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Background: Sepsis is a heterogeneous disease, therefore the single-gene-

based biomarker is not sufficient to fully understand the disease. Higher-level

biomarkers need to be explored to identify important pathways related to sepsis

and evaluate their clinical significance.

Methods: Gene Set Enrichment Analysis (GSEA) was used to analyze the sepsis

transcriptome to obtain the pathway-level expression. Limma was used to

identify differentially expressed pathways. Tumor IMmune Estimation Resource

(TIMER) was applied to estimate immune cell abundance. The Spearman

correlation coefficient was used to find the relationships between pathways

and immune cell abundance. Methylation and single-cell transcriptome data

were also employed to identify important pathway genes. Log-rank test was

performed to test the prognostic significance of pathways for patient survival

probability. DSigDB was used tomine candidate drugs based on pathways. PyMol

was used for 3-D structure visualization. LigPlot was used to plot the 2-D pose

view for receptor-ligand interaction.

Results: Eighty-four KEGG pathways were differentially expressed in sepsis

patients compared to healthy controls. Of those, 10 pathways were associated

with 28-day survival. Some pathways were significantly correlated with immune

cell abundance and five pathways could be used to distinguish between systemic

inflammatory response syndrome (SIRS), bacterial sepsis, and viral sepsis with

Area Under the Curve (AUC) above 0.80. Seven related drugs were screened

using survival-related pathways.

Conclusion: Sepsis-related pathways can be utilized for disease subtyping,

diagnosis, prognosis, and drug screening.

KEYWORDS

septic shock, acute respiratory distress syndrome (ARDS), receiver operating
characteristic (ROC), ppara peroxisome proliferator-activated receptor a, Tesaglitazar
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Introduction

