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Wen-Long Zou1, Xing-Hu Zhang2 and Guang-Zhi Liu1*

1Department of Neurology, Beijing Anzhen Hospital, Capital Medical University,, Beijing, China,
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Background: Increasing evidence indicates the importance of CD8+ T cells in

autoimmune attack against CNS myelin and axon in multiple sclerosis (MS).

Previous research has also discovered that myelin-reactive T cells have memory

phenotype functions in MS patients. However, limited evidence is available

regarding the role of CD8+ memory T cell subsets in MS. This study aimed to

explore potential antigen-specific memory T cell-related biomarkers and their

association with disease activity.

Methods: The myelin oligodendrocyte glycoprotein (MOG)-specific CD8+

memory T cell subsets and their related cytokines (perforin, granzyme B,

interferon (IFN)-g) and negative co-stimulatory molecules (programmed cell

death protein 1 (PD-1), T- cell Ig and mucin domain 3 (Tim-3)) were analyzed

by flow cytometry and real-time PCR in peripheral blood of patients with

relapsing-remitting MS.

Results: We found that MS patients had elevated frequency of MOG-specific

CD8+ T cells, MOG-specific central memory T cells (TCM), MOG-specific CD8+

effector memory T cells (TEM), and MOG-specific CD8+ terminally differentiated

cells (TEMRA); elevated granzyme B expression on MOG-specific CD8+ TCM; and,

on MOG-specific CD8+ TEM, elevated granzyme B and reduced PD-1 expression.

The Expanded Disability Status Scale score (EDSS) in MS patients was correlated

with the frequency of MOG-specific CD8+ TCM, granzyme B expression in CD8+

TCM, and granzyme B and perforin expression on CD8+ TEM, but with reduced

PD-1 expression on CD8+ TEM.

Conclusion: The dysregulation of antigen-specific CD8+ memory T cell subsets,

along with the abnormal expression of their related cytokines and negative co-

stimulatory molecules, may reflect an excessive or persistent inflammatory

response induced during early stages of the illness. Our findings strongly

suggest positive regulatory roles for memory T cell populations in MS

pathogenesis, probably via molecular mimicry to trigger or promote abnormal

peripheral immune responses. Furthermore, downregulated PD-1 expression

may stimulate a positive feedback effect, promoting MS-related inflammatory
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responses via the interaction of PD-1 ligands. Therefore, these parameters are

potential serological biomarkers for predicting disease development in MS.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory

demyelinating disease of the central nervous system (CNS). The

disease frequently has a relapsing-remitting course and, in the later

phases, tends to cause irreparable and severe neurological disability.

Although its etiology remains uncertain, it is widely speculated that

autoreactive T cell responses directed against CNS myelin are

responsible for its pathogenesis (1). Importantly, several studies

have found that MS patients have different memory phenotypes of

myelin-reactive T cells.

Conventional CD4+ and CD8+ memory T cells can be divided

into CCR7+CD45RA− central memory T cel ls (TCM),

CCR7−CD45RA− effector memory T cel ls (TEM), and

CD45RA+CCR7− terminally differentiated cells (TEMRA), with

district homing and effector properties (2–4). TCM and naïve cells

home to secondary lymphoid tissues in physiological

circumstances, whereas TEM and TEMRA traffick to non-lymphoid

organs that are inflamed and exert effects such as stimulating

interferon (IFN)-g secretion and causing potent cytotoxicities.

TCM, in contrast, are longer-lived with a greater proliferative

capacity (5, 6).

