

reflects the information and status of immunity and metabolism via a

two-way axis along the oral cavity and systemic organs (149). Below,

we discuss the vagina-oral axis and the uterus-oral axis.
Vagina-oral axis

Evidence indicates the existence of the vagina-oral axis. There is a

significant association between periodontitis and BV (150). Women with

BV have a higher risk of gingivitis (151). An association with a significant

diversification of salivary microbiota and higher counts of Prevotella

intermedia in the subgingival gingival microbiota was reported in women

with BV compared with women without BV (152). Sexual risk behaviors

such as oral sex could translocate pathogens between the oral cavity and

the vagina and would be one mechanism of the vagina-oral axis (150).

Furthermore, a recent study showed an association between periodontitis
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and higher systemic markers of inflammation in women with BV,

indicating systemic inflammation as the underlying mechanism (12).

The coexistence of BV and periodontitis in smokers (12) is also good

evidence of the vagina-oral axis. The association was previously thought

to be due to women who smoke being more sexually active than

nonsmokers, but more recently, it has been suggested that several

chemical factors in cigarettes, together with common abnormalities in

mucosal immunity (153), might kill oral and vaginal commensal bacteria

directly or via bacteriophages (154, 155).
Uterus-oral axis

The relationship between labor onset and the oral cavity raises

interesting questions. In general, dental caries and periodontal disease

are associated with preterm labor (156). Although the existence of a

normal placental microbiota is under debate, as mentioned above (37,

38), some studies have suggested that inflammatory conditions of the oral

cavity could cause bacterial translocation from the oral cavity via the

bloodstream to the uterus (157–159). DNA of periodontal disease-related

pathogens, such as Porphyromonas gingivalis, Fusobacterium nucleatum,

Prevotella intermedia, and Treponema denticola, is often detected in the

placenta of patients with periodontal disease (160). Such pathogens can

cause placental dysfunction (161). Furthermore, the presence of P.

gingivalis in the umbilical cord is associated with preeclampsia. The

genus Aggregatibacter, which includes some periodontal disease-related

bacteria, is significantly enriched in the oral microbiota of women with

threatened preterm labor (57). Overall, oral bacteria may reach the uterus

in the bloodstream and cause inappropriate labor, either directly or via

inflammatory cytokines. Therefore, an association between periodontal

disease and adverse pregnancy outcomes is suggested (162), although

further mechanisms of the uterus-oral axis are still under investigation.
FRT-brain axes

The gut-brain axis consists of multiple connections, such as bacterial

metabolites and products, the vagus nerve, and the immune system [for

review, see (163, 164)]. Therefore, similar physiology could be postulated

in the FRT-brain axis. Microbial-derived metabolites appear to be

modulators of the FRT-brain axis. For example, SCFAs produced by

the GI microbiota are speculated to have a key role in the gut-brain axis

(67), indicating that the production of SCFAs in the vagina might affect

brain function similarly. Although it is still unknown whether an efferent

vagal influence on pelvic organs exists, vagal afferent supply of the uterus

has been indicated by retrograde and anterograde tracing studies in vivo

(165). Normal immune function could be impaired or dysregulated by

exposure to chronic stress through the hypothalamic−pituitary−adrenal

pathway and the sympathetic-adrenal-medullary pathway with

associated hormones (166). Some studies have indicated the existence

of the vagina-brain and uterus-brain axes, as discussed below. However,

the FRT-brain axis needs further investigation.
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Vagina-brain axis

Stress might affect the vaginal microbiota (27). Stress-induced

cortisol could inhibit vaginal glycogen deposition, resulting in lower

Lactobacillus dominance, elevated vaginal pH, and an increase in the

proinflammatory response (167). Increased psychosocial stress is

associated with greater BV prevalence (168), although few

associations between stress and BV have been observed in pregnant

women (169). Another study reported no significant associations

between the vaginal microbiota and mood, although the sample size

was limited (170). SCFAs produced by the gut microbiota may

regulate brain function directly or indirectly (67). Therefore, similar

functions can be assumed in SCFAs from the vaginal microbiota.
Uterus-brain axis

Accumulating evidence is providing a clearer understanding of

the brain-uterus axis (17). Gonadotropin releasing hormone (GnRH)