Sepsis is the major cause of morbidity and death in the intensive

care unit (ICU) (1). Sepsis-1 defined sepsis as a host’s systemic

inflammatory response syndrome (SIRS) to infection, and the

clinical criterion was suspected infection plus SIRS (2). There are

many causes of sepsis, such as bacterial infections, influenza,

pneumonia, and food poisoning (3). ICUs are rare recourses

worldwide. The definition was then revised and validated with new

clinical criteria. The third international consensus on the definition

of sepsis and septic shock defined sepsis as a syndrome of

physiological, pathological, and biochemical abnormalities of the

body induced by infection (4). Sepsis-3 criteria defined sepsis as

“Life-threatening organ dysfunction caused by a dysregulated host

response to infection” (5). Inflammation resulting from an

overreaction to an infectious agent can induce fatal diseases such

as hypotensive septic shock or septic shock, which have a high

mortality rate (6). Currently, there is a large amount of

transcriptomic data on sepsis in public databases, however, the

molecular mechanisms of sepsis remain unclear. The heterogeneity

of sepsis conditions and diverse sources of infection may contribute

to this result (7). Conventional single-gene-based approaches are

ineffective in distinguishing sepsis from traditional markers such as

procalcitonin (PCT) and interleukin-8 (IL-8) (8). Recombinant

human activated protein C (rhAPC) is currently the only drug

approved by the U.S. Food and Drug Administration (FDA) for

the treatment of severe sepsis. Therefore, it is necessary to develop

molecular diagnostic markers based on a higher level. We propose to

use the KEGG pathway as a marker in the diagnosis, classification,

treatment, and prognosis of sepsis and provide potential therapeutic

drugs accordingly. This method provides a novel idea from disease

mechanism research to clinical translation. Here, we identify KEGG

pathways associated with sepsis, survival, immune cells, and

infection types, and discover potential disease-related drugs to

provide important information for follow-up research.
Materials and methods

Datasets download

The sepsis-related transcriptome datasets were downloaded from

the NCBI GEO database. GSE185263 was obtained from the next-

generation sequencing platform Illumina HiSeq 2500, with a total of

392 whole blood samples, including 44 healthy controls and 392 sepsis

patients. GSE65682 from the gene chip platform Affymetrix Human

Genome U219 Array contains a total of 802 whole blood samples

from sepsis patients. GSE63990 was derived from the Affymetrix

Human Genome U133A 2.0 Array with a total of 273 whole blood

samples, of which 88 were systemic inflammatory response syndrome

(SIRS), 115 were viral acute respiratory infections, and 70 were

bacterial acute respiratory infections. Cell type level RNA-Seq

dataset GSE133822 profiled CD4+, CD8+, and CD14+ cells from

231 sepsis and critically ill patients. GSE40012 contains time serial

blood transcriptome data from 8 influenza A pneumonia patients, 16

bacterial pneumonia patients, and 3 mixed bacterial and influenza A
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pneumonia patients. Sepsis methylation dataset GSE138074, which

contains 11 healthy donors, 4 SIRS, and 14 sepsis, was downloaded

from NCBI GEO. Single-cell data was retrieved from Human

Universal Single Cell Hub and Broad Institute Single Cell Portal.
Transcriptome and methylome
data processing

The expression values in the expression matrix were converted to

ranks, and the GSVA package in R (v4.0.3) was used to convert the

gene expression matrix to pathway enrichment score (ES) (9).

Differential KEGG pathway analysis was performed using the limma

package, and the P value was set at 0.01. Pathway expression-based

survival analysis was performed using the survival package, and the P

value was set at 0.05. Immune cell abundance was analyzed using the

TIMER online analysis tool (http://timer.comp-genomics.org/) (10).

Pathway-based drug screening was performed by using the DSigDB

database (http://dsigdb.tanlab.org/DSigDBv1.0/) (11). Methylation

data were analyzed in the R ChAMP package according to the

Illumina BeadChips analysis pipeline with P <0.05 (12). Functional

enrichment of differentially methylated genes was performed in the R

clusterProfiler package with adjusted P <0.05 (13). 3D structure

visualization for the result of molecular docking was analyzed using

PyMol 1.7.4.5 Edu. A 2D pose view of ligand and receptor interactions

was drawn using LigPlot v2.2.5 (14). ROC curves were drawn using the

pROC package. Survival curves were plotted by the survminer package.
Statistical analysis

Student t test was used for the comparison of mean differences

between two groups of data. Analysis of variance (ANOVA) was

used to compare the mean difference between multiple groups of

data. The correlation between two variables was analyzed by using

Spearman and Pearson correlation coefficient analysis for variables

with the same and different units, respectively. Differences between

survival curves were analyzed by using the log-rank test.
Results

Analysis of KEGG pathway
expression changes

A total of 84 KEGG pathways were altered in dataset GSE185263

sepsis patients compared with healthy controls at adjusted P < 0.05

(Figure 1A; Table S1). Figure 1B shows the pathways with the most

significant P value are cardiac muscle contraction (up-regulated),

vascular smooth muscle contraction (down-regulated), vascular

endothelial growth factor (VEGF) signaling pathway (down-

regulated), proteasome (up-regulated), and T cell receptor (TCR)

signaling pathway (down-regulated). The down-regulated pathways

with the highest fold change are long term potentiation (LTP), TCR

signaling, and vascular smooth muscle contraction. The most up-

regulated pathways are proteasome, cytosolic DNA sensing pathway,
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and cardiac muscle contraction. Clustering analysis showed that the

KEGG pathways had different expression patterns in sepsis and normal

subjects, and some pathways also had different expression patterns

among sepsis patients (Figure 1C). This may be related to the

heterogeneity of sepsis itself, and also suggests the existence of

different subtypes.
Differential KEGG pathways were also
identified in blood single-cell datasets