Mounting evidence indicates that CD8+ T cells have a

significant role in autoimmune CNS attack in MS. CD8+ T cells

are accumulated in white matter lesions. These cells frequently

outnumber CD4+ T cells at this location, and are in a quiet

neibourhood close to oligodendrocytes and demyelinated CNS

axons (7–9), the latter of which are believed to produce early

neurological symptoms (10). CD8+ T cells are present in immune

cell infiltrates in the early phases of MS cortical demyelinating

lesions (11). Strikingly, CD8+ T cells with an effector-memory

phenotype have been found to accumulate in the MS lesions,

exhibiting inflammatory and cytotoxic potential due to enhanced

expression of granzyme B and interferon (IFN)-g (12, 13). In

parallel with these findings, we previously reported that MS
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patients display elevated CD8+CCR7+CD45RA− TCM, which tends

to decrease after treatment with the immunomodulatory agent IFN-

b1a (14). Together, these findings strongly suggest that a skewed

distribution of autoreactive CD8+ memory T-cell subsets is involved

in the disease pathogenesis, given that an increased frequency of

circulating CD4+ TEM has been demonstrated in MS patients after

specific antigen-driven stimulation. Notably, human leucocyte

antigen (HLA)-A*03:01 is associated with about a two-fold

increase in risk of developing MS—independent of HLA-DR2

(15–17).

However, further research is still required to understand the

distribution of memory T-cell subsets in the illness and the potential

contr ibut ion of abnormal T-cel l homeostas i s to the

pathophysiology of inflammation. Thus, we analyzed circulating

antigen-specific memory T-cell subsets using the pentamer, HLA-

A*03:01-RVVHLYRNGK (myelin oligodendrocyte glycoprotein

(MOG)46-55 peptide) and its related cytokines, to determine if

these cell populations are correlated with disease activity.
Patients and methods

Subjects

Twenty-four patients with definite MS (five men and 19

women; mean age 35.2 ± 5.3 years) were included. All patients

experienced relapsing-remitting MS (RRMS) and had never been

u s i n g immuno supp r e s s i v e med i c a t i on s , i n c l ud i n g

glucocorticosteroids, for more than 6 months prior to the

study. Five of these RRMS patients were chosen for serial

examination while receiving treatment with teriflunomide

(Aubagio®, Sanofi, Paris, France). Patients underwent clinical

neurological examination including expanded disability status

scale (EDSS), blood sampling before and after 2 and 4 weeks of

treatment (18).

Twenty-three patients with atherothrombotic stroke (6 men

and 17 women; mean age 36.7 ± 5.9 years) were recruited as “other

neurological diseases” (OND) controls. Twenty-four healthy

individuals participated as the healthy controls (“HC”, six men

and 18 women; mean age 35.0 ± 6.5 years). All participating subjects

were Han Chinese and tested positive for the A3 allele via HLA-A

genotyping using polymerase chain reaction (PCR) sequence-

specific primers (PCR-SSP). At the Department of Clinical

Chemistry, whole blood cell counts and leucocyte differential

analysis, were measured for patients and HC.
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Sample collection

Blood samples that had been heparinized were gathered

between 9 and 12 AM. Blood samples from teriflunomide-treated

individuals were taken before, and after 2 and 4 weeks of therapy as

part of a serial trial.
FACS-isolation of antigen-specific CD8+

memory T-cell subsets

To examine the expression of multiple cytokines (perforin,

granzyme B, IFN-g) and checkpoint receptor members

((programmed cell death protein 1 (PD-1) and T-cell Ig and

mucin domain 3 (Tim-3)) in the antigen-specific CD8+ memory

T-cell subsets, PBMCs were isolated by density gradient

centrifugation and resuspended in phosphate buffer saline (PBS)

containing 2% fetal calf serum. Thereafter, CD8+ TCM, TEM, and

TEMRA were isolated with allophycocyanin (APC)-labelled

Pro5MHC Pentamer [HLA-A*03:01 MOG46-55 pentamers-

RVVHLYRNGK] (Proimmune, Oxford, UK), phycoerythrin (PE)-

cy7-labelled anti-CCR7 (eBioscience, San Diego, CA), APC-cy7-

labelled anti-CD8 (BD Pharmingen, San Diego, CA, USA), and

peridinin chlorophyll protein (PerCP)-Cy5.5-labelled-anti-

CD45RA (Tonbo Biosciences, San Diego, CA) monoclonal

antibody (MoAb) via a flow sorter (Becton Dickinson, San Jose,

CA, USA).
Flow cytometry

Antigen-specific CD8+ memory T-cell subsets were

characterized in peripheral blood mononuclear cells (PBMCs) of

the patients and controls by assessing PD-1 and Tim-3 expression

via four-color direct fluorescence staining and flow cytometry using

a FACScan (BD Biosciences, San Jose, CA, USA). After washing

with PBS (0.5% BSA, pH 7.2), the cells were resuspended in PBS, to

a final concentration of 1 × 106 cells/mL. The following MoAb were

added to 1 × 106 cells following the manufacturer’s instructions:

APC-cy7-labelled CD8; APC-labelled Pro5 MHC Pentamer [HLA-

A*03:01 MOG46-55 pentamers-RVVHLYRNGK]; PE-cy7-labelled

anti-CCR7; PerCP-Cyanine5.5-labelled-anti-CD45RA, Super

Bright (SB)645-labelled anti-PD-1 (Thermo Fisher Scientific,

Waltham, MA, USA); SB600-labelled anti-Tim-3 (Thermo Fisher
Frontiers in Immunology 03
Scientific). After 30-min incubation at room temperature, the cells

were washed with PBS, fixed with 1% paraformaldehyde, and finally

analyzed using a FACScan.

To perform intracellular cytokine staining, 1 × 106 cells were

incubated with the Cell Stimulation Cocktail (Tonbo Bioscience) for

4–5 h at 37°C in complete RPMI. Intracellular staining with eFluor

450-labelled anti-perforin (Thermo Fisher Scientific), Brilliant

Violet (BV)510-labelled anti-granzyme B (BD Biosciences), and

BV711-labelled anti-IFN-g (BD Biosciences) MoAbs was completed

following fixation/permeabilization according the manufacturer’s

instructions (Cytofix/Cytoperm, BD Biosciences).
RNA preparation and cDNA synthesis

RNA isolation was performed using RNeasy® Mini Kit (Qiagen,

Hilden, Germany), according to standard protocol. Reverse

transcription was conducted with HiScript III 1st Strand cDNA

Synthesis Kit (Nanjing Vazyme Biotech Co. Nanjing, China) using

random hexamers and primer containing 50 µM oligio (dt). The process

was carried out at 25°C for 10 min, 48°C for 30min, and 95°C for 5 min

on a T100 PCR system (Bio-Rad Laboratories, Hercules, CA, USA).
Real-time PCR

Perforin, granzyme B, IFN-g, PD-1, and Tim-3 mRNA were

quantified using cDNA-specific primers (Sangon Biotec, Shanghai,

China) as described elsewhere (Table 1) (19, 20). Twenty-five

nanograms of cDNA and 200 nM forward and reverse primers were

added to the PCR reactions using the AceQ Universal SYBR qPCR

Master Mix (Nanjing Vazyme Biotech, Nanjing, China). b-Actin was

chosen as the endogenous control. Real-time PCRwas conducted using

an ABI PRISM 7500 sequencing detector (Applied Biosystems, Foster

City, CA, USA). Perforin, granzyme B, IFN- g, PD-1, Tim-3, and 18 S

PCR conditions were: hold at 50°C for 90 s, then 95°C for 10 min,

followed by 40 cycles at 95°C for 15 s, 60°C for 1min, and 72°C for 45 s.
Statistics

Age, disease course, EDSS, and blood leukocyte count data are

shown as means ± standard deviation. Memory T-cell subsets,

surface and intracellular expression of cytokines, PD-1, and Tim-
TABLE 1 Primers used in the study.