signals the pituitary gland to secrete luteinizing hormone (LH) and

follicle-stimulating hormone (FSH), which consequently increase the

production of estrogens from the ovary (171, 172). Adenomyosis and

endometriosis are estrogen-dependent gynecological disorders that

cause pelvic pain, abnormal uterine bleeding, and infertility (173,

174). GnRH agonists or antagonists are administered to treat these

diseases, and improvements in chronic pelvic pain have been reported

(175). It is hypothesized that pain sensitivity might increase the

secretion of GnRH (17). Therefore, further studies of pelvic pain

and GnRH secretion from the pituitary gland would promote our

understanding of the uterus-brain axis.
Vagina-joint axis

Some studies have reported the involvement of the vagina-joint

axis in joint diseases. Reactive arthritis and rheumatoid arthritis have

been revealed to be associated with BV and Gardnerella in the gut

microbiota (176–178). Although the mechanisms of interactions

between the microbial antigen and the host remain unknown, the

cause of reactive arthritis is considered an overstimulated

autoimmune response or bacterial antigens that deposit in the

joints (179). The antigens that can trigger reactive arthritis are

gram-negative aerobic bacteria, and these bacteria invade

gastrointestinal/urogenital mucosal sites (179). Therefore, reactive

arthritis could be caused by vaginal G. vaginalis (gram-negative)

infection (180), which would be considered the vagina-joint axis. In

contrast, the mechanism by which vaginal dysbiosis may cause

rheumatoid arthritis remains a mystery.
Therapeutic opportunities

The FRT-organ axes appear to be involved in a variety of diseases

(Figure 3). Therefore, restoration of dysbiotic conditions is a potential

treatment. Therapeutic opportunities for pharmabiotics, including

prebiotics , probiotics , synbiotics , and fecal microbiota
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transplantation, are well acknowledged. Recently, a clinical trial of

vaginal microbiota transplantation for BV was conducted (181).

However, although L. crispatus seems preferable for vaginal

application, indigenous vaginal lactobacilli often surpass

colonization of the probiotic L. crispatus strain from the vaginal

source (CTV-05) (182). After 24 weeks, approximately 50% of

patients who received this probiotic had not retained the strain (183).

Mutual regulation of mucosal factors and the resident microbiota

(76) may explain the insufficient clinical efficacy of pharmabiotics,

which are “alien” to the body’s own microbiota and local immunity.

The colonization resistance of the mucous membranes prevents

exogenous bacteria from colonizing the body. In some cases, the

use of commercial probiotics even has a negative effect on the process

of microbiota recovery after antibiotic therapy (184). An alternative to

commercial probiotics is an approach based on the restoration of the

microbiota in the event of dysbiosis by using bacterial strains from a

person’s own microbiota. This approach, known as autoprobiotic

technology or personalized symbiont therapy (PERST), involves the

isolation of individual representatives of the resident beneficial

microbiota in pure culture, checking for the absence of genes

associated with pathogenicity, accumulating these bacteria by

cultivation, and returning them back to the host (185, 186). These

autoprobiotic strains easily colonize mucous membranes and do not

induce a rejection response from the host’s resident microbiota and

immune system. Autoprobiotic treatment is accompanied by recovery

of the immune status and distinctive anti-inflammatory effects (185).

A prospective randomized study showed that autoprobiotic treatment

with lactobacilli was more effective than that with allogeneic strains in

restoring the level of lactic acid bacteria in the vagina and reducing the

risk of recurrence of BV (187). Thus, instead of the classic application

of probiotics, PERST technology based on autologous lactobacilli can

be used to cure vaginal dysbiosis-related disorders.

The stability of the microflora partially depends on intra- and

interspecies bacterial antagonism (8, 188). Although interspecies

antagonism might be less likely to occur among vaginal

Lactobacillus, as discussed above (90, 91), whole-genome

sequencing revealed that the species L. crispatus is heterogeneous in

the vagina (189). Therefore, to understand this advantage of

autoprobiotic strains, in-depth research on intraspecies bacterial

antagonism also seems to be needed. Furthermore, regarding FRT

organ axes, simultaneous administration of autoprobiotics at different

sites might synergistically restore dysbiosis.
Future direction and conclusion

Dysbiosis can be characterized by an underlying disruption of

host functions that regulate the microbiota and microbial metabolism

(190). Hence, more quantitative insights into the homeostasis of the

microbiota could be provided by host function measurements rather

than current microbe-centric approaches (190), although the

microbiota is clearly a key player in the FRT-organ axes.