We confirmed that some of the most significant pathways were

also presented in the blood single-cell dataset, indicating the cellular

source of expression variation. Uniform Manifold Approximation and

Projection (UMAP) dimension reduction analysis showed that the

483286 blood cells were organized into 10 major clusters according to

their gene expression patterns (Figure 2A). Tregs are neighbored with

CD4+ and CD8+ T cells, indicating their potential functional

connections. Further KEGG pathways expression was analyzed in

different single-cell clusters, and several pathways were recurrently

identified as those in the bulk transcriptome analysis. These pathways

involve the immune system in CD4+ T cells, such as antigen processing

and presentation, B cell receptor signaling pathway, Fc gamma R

mediated phagocytosis, intestinal immune network for IgA production,

and TCR signaling pathway (Figure 2B). Cell-cell interaction analysis

showed that CD4+ T cell closely interacted with CD8+ T cell by MIF,

LCK, and HLA genes (Figures 2C, D). Dot plot of these genes in sepsis

single-cell data revealed the CD8+ T cell exhaustion subcluster

(Figure 2E, TS3 with high CD8+ T cell markers CD8a, CD8b, and

exhaustion markers PDCD1 and CTLA4). CD4+ T cell exhaustion
Frontiers in Immunology 03
subcluster was also observed (Figure 2E, TS2 with high CD4+ T cell

marker IL7R, and exhaustion marker CTLA4). Therefore, T cell

exhaustion is present in sepsis.
Relationship between KEGG pathway
expression and 28-day survival rate

Survival analysis of critically ill patient dataset GSE65682 showed

that the KEGG pathways are associated with survival (Figure 3). Eight

KEGG pathways expression were positively correlated with 28-day

survival, and 2 were negatively correlated. Positively related pathways

include antigen processing and presentation (down-regulation), chronic

myeloid leukemia (CML, down-regulation), cytokine-cytokine receptor

interaction (up-regulation), cytosolic DNA sensing pathway (up-

regulation), Leishmania infection, PPAR signaling pathway, primary

immunodeficiency (down-regulation) and progesterone mediated

oocyte maturation. Negatively related pathways include cardiac

muscle contraction and Vibrio cholerae infection. Among them,

Vibrio cholerae infection and PPAR signaling pathway are the two

most significant pathways, with P values less than 0.01.
Analysis of the relationship between
the KEGG pathway and immune
cell abundance

Survival analysis of critically ill patient dataset GSE65682 showed

that immune cell abundance was associated with survival (Figure 4).

Common myeloid progenitor, eosinophil, regulatory T cells (Tregs),
BA

C

FIGURE 1

Volcano, bubble plots, and Clustering heatmap of the KEGG pathway differentially expressed in blood from healthy controls and septic patients in
dataset GSE185263. (A) Volcano plot for 84 KEGG pathways altered in sepsis patients compared with healthy controls at adjusted P < 0.05. (B)
Bubble plot for the top 7 most significant differentially expressed pathways. (C) Clustering heatmap based on 84 differential KEGG pathways reveals
the heterogeneity of sepsis. The above bar indicates sample status, red: sepsis and black: healthy controls.
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FIGURE 2

Single-cell transcriptome analysis shows the KEGG pathway differentially expressed in blood from healthy controls and potential mechanisms.
(A) UMAP plot for the 11 immune cell clusters. (B) Heatmap shows some down-regulated pathways. (C) Circular plot for cell communications
between CD4+ T cell and other 10 immune cells. (D) All the significant ligand-receptor pairs that contribute to the signaling sending from CD4+ T
cell and other 10 immune cells. (E) The expression dot plot shows two sub-clusters TS3 and TS2 associated with T cell exhaustion. TS, T cell
subclusters; NS, NK cell subclusters; MS, monocyte/macrophage subclusters; MK, megakaryocyte subclusters; DS, dendritic cell (DC) subclusters; BS,
B cell subclusters.
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FIGURE 3

Survival analysis of KEGG pathway expression in severe sepsis patients based on dataset GSE65682. The red curve represents the pathway with low
expression, and the green curve represents the pathway with high expression. The P value is obtained according to the log-rank test, and the top 6
pathways with the most significant P value are displayed.
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hematopoietic stem cells, NK cells, and 28-day survival were negatively