Gene Sense primer (5’-3’) Antisense primer (5’-3’)

Perforin GCAATGTGCATGTGTCTGTG TTACCCAGGCTGAGTACTGCT

Interferon-g GCATCGTTTTGGGTTCTCTTGGCTGTTACTGC CTCCTTTTTCGCTTCCCTGTTTTAGCTGCTGG

Granzyme B GGGGAAGCTCCATAAATGTCACCT TACACACAAGAAGGCCTCCAGAGT

PD-1 CAGGATGGTTCTTAGACTC TACCAGTTTAGCACGAAG

Tim-3 CAGATACTGGCTAAATGGG CTTGGCTGGTTTGATGAC

b-actin ATCTGGCACCACACCTTCTACATTGAGCTGCG CGTCATACTCCTGCTTGCTGATCCACATCTGC
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3 mRNA data are shown as medians with range. Categorical

variables (sex) are expressed as percentages. Normal distribution

data were analyzed using one-way ANOVA or a Pearson correlation

test. Non-normal distribution data were analyzed using Kruskal-

Wallis analysis or a Spearman correlation test. Categorical variables

were analyzed utilizing a chi-square test. Receiver operating

characteristic (ROC) curve analysis was conducted for

quant i tat ive MOG-specific CD8+ TCM, MOG-specific

CD8+granzyme-B+ TCM or TEM, MOG-specific CD8+perforin+

TEM, and MOG-specific CD8+ PD-1+ TEM frequency, followed by

the calculation of area under the ROC curve (AUC). P < 0.05 was

deemed statistically significant.
Results

Clinical and laboratory data

Table 2 shows the clinical and laboratory data gathered from

patients during blood sampling. There were no remarkable

differences among the three groups.
Memory T-cell subsets

Table 3 shows the comparison of MOG-specific CD8+ T cells,

naïve T cells and memory T cell subsets in peripheral blood between

patients with MS,OND and HC.

MS Patients had an increased proportion of MOG-specific

CD8+ T cells, MOG-specific CD8+ TCM (HLA-A*03:01/MOG46-55

pentamers+CCR7+CD45RA−), MOG-specific CD8+ TEM

(HLA-A*03:01/MOG46-55 pentamers+CCR7−CD45RA−), and

MOG-spec ific CD8+ TEMRA (HLA-A*03:01/MOG46-55

pentamers+CCR7−CD45RA+) compared to OND patients and HC

via FACScan (Figure 1). In contrast, MS patients had a lower
Frontiers in Immunology 04
proportion of MOG-specific naive CD8+ T cells either OND

patients or HC. After 2 and 4 weeks of therapy, five MS patients

showed a tendency for a gradual decrease in MOG-specific CD8+

TCM and TEM (Figures 2B, C), while the remaining cell subsets

displayed minor or irregular alternations (Figures 2A, D).
Intracellular expression of perforin,
granzyme B and IFN-g, and surface
expression of PD-1 and Tim-3

MS patients demonstrated elevated expression of granzyme B,

and reduced expression of PD-1, on MOG-specific CD8+ TEM,

compared to HC (Figures 3A, D), as well as increased expression of

granzyme B on MOG-specific CD8+ TCM, when compared with HC

(Figure 3F). Although there was a slight increase in perforin

expression, no marked differences were found between these three

groups (Figures 3C, H). OND patients demonstrated slightly higher

expression of Tim-3 on MOG-specific CD8+ TEM and CD8+ TCM

than HC, but did not reach statistical significance (Figures 3E, J).

However, we did not measure the above cytokines or PD-1 and

Tim-3 on CD8+ TEMRA, owing to the extremely low proportion of

this cell population in peripheral blood. Five MS patients treated

with teriflunomide exhibited a continuous increase in PD-1

expression on MOG-specific CD8+ TEM after 2- and 4-weeks

therapy (Figure 4D), while the expression of the remaining

cytokines or co-stimulatory molecules presented slight or

irregular changes (Figures 4A-C, E-J).
Quantification of perforin, granzyme B,
IFN-g, PD-1, and Tim-3 mRNA expression

Of the isolated CD8+ memory T cell subsets, MOG-specific

CD8+ TEM exhibited lower PD-1 and Tim-3 mRNA expression in
TABLE 2 Baseline characteristics of patients with multiple sclerosis (MS), other neurological disease (OND), and healthy controls (HC).