Among the FRT-organ axes, the underlying mechanism shared by

the “mucus-mucus” axes (such as the vagina-gut axis and the vagina-

oral axis) can be discussed; dysfunction at one mucosal tissue may

cause dysfunction at other mucosal tissues. Bacterial direct
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translocation is important for considering these “mucus-mucus” axes.

However, indirect interaction should be noted. It is also well

established that mucosal dysregulation and dysbiosis can cause

chronic inflammation in distal tissues via systemic circulation of

inflammatory cytokines (191, 192). As discussed above, systemic

inflammation could be the underlying mechanism of the oral-gut

axis (12). Dysregulated intercellular junction proteins and barrier

properties allow bacterial components (e.g., LPS), bacterial

metabolites, and cytokines to enter the systemic circulation,

resulting in the dysregulation of other tissues. Overall, systemic

modulation of the immune system can be the underlying

mechanism of the interactions of mucosal tissues in the FRT-

organ axes.

Controversial roles of SCFAs in the development of cervical

cancer also remain to be elucidated. As discussed above, SCFAs can

cause vaginal dysbiotic and inflammatory conditions (65, 68). A

meta-analysis supports a causal link between cervical cancer and

vaginal dysbiosis (113). However, SCFAs also have antitumor effects

(72, 111). Butyrate can trigger cascades of responses that not only lead

to malignancy but also inhibit it (193). Therefore, determining the

role of SCFAs in cervical cancer development or prevention is a

future need.

In addition, although each axis is discussed separately for a

comprehensive presentation in this review, the axes can interact
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with each other, such as the vagina-uterus-gut axes. Therefore,

integration of each axis is required for further understanding of the

FRT-organ axes. Investigations of not only the bacteriome but also the

virome, mycobiome, archaeome and candidate phyla radiation in

FRT are still needed to consider the FRT organ axes.

Furthermore, in the current era of diversity, we should also

consider the preferable composition of the microbiota for

transgender people (7). For transgender women, the microbiota of

the penile skin-lined neovagina is substantially similar to that in

women with BV with a very limited number of lactobacilli (194). For

transgender men prescribed testosterone, the vaginal microbiota is

less likely to have Lactobacillus (195). Long-term administration of

high-dose testosterone disrupts the normal architecture of the vaginal

epithelium and reduces glycogen deposition (196), which could result

in a reduction in vaginal Lactobacillus. Regarding vaginal microbiota

modulation, the neovaginal microflora of transgender women was

significantly enriched with lactobacilli following an orally

administered mixture of lactobacilli (197). A positive association

was also found between intravaginal estrogen administration and

the presence of Lactobacillus in transgender men (195). However,

several key gaps in this field remain in the literature, such as the

systemic effect of local estrogen therapy in transgender men (198).

Furthermore, the role of the FRT-organ axes in transgender people is

completely unknown.
FIGURE 3

FRT-organ axes and diseases. Dysregulation of immune, neural, endocrine, or metabolic functions in the FRT-organ axes implicates its involvement in
the pathogenesis of not only gynecological diseases but also diseases occurring apart from the FRT. PCOS, polycystic ovary syndrome; UTI, urinary tract
infection; BV, bacterial vaginosis; IBD, inflammatory bowel disease; IBS, irritable bowel syndrome.
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In addition to the investigation of the FRT-organ axis, a more

effective approach to cure the dysbiotic condition in FRT is needed.

One promising approach in the future may be IgA-coated probiotics. IgA

facilitates Bacteroides fragilis colonization of the murine gut (18). IgA-

coated L. jensenii, not IgA-free lactic acid bacterial strains, from the fecal

microbiota of a healthy woman significantly inhibits dyslipidemia and

gut barrier damage in high-fat diet-fed mice (199). As mentioned above,

IgA-coated bacteria are observed more frequently in vaginal microbiota

with L. crispatus dominance compared with that with non-L. crispatus-

dominant microbiota (84). Therefore, IgA-coated L. crispatus as a

probiotic might colonize the vagina longer than current probiotic

strains. However, to establish this approach, further age-range studies

to investigate IgA-coated bacteria in the vagina are needed.

In conclusion, investigation of the FRT-organ axes would provide a

multicentric approach including immune, neural, endocrine, and

metabolic aspects for understanding the homeostatic mechanism of

women’s bodies. The framework of the FRT-organ axes could also

provide a cue to find new therapeutic approaches to maintain

women’s health.
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