correlated. Plasmacytoid dendritic cell, neutrophil, mast cell activated,

and 28-day survival were positively correlated. Furthermore, total

macrophages were positively correlated with 28-day survival, while

non-activated M0 and polarized M1 macrophages were negatively

correlated with 28-day survival. Correlation analysis of immune cell

abundance and KEGG pathway expression showed that the KEGG

pathway and specific immune cell abundance were significantly

correlated (Figure S1). CD4+ T cells were positively correlated with

28-day survival, and their abundance had the highest correlation with

the TCR signaling pathway (R =0.83, P <0.01), which is down-regulated

in patients with sepsis. Centriocytes were positively correlated with 28-

day survival, and their abundance was highly correlated with the Toll-

like receptor (TLR) signaling pathway (R = 0.78, P < 0.01), which was

up-regulated in sepsis patients. In addition, CD4 Th1 T cell abundance

was negatively correlated with the insulin signaling pathway (R = -0.72,

P < 0.01), with the highest negative correlation, and this pathway was

down-regulated in sepsis patients. Differential expression of twenty-two

immune cells between control and sepsis was shown in Figure S2.

T cell exhaustion plays an important role in sepsis outcomes (15;

(16). CTLA4 and PD-1, which may target TCR signaling and inhibit

functional T cell activation, are well-known marker genes in T cell

exhaustion (17). TCR signaling pathway was confirmed to be down-

regulated in sepsis with various etiologies (Figure 5A). In the cell-type

RNA-Seq dataset, we found that CTLA4 was mainly expressed on

CD4+ T cells but not CD8+ T cells, and CTLA4 was significantly up-

regulated in sepsis (Figure 5B). While PD-1 was mainly expressed on

CD8+ T cell, which was significantly up-regulated in sepsis

(Figure 5C). These data indicate the impaired adaptive immune

effector cells, including CD4+ and CD8+ T cell exhaustion in sepsis.
Frontiers in Immunology 05
Identification of DNA methylation in sepsis
blood samples

We analyzed the sepsis DNA methylation dataset and found that

no significant differential methylation probes, regions, or blocks were

detected between SIRS and healthy control. A total of 89 significant

differential methylation probes were identified between sepsis and

control (Figure 6A; Table S2). Functional analysis showed that the

corresponding genes were involved in GTPase activity regulation (P

<0.05, Figure S3). TPST1, KCNJ15, and LPP were some of the most

significant genes. LTBP1 was the only gene identified with two

significant hypomethylation probes (Figures 6B, C). LTBP1 is

associated with TGF-b signaling. Correlation analysis showed a

positive correlation between LTBP1 and TGF-b1 (Figure 6D). Cell

type gene expression analysis suggested that LTBP1 was mainly

expressed on megakaryocytes (MK) and exhausted CD8+ T cells

(TS3). TGF-b1 was mainly expressed in exhausted CD8+ T cells

(TS3) and monocytes/macrophage (MS3) (Figure 6E). Further

literature search of the 56 differentially methylated genes in

PubMed identified that at least half of the genes are associated with

T cells (Table S2). Thus, these results indicate that methylation

regulates T cell function and exhaustion.
Analysis of the relationship between the
KEGG pathway, SIRS, and sepsis

Different infection types in the dataset GSE63990 were

distinguished, and the results showed that infection types were

associated with different KEGG pathways (Figure 7). For example,
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FIGURE 4

Survival analysis of immune cell abundance in critically ill patients with sepsis based on dataset GSE65682, showing the top six immune cell types
with the most significant P values. The red curve represents the low expression of the pathway, the green curve represents the high expression of
the pathway, and the P value is obtained according to the log-rank test.
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high expression of renal cell carcinoma can distinguish bacterial

infection (AUC =0.83). High expression of Fc gamma R mediated

phagocytosis distinguishes non-infectious sepsis (AUC =0.85).