MS
(n=24)

OND
(n=23)

HC
(n=24)

P value

Age (years) 35.2 ± 5.3 36.7 ± 5.9 35.0 ± 6.5 0.533

Sex (male / female) 15/19 16/17 16/18 0.904

Disease course (years) 2.5 ± 1.3 – – –

EDSS 1.9 ± 1.4 – – –

HLA-A*03:01 [n (%)] 24 (100%) 23 (100%) 24 (100%) 0.999

Leukocyte (× 103/ml) 5.70 ± 1.75 6.72 ± 1.62 6.53 ± 1.56 0.086

Neutrophils (× 103/ml) 3.76 ± 1.28 4.39 ± 1.08 4.36 ± 1.44 0.162

Lymphocytes (× 103/ml) 1.63 ± 0.54 1.62 ± 0.61 1.84 ± 0.48 0.298

Monocytes (× 103/ml) 0.35 ± 0.08 0.41 ± 0.11 0.39 ± 0.13 0.101

Eosinophils (× 103/ml) 0.07 ± 0.51 0.18 ± 0.14 0.11 ± 0.08 0.201

Basophils (× 103/ml) 0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.092
fron
Data are mean ± SD. EDSS, The Expanded Disability Status Scale.
tiersin.org

https://doi.org/10.3389/fimmu.2023.1110672
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1110672
MS patients than in HC, while PD-1 expression did not differ

significantly between MS and OND patients (Figures 5D, E). MS

patients displayed significantly higher mRNA expression of

granzyme B in MOG-specific CD8+ TCM than OND patients and

HC (Figure 5F). However, no significant difference in above

proinflammatory cytokines or PD-1 and Tim-3 mRNA expression

in TEMRA were found between MS patients and control groups.
ROC of selected MOG-specific CD8+ T-
cell subsets as well as their expression of
cytokines and PD-1

ROC curves were generated to calculate the AUC on the basis of

the optimal cut-off value, as well as maximum sensitivity and

specificity. For the MOG-specific CD8+ TCM proportion, AUC

was 0.9089 (optimal threshold cutoff, 6.65%; sensitivity, 91.67%;

and specificity, 75%); for MOG-specific CD8+granzyme-B+ TCM,
Frontiers in Immunology 05
AUC was 0.6528 (optimal threshold cutoff, 7.605%; sensitivity,

66.67%; specificity, 75%); for MOG-specific CD8+granzyme-B+

TEM, AUC was 0.691 (optimal threshold cut-off, 4.364%;

sensitivity, 100%; specificity, 29.17%); for MOG-specific

CD8+perforin+ TEM, AUC was 0.678% (optimal threshold cutoff,

0.5885%; sensitivity, 58.33%; specificity, 87.5%); for MOG-specific

CD8+ PD-1+ TEM, AUC was 0.6918 (optimal threshold cutoff,

0.0415%, sensitivity 75%, specificity, 70.83%) (Figure 6).
Correlation analysis

In MS patients, EDSS score before treatment was correlated

with the frequency of MOG-specific CD8+ TCM (r = 0.421, P =

0.041); granzyme B expression in CD8+ TCM (r = 0.507, P = 0.012);

and, for CD8+ TEM, the expression of granzyme B (r = 0.512, P =

0.01), perforin (r = 0.446, P = 0.029), and PD-1 (r = −0.520, P =

0.009). EDSS score after treatment of teriflunomide was correlated
FIGURE 1

Region 1 (R1) was selected to set the mononuclear cell gate according to the forward light scatter (FSC) and side light scatter (SSC) properties.
Region 2 (R2) was used to set the second gate, to separate MOG-specific CD8+ T cells for analysis of memory T cell subsets. Regions 3, 4, and 5
(R3–R5) were selected to set the central memory T cell (TCM), effector memory T cell (TEM) and terminally differentiated cell (TEMRA) gates,
respectively, for perforin, granzyme B, interferon (IFN)-g, programmed cell death protein 1 (PD-1), and T- cell Ig and mucin domain 3 (Tim-3)
analysis.
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with the frequency of MOG-specific CD8+ TEM (r = 0.975, P =