High expression of primary immunodeficiency, antigen

processing and presentation, and tyrosine metabolism distinguish

viral infections (AUCs =0.85, 0.81, and 0.80). In addition, different

infection types also have different low-expression pathways. For

example, low expression of retinol metabolism can distinguish

bacterial infection (AUC =0.82). Low expression of valine,

leucine, and isoleucine degradation or peroxisome can distinguish

non-infectious sepsis (AUCs =0.81 and 0.80). Low expression of

cardiac muscle contraction or glycerophospholipid metabolism

distinguishes viral infection (AUCs =0.84 and 0.81). Analysis of

differential pathways between viral and bacterial sepsis (Figure S4)

revealed that the five most significant pathways were primary

immunodeficiency (up-regulated in viral sepsis, P =3E-27),

antigen processing and presentation (up-regulated, P =3E-22), cell

adhesion molecules (CAMS, up-regulated, P =3E-22), intestinal

immune network for IgA production (up-regulated, P =5E-21) and

cardiac muscle contraction (down-regulated, P =9E-21).
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Analysis of the relationship between T cell
subsets and sepsis infection types

T cell subsets in sepsis with different infection status were

examined in GSE63990. By TIMER analysis we found that some

subsets of T cells were differentially expressed between bacterial and

viral sepsis. Among the seven T cell subsets, five cell subsets were

differentially expressed in viral sepsis compared to bacterial sepsis,

including up-regulated CD8+ T cell, naïve CD4+ T cell, resting memory

CD4+ T cell, Tregs, and down-regulated gamma-delta T cell (Figure 8).

To explore T cell subsets during the septic process, we compared their

changes between alive and dead patients in GSE65682. We found that

naive CD4+ T cells and gamma-delta T cells were down-regulated in

the dead patients (Figure S5A). To be more infection-type specific, we

analyzed GSE40012 which contains time serial transcriptome data of

critically ill patients with bacterial and viral infections. We found that

gamma-delta T cell was down-regulated in bacterial septic process

(Figure S5B), while Tregs was up-regulated in viral septic process

(Figure S5C, day 1 vs. day 5). To examine the effect of secondary

infection on T cell subsets, we compared the T cells of patients with
frontiersin.or
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FIGURE 5

Expression of T cell receptor (TCR) signaling pathway and related genes are altered in sepsis. (A) TCR signaling pathway is down-regulated in sepsis
with different etiology. (B) CTLA4 is mainly expressed on CD4+ T cells and is up-regulated in sepsis. (C) PD1 is mainly expressed on CD8+ T cells and
is up-regulated in sepsis. CINS: critically ill non-infected subjects.
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mixed infection and single infection. We found that Tregs were up-

regulated in the mixed infection patients compared to single infection

patients (Figure S5D), indicating the possible roles of Tregs in the

secondary infection. We also performed multivariate analysis by Cox

proportional hazards model to check the possible effect of T cell subsets

on the prognosis of patients with sepsis. In the multivariate model, we

observed that nearly all the original KEGG pathways were still

prognostic for patient survival (Table S3). In sum, T cell subsets may

play different roles in bacterial and viral sepsis.
Frontiers in Immunology 07
Screening of drugs for sepsis treatment
based on KEGG pathways

The pathways related to patient survival were submitted to the

DSigDB database to find potential drugs. As a result, 7 related drugs

were screened (Table 1). The PPAR signaling pathway was selected

to further explore the possible drug action sites. The results

show that PPARɑ Thr279 may form hydrogen bonds with

Tesaglitazar (Figure 9).
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Differentiation of SIRS, bacterial and viral sepsis using KEGG pathway expression based on dataset GSE63990.
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macrophage subclusters; MK, megakaryocyte subclusters; DS, dendritic cell (DC) subclusters; BS, B cell subclusters.
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Discussion

Sepsis is a heterogeneous disease, as diverse immune cell types

are involved and many microorganisms can cause the disease.

Current analysis of sepsis is mainly focused on single-source data.

We integrated bulk transcriptome, single-cell transcriptome, and
Frontiers in Immunology 08
methylation data to find potential disease biomarkers and

mechanisms. The integration of single-cell data is necessary as

researchers cannot discriminate which cell produces the signal in

bulk transcriptome data. Knowing the cell source of gene expression

is necessary for the studies on mechanisms and treatment (18). Due

to disease heterogeneity, the result of a single gene-based analysis
TABLE 1 Drug mining based on the seven pathways related to patient survival.