0.033). Moreover, EDSS score after 4 weeks of treatment with

teriflunomide was correlated with the granzyme B expression in

MOG-specific CD8+ TEM (r = 0.975, P = 0.033).
Discussion

To the best of our knowledge, this is the first human-based

research utilizing MHC pentamers to identify myelin antigen-

specific CD8+ T cells and their memory T cell subsets in MS

patients. As a result, MS patients had higher frequency of MOG-

specific CD8+ T cells, MOG-specific CD8+ TCM, MOG-specific

CD8+ TEM, and MOG-specific CD8+ TEMRA, in contrast to a

lower frequency of MOG-specific naïve CD8+ T cells; elevated

granzyme B expression on MOG-specific CD8+ TCM; and, on

MOG-specific CD8+ TEM, elevated granzyme B and reduced PD-1

expression. In MS patients, EDSS was correlated with the frequency

of MOG-specific CD8+ TCM, granzyme B expression in CD8+ TCM,

and granzyme-B and perforin expression on CD8+ TEM, but with

reduced PD-1 expression on CD8+ TEM.

Our results indicate that MS patients have a skewed distribution

of antigen-specific CD8+ memory T cell subsets, with more TCM,

TEM, and TEMRA, and fewer naive CD8+ T cells, than HC. These
Frontiers in Immunology 06
findings validate the derangement of these cell populations during

the inflammatory process in MS. Together with our previous report

revealing elevated IL-15 release into circulation (14), our current

findings suggest that the differentiation of naïve cells is what causes

the rise in CD8+ TCM and TEM because IL-15 is generally

considered a central regulator of primary and memory antigen-

specific CD8+ T cell production (21, 22). Interestingly, patients with

atherosclerotic stroke and HC do not differ in the frequency of

antigen-specific CD8+ T cells and their memory T cell subsets, since

the former category of patients exhibits CD4+ memory T cells and

CD8+ T cells in the atherosclerotic tissue from their carotid arteries

(23). Hence, further research is required to elucidate this.

Several sphingosine 1-phosphate (S1P1) receptor antagonists,

such as fingolimod (FTY720), have been commonly used for the

treatment of RRMS; these antagonists selectively retain CCR7+

naïve T cells and TCM, and particularly autoreactive Th17 cells,

within the secondary lymphoid organs (24–26). Nonetheless, the

exact role of CD8+ T cell subsets such as TCM and TEM in MS

remains elusive. However, in our recently published pilot study,

adoptive transfer of autoreactive CD8+ TCM into Rag-1−/− mice

failed to induce EAE symptoms or EAE-related pathology (27).

Notably, a lower proportion of memory CD8+ T cell subsets

(particularly effector memory and TEMRA) has been observed in

patients with untreated RRMS than in HC, probably due to inherent
B C DA

FIGURE 2

Serial study of the MOG-specific memory T-cell subsets (A–D) in the peripheral blood from five patients with multiple sclerosis (MS) before and after
14 d and 28 d of treatment with teriflunomide.
A B C D E

F G H I J

FIGURE 3

Peripheral blood expression of perforin, granzyme B, interferon (IFN)-g, programmed cell death protein 1 (PD-1), and T- cell Ig and mucin domain 3
(Tim-3) on MOG-specific CD8+ effector memory T cells (TEM) (A–E) and CD8+ central memory T cells (TCM) (F–J), in patients with multiple
sclerosis (MS), those with other neurological disease (OND), and healthy controls (HC). Horizontal lines: medians. * P < 0.05, ** P < 0.01.
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( i . e . , genet i ca l ly de termined) de fec t s ra ther than a

pathophysiological effect of MS (28, 29). In our experiments,

despite an irregular change in total MOG-specific CD8+ T cells in

MS patients, MOG-specific CD8+ TCM and CD8+ TEM exhibited a

decreasing trend at 14 and 28 d post-treatment with teriflunomide,

a well-known immunosuppressant agent (30). Together with a
Frontiers in Immunology 07
recent MS study revealing markedly lower IFN-g and tumor