KEGG pathway Drug Odds
Ratio

Adjusted
P-value Role in T cell function

Cytosolic DNA sensing Melitten 63 2E-9 CD4 T cell activation and proliferation (PMID: 33852824)

Antigen processing and
presentation

Tanespimycin 103 3E-10 CD8 T cell exhaustion (PMID: 22949327)

Chronic myeloid leukemia Nimbolide 302 5E-18

PPAR signaling Tesaglitazar 1141 2E-22 T cell survival, activation, and CD4 T helper cell differentiation (PMID:
22382683).

Primary immunodeficiency Vincristine
sulfate

47 3E-6 T cell development, proliferation, activation (PMID: 35091087)

Cardiac muscle contraction Gabapentin 806 6E-34

Vibrio cholerae infection Vanadium 23 4E-5
FIGURE 8

Box plots showing the differential expression of seven T cell subsets in different status of sepsis. SIRS, systemic inflammatory response syndrome.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1110070
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1110070
sometimes lacks reproducibility (18). Therefore, we propose

transcriptome analysis at the pathway level to identify differential

pathways associated with sepsis. We analyzed pathways associated

with survival, the relationship between pathways, immune cells, and

the source of infection. We found T cell dysfunction in sepsis and

used the T cell exhaustion-related pathway to mine related

therapeutic drugs. This article provides useful ideas for the study

of sepsis mechanisms, diagnosis, classification, and drug treatment.

Gene set-based analysis has been reported to yield more

consistent results (19). This paper systematically analyzed the

expression of the KEGG pathway in sepsis (Table S1). The

identified differentially expressed pathways are supported by

the literature. For example, cardiac dysfunction and hypotension

are hallmarks of septic shock, which correspond to myocardial

contractions and vascular smooth muscle contractions identified

here (20). VEGF signaling is down-regulated in a rat model of

sepsis, and this is consistent with our findings (21). In severe sepsis,

protein breakdown occurs in skeletal muscle, leading to

malnutrition in the body, as well as respiratory muscle

dysfunction and pulmonary complications. This process is mainly

involved in the ubiquitin-proteasome protein degradation pathway

(22). This is consistent with the proteasome up-regulation identified

here. Apoptosis, exhaustion, and function decline of T cells can lead

to immunosuppression. Immune dysfunction is an important

reason for the high mortality of sepsis. The acquired immune

system dominated by T cells plays a key role in the late stage of

sepsis (23). This is consistent with the down-regulation of the TCR

signaling pathway found in this paper. LTP is the main molecular

mechanism underlying learning and memory, and cognitive

function and synaptic plasticity are decreased in septic mice (24).

This is consistent with the LTP down-regulation found in this

paper. Cytosolic free DNA as a danger signal is recognized by the

DNA sensor cyclic GMP-AMP synthase (cGAS) and activates

downstream signals to promote the production of type I
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interferons and other cytokines, thereby generating a

corresponding immune response (25). We found that this

pathway is up-regulated, which may be related to the

inflammatory response. Furthermore, cluster analysis revealed

intrinsic heterogeneity of the KEGG pathway in septic patients,

suggesting the complexity of the septic disease. This may be caused

by a variety of factors, such as the patient’s own genetic and

physiopathological characteristics, differences in the period of

infection, and different types of bacterial or viral infections.

Therefore, it is difficult to carry out clinical diagnosis and

treatment through a single molecule, but various factors should

be considered comprehensively, and different treatment strategies

should be formulated for patients with different characteristics.

This paper analyzed the relationship between differential KEGG

pathways and survival, and verified the importance of differential

pathways (Figure 3). Compared with healthy subjects, antigen

processing and presentation are down-regulated in sepsis patients,

but their expression is positively correlated with patient survival,

suggesting that this pathway plays a protective role in sepsis.

Antigen processing and presentation is an important component

of acquired immunity and is involved in the recognition of

pathogenic antigens (26). Sepsis is an important factor in the

death of patients with CML, and the CML pathway is down-

regulated in sepsis (27). Cytokine-cytokine receptor interaction

pathway plays a dual role in sepsis. Moderate inflammation can

fight off foreign pathogens, and excessive inflammatory response

can lead to tissue damage, organ failure, and even death (28).