necrosis factor-a levels on TEMRA and TEM following 12 months

of teriflunomide use (31), our results indicate that these cell

populations play a positive regulatory role in disease

pathogenesis, presumably via a mechanism of molecular mimicry

to trigger or promote abnormal peripheral immune responses and,
B C D E

F G H I J

A

FIGURE 4

Serial analysis of perforin, granzyme B, interferon (IFN)-g, programmed cell death protein 1 (PD-1), and T- cell Ig and mucin domain 3 (Tim-3) on
MOG-specific CD8+ central memory T cells (TCM) and CD8+ effector memory T cells (TEM) in the peripheral blood of five patients with multiple
sclerosis (MS) before and after 14 d and 28 d of treatment with teriflunomide (A–J).
B C D E

F G H I J

K L M N O

A

FIGURE 5

Peripheral blood mRNA expression of granzyme B, interferon (IFN)-g, perforin, PD1, and TIM3 on CD8+ effector memory T cells (TEM) (A–E), CD8+
central memory T cells (TCM) (F–J), and terminally differentiated cells (TEMRA) (K–O), in patients with multiple sclerosis (MS), those with other
neurological disease (OND), and healthy controls (HC). Horizontal lines: medians.
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consequently, aggravate neuroinflammation, and myelin and

axonal damage in the brain. The positive correlations that we

observed here between disease severity and the frequencies of

MOG-specific CD8+ TCM and MOG-specific CD8+ granzyme B+

TCM or TEM further support this view. More importantly, these

markers are potentially valuable in defining RRMS and secondary

progressive MS (SPMS), because growing evidence suggests the

involvement of distinct memory T cell subsets in different forms of

MS and/or at different disease stages (29, 32, 33).

As negative co-stimulatory molecules, Tim-3 and PD-1 are

expressed on the cell surface and negatively modulate the

immune response; their signaling impairs functional activities of

CD8+ T cell, eventually leading to CD8+ T cell exhaustion,

particularly in chronic viral infection and tumors (34, 35). Co-

expression of Tim-3 and PD-1 are characteristic of the most

severely exhausted CD8+ T cell subset (36, 37). Blockade of Tim-

3 and PD-1 pathway can reverse this exhaustion and rescue the T-

cell function (38, 39). However, it is difficult to determine their

function on CD8 + T cells, since TIM-3 is implicated in both T cell

exhaustion and activation (35, 40–44). Here, MS patients showed a

significant reduction in PD-1 and slight reduction in Tim-3 surface

expression on MOG-specific CD8+ TEM, compared to HC. This

suggests that the molecule dysregulation in CD8+ memory T cells

might be more prevalent in CD8+ TEM than in CD8+ TCM.

However, these results should be interpreted with caution,

because the expression of PD-1 and Tim-3 are insufficient to

define the function of CD8+ T cells in the absence of their
Frontiers in Immunology 08
ligands. Nevertheless, more efforts are needed to explore their

expression as well as the effects of these two costimulatory

pathways on CD8+ T cells in our future study.

The reduced PD-1 and Tim-3 mRNA expression in MOG-

specific CD8+ TEM that we observed in MS patients further

substantiates our findings. Consistent with our results, a

previous study (45) reported that CD4+ and CD8+ T cells

stimulated by myelin basic protein demonstrated significantly

higher PD-1-positive cell frequency in stable than in acute MS.

Tim-3 activation, on the other hand, stimulates the formation of

effector T cells as evidenced by the acquisition of an activated

effector phenotype, elevated cytokine secretion, higher

proliferative activities, and a transcription program linked

with the differentiation of human antigen-specific CD8 T cells

(42). Indeed, there was a trend towards increased expression of

PD-1 on CD8+ TEM during 4 weeks of treatment with

teriflunomide. Taken together, these findings for MS suggest

aberrant PD-1 and Tim-3 co-stimulation in CD8+ TEM rather

than in CD8+ TCM. PD-1 may reduce the inflammation caused

by local cell–cell interactions, by halting co-stimulation of the

host immune cells such as lymphocytes, or by suppressing

apoptotic signaling via interaction with PD-1 ligands (40, 46).