Leishmania infection was considered SIRS, and its clinical

manifestations and biochemical analysis are similar to those of

sepsis (29). The PPAR signaling pathway acts on multiple links of

the inflammatory signal transcription pathway, inhibits the

inflammatory response, and thus has a certain protective effect on

sepsis (30). The clinical features of primary immunodeficiency

resemble severe sepsis, with severe cases associated with fever,
Tesaglitazar

PPAR�

FIGURE 9

Molecular docking 3D map of PPARɑ ligand-binding domain with Tesaglitazar and 2D pose view of ligand and receptor interactions.
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shock, and multiple organ failure (31). Progesterone improves

sepsis syndrome by reducing inflammatory cytokines, IL-6 and

TNF-a and by restoring the antioxidant defense system. Therefore,

progesterone may help control inflammation in sepsis, and this

pathway is up-regulated in sepsis (32). Vibrio vulnificus sepsis has a

high mortality rate (33). Therefore, related pathways can serve as

potential therapeutic targets and prognostic signals.

This paper analyzes the relationship between the KEGG pathway

and immune cell type (Figure S1). For example, CD4+ T cell

abundance has the highest correlation with the TCR signaling

pathway, which is positively correlated with 28-day survival.

Neutrophils, a type of polymorphonuclear leukocytes, are the most

abundant circulating leukocyte population in the human immune

system, accounting for 50% to 70% of all circulating leukocytes in

healthy adults. Neutropenia patients are more prone to microbial

infection (34). We found that the number of neutrophils, which is

highly positively correlated with the TLR signaling pathway, was

positively correlated with survival. Neutrophil cell abundance was up-

regulated in sepsis, suggesting its protective roles (Figure S2). We

found macrophages were associated with survival, but with opposite

directions in total and M0 or M1 macrophages, indicating that anti-

inflammatory M2macrophages may play a protective role (35). It has

been reported that macrophage polarization can induce cytokine

storm and immune paralysis, and macrophage activation can lead to

early death in sepsis (36; (37). Therefore, these cells are potential

cellular markers or targets for subtyping or risk assessment, such as

the high abundance of certain immune cells with a lower risk of

death (Figure 4).

We integrated multi-omics data to mine the potential molecular

mechanisms of sepsis. We focused on the well-known TCR

signaling pathway, which is down-regulated in sepsis (Figure 5A).

Cell level analysis identified a down-regulated abundance of T cells

(Figure S2). DNA methylation analysis revealed the differentially

methylated genes were enriched with GTPase activity (Figure S3),

which controls T cell activation (38). A recent study showed that

bacteria can exploit eukaryotic Rho GTPase signaling cascades to

promote invasion and proliferation within their host (39). Among

our identified top differentially methylated genes, TPST1 can be

induced by lipopolysaccharides (LPS) in macrophages (40).

KCNJ15 was found to be involved in bacteria clearance in

infection (41). The two genes were mainly expressed on

monocyte/macrophage (data not shown), and we found they were

hypomethylated and up-regulated in sepsis.

At present, no research has proposed a pathway that can

distinguish different types of infection, and determining the type of

infection is the prerequisite for formulating a reasonable clinical

treatment plan. The multiple pathways identified in this paper have

good performance in distinguishing bacterial, viral sepsis, and SIRS,

and some of them are also prognostic for patient survival, such as

primary immunodeficiency, antigen processing and presentation, etc

(Figure 7). The latest study found that plasma tyrosine biosynthesis

was significantly decreased in rats with acute lung injury in sepsis

(42). While we found that this pathway is up-regulated in viral sepsis,

it can be inferred that plasma tyrosine levels may serve as a promising

molecular marker for distinguishing bacterial from viral sepsis. Viral
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sepsis can cause down-regulation of cardiac muscle contraction, while

viral infections have long been associated with heart damage. These

results suggest that clinicians should formulate differential diagnoses

and treatment strategies for different subtypes/causes of sepsis to

effectively improve the treatment effect (43).

Multi-omics analysis revealed the T cell dysfunction in sepsis.

At the pathway level, we found the expression changes in pathways

of TCR signaling and antigen processing and presentation. In

single-cell analysis, we found that T cell exhaustion was present

in sepsis. In methylation analysis, several T cell-related genes were

altered, such as TNFSF8 and AKT3. In cell subtype level analysis, we

found that gamma-delta T cells and Tregs were associated with

bacterial and viral infections, and Tregs were associated with mixed

infection. Indeed, publications have reported the associations

between the gamma-delta T cells and sepsis severity (44), and the

associations of Tregs and secondary infection (45). These results

provide possible cellular targets for treatment.

Finally, we used the T cell-related KEGG pathway to mine

potential drugs and provide important information for the clinical

application of related drugs (Table 1). For example, Gabapentin is an

analog of gamma-aminobutyric acid (GABA), which has antiepileptic

and analgesic effects, but it has the effect of lowering blood pressure

and heart rate, so it may not be suitable for sepsis patients (33).

Tesaglitazar, a dual PPAR agonist with an affinity for PPARɑ/g, can
increase insulin sensitivity and is used in the treatment of type 2

diabetes. We found that insulin signaling pathway was down-

regulated in sepsis. Studies demonstrated that intensive insulin

therapy could combat insulin resistance and decrease morbidity

and mortality by modulating the proliferation, apoptosis,

differentiation, and immune functions of certain immune cells,

especially monocytes/macrophages, neutrophils, and T cells

associated with sepsis (46). While PPARg is a potential therapeutic

target for sepsis, which can regulate cell growth and differentiation,

and repress the TGFb1, which is known to play immune suppression

roles in cancer microenvironment (47; (48). Tesaglitazar can reduce

the inflammatory response and has been used for glycemic control in

burn patients (49). Interestingly, we found that LTBP1 was

hypomethylated in sepsis, which encodes an important protein for

the TGF-b1 activity regulation (47). We found a positive correlation

between LTBP1 and TGF-b1. Elevated TGF-b1 could block naïve T

cell differentiation towards a Th1 effector phenotype, and promotes

their conversion towards the Treg which suppresses antigen

presenting functions of dendritic cells (47). We found Treg is an

unfavorable predictor for sepsis survival (Figure 4). Interestingly,

TGF-b was recently found to be a main driver of T cell exhaustion

(50). We observed that exhausted T cells (TS3 subcluster) expressed

high levels of TGF-b and CD14+ macrophage expressed high levels of

TGF-b (Figure 6E), which may provide a clue for the treatment. A

feature of the COVID-19 sepsis cytokine storm is an abnormally

increased TGF-b activity (51). Various anti-TGF-b therapies should

be explored in the future. While tesaglitazar treatment in the kidney

results in a decrease in TGF-b1 mRNA (52). Therefore, tesaglitazar

may not only alleviate inflammation but also abolish T cell

suppression. Nimbolide is the main component of neem leaf

extract, commonly used in cancer treatment. The latest study finds
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it protects against endotoxin-induced ARDS by suppressing the

nitrosative-oxidative stress, inflammatory cytokines, and

chemokines expression (53). ARDS is the most common fatal

complication of sepsis, therefore, nimbolide can be a promising

candidate for sepsis treatment. Melitten is the main component of

bee venom, which can cause muscle contracture and increase blood

pressure (54). A study found that melitten has toxicity and

antibacterial effect on clinically extensively drug-resistant bacteria

(55). However, safe dose levels of melittin could not exhibit

antimicrobial activity, which hinders its application in clinical

practice. Tanespimycin, a derivative of the antibiotic geldanamycin,

is used in cancer therapy by inhibiting tumor Hsp90 expression.

Interestingly, a study finds it prolongs survival, reduces inflammation,

and reduces lung damage in mice with sepsis (56).

In conclusion, the work is the first to perform integrative

analysis of multi-omics data and to globally characterize the

expression changes of sepsis at the pathway level, providing

molecular markers and targets for diagnosis, prognosis, and

drug development.
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