Tim-3 may exer t complex regula tory effec ts on the

immunoactivity of CD8+ memory T cell subsets in different

stages of MS. Together with our ROC analysis of abnormal

antigen-specific memory T cell subsets, our findings strongly

suggest that dysregulated PD-1 and Tim-3 co-stimulation are

implicated in MS pathogenesis, and may therefore be useful for

assessing disease severity.
Conclusion

In conclusion, in MS patients, we observed remarkable

upregulation of antigen-specific CD8+ TEM, TEMRA and TCM,

with elevated intracellular expression of granzyme B and

reduced expression of PD-1 in MOG-specific CD8+ TEM. This

may implicate a persistent chronic CD8+ memory T cell-mediated

inflammatory response, potentially induced in the early stages of

this disorder. More strikingly, MS severity was at least partially

reflected in the elevated MOG-specific CD8+ TCM frequency and

granzyme B and perforin expression, and reduced PD-1

expression. These are therefore potential serological biomarkers
FIGURE 6

Receiver operating characteristic (ROC) curve analysis, in patients
with multiple sclerosis (MS), of the frequency of MOG-specific CD8+

central memory T cells (TCM), MOG-specific CD8+granzyme-B+ TCM
or effector memory T cells (TEM), MOG-specific CD8+perforin+ TEM,
and MOG-specific CD8+ PD-1+ TEM.
TABLE 3 Comparison of MOG-specific CD8+ T cells and memory T cell subsets in peripheral blood between patients with multiple sclerosis (MS),
other neurological disease (OND) and healthy controls (HC).

Total CD8+ (%) Naïve (%) TCM (%) TEM (%) TEMRA (%)

MS (n=24) 0.21 (0.12,0.37) **ΔΔ 16.7(5.46,35.30)*Δ 11.95 (9.38,13.88) **ΔΔ 37.0 (25.33,44.98) **ΔΔ 0.25 (0,4.22) **ΔΔ

OND (n=23) 0.09 (0.03,0.11) 32.40(25.0,46.60) 3.14 (1.63,4.81) 12.30 (7.60, 28.60) 0 (0,0)

HC (n=24) 0.04 (0,0.1) 30.15(21.18,48.35) 4.65 (3.40,7.65) 10.90 (4.48,21.38) 0 (0,0)

P value <0.0001 0.0184 <0.0001 <0.0001 0.0018
Data are median with range. **p < 0.01 or *p < 0.05 for post hoc comparison with HC; ΔΔp < 0.01 or Δp < 0.05 for post hoc comparison with OND group. TCM, central memory T cells;
TEM, effector memory T cells; TEMRA, terminally differentiated cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1110672
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1110672
for predicting the development of MS. Nevertheless, further

studies, such as those with a prospective cohort design, are

required. Given that other disorders (e.g., oncological

malignancies) also demonstrate dysregulated CD8+ memory T

cells, it is necessary to evaluate their specificity, sensitivity,

cytotoxicity, and negative co-stimulation to demonstrate

whether these markers might be specific for MS. Other issues

should be addressed, such as their prognostic vs. non-prognostic

value in predicting acute episodes in patients diagnosed as

clinically isolated syndrome (CIS). Our findings strongly suggest

positive regulatory roles for memory T cell populations in MS

pathogenesis, probably via molecular mimicry to trigger or

promote abnormal peripheral immune responses. Furthermore,

downregulated PD-1 expression may stimulate a positive feedback

effect, promoting MS-related inflammatory responses via the

interaction of its ligands (PDL1), although the expression of

PD-1 is not sufficient to define the function of CD8+ T cells in

the absence of its ligand. Our discovery of antigen-specific CD8+ T

cell subsets and PD-1 expression in MS paves the way for

identifying potential MS biomarkers and, more importantly, for

exploring a novel treatment approach against this disease through

intervention in the PD-1–PDL1 pathway.
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