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Computer-aided classification of
indirect immunofluorescence
patterns on esophagus and split
skin for the detection of
autoimmune dermatoses
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Autoimmune bullous dermatoses (AIBD) are rare diseases that affect human skin

and mucous membranes. Clinically, they are characterized by blister formation

and/or erosions. Depending on the structures involved and the depth of blister

formation, they are grouped into pemphigus diseases, pemphigoid diseases, and

dermatitis herpetiformis. Classification of AIBD into their sub-entities is crucial to

guide treatment decisions. One of the most sensitive screening methods for

initial differentiation of AIBD is the indirect immunofluorescence (IIF) microscopy

on tissue sections of monkey esophagus and primate salt-split skin, which are

used to detect disease-specific autoantibodies. Interpretation of IIF patterns

requires a detailed examination of the image by trained professionals automating

this process is a challenging task with these highly complex tissue substrates, but

offers the great advantage of an objective result. Here, we present computer-

aided classification of esophagus and salt-split skin IIF images. We show how

deep networks can be adapted to the specifics and challenges of IIF image

analysis by incorporating segmentation of relevant regions into the prediction

process, and demonstrate their high accuracy. Using this semi-automatic

extension can reduce the workload of professionals when reading tissue

sections in IIF testing. Furthermore, these results on highly complex tissue

sections show that further integration of semi-automated workflows into the

daily workflow of diagnostic laboratories is promising.
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1 Introduction

Autoimmune bullous diseases (AIBD) are a highly heterogenous

group of autoantibody-driven diseases in which autoantibodies against

various proteins of the desmosomes and basement membrane zone

(BMZ) of the skin and surface epithelia (1–5). Depending on the

antigens involved, blister formation either occurs intra-epidermally in

pemphigus diseases or sub-epidermally in pemphigoid diseases.

Deciphering the affected structures in this heterogeneous group of

disorders is essential for both prognosis and treatment, as

immunosuppressive therapy varies according to disease entity. Initial

differentiation can be achieved by indirect immunofluorescence (IIF)

microscopy onmonkey esophagus for pemphigus diseases and primate

salt-split skin for pemphigoid diseases as the most sensitive screening

methods for autoimmune bullous diseases (6, 7). IIF on monkey

esophagus can detect circulating autoantibodies against the epithelial

and endomysial autoantigens. IIF on primate salt-split skin

discriminates autoantibodies against the BMZ. Additional testing

with, for example, recombinant desmoglein 1 (DSG1), DSG3, BP180

(type XVII collagen), BP230, laminin 332, type VII collagen, and

deamidated gliadin peptides by IIF, enzyme-linked immunosorbent

assay (ELISA), or immunoblot analysis (2–4, 8) can be performed to

identify target antigens.

Previously, BIOCHIP® mosaics have been developed that allow

the simultaneous detection of different autoantibody specificities on

a routine laboratory slide by placing multiple miniature so-called

biochips in a single incubation field. In addition to recombinant

proteins such as BP180 NC16A and cells recombinantly expressing

DSG1, DSG3, BP230, type VII collagen, and laminin 332, tissue

substrates such as monkey esophagus and primate salt-split skin can
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also be used (6, 9–11). The BIOCHIP® technology is increasingly

used for routine diagnostics of autoimmune blistering diseases

(AIBD) (12–22).

Circulating autoantibodies in pemphigus characteristically bind

to the epithelium of esophagus in an intercellular pattern (Figure 1A).

The pattern is seen as smooth linear fluorescence along the borders of

the epithelial cells with a mesh-like appearance. The presented

algorithm maps this pattern as ‘Intercellular’. Anti-BMZ reactivity

in pemphigoid diseases, e.g. directed against BP180, BP230 or type

VII collagen can also be visualized in this substrate (Figure 1B)

revealing to a smooth linear fluorescence along the BMZ. This pattern

is subsequently referred to as ‘BMZ’ pattern. Furthermore, in celiac

disease and dermatitis herpetiformis, IgA autoantibodies label the

endomysium in a characteristic pattern (11) which appears as a

honeycombed pattern within the lamina muscularis mucosae. Here,

we focused on ‘Intercellular’ and ‘BMZ’ pattern and as such

endomysial pattern is not reported. In the diagnosis of AIBDs,

other histopathological regions of the esophagus are not relevant.

Separating dermis and epidermis of primate skin with 1M NaCl

results in split formation within the lamina lucida, which allows

differentiation between two linear IF patterns in pemphigoid diseases.

Antibodies against BP180, BP230, and a6b4 integrin stain along the

epidermal side of the artificial split (Figure 1C). For the computer-

generated outputs, we refer to this binding as ‘epidermal’. In contrast,

autoantibodies against the p200 antigen, laminin g1, laminin 332, and

type VII collagen bind along the dermal side (23), a pattern that is

referred to as “dermal” in this manuscript (Figure 1D). In areas where

the tissue is still connected, linear fluorescence is seen.

Reading IIF patterns is done by visual evaluation of microscope

images and is not standardized. Hence, the results strongly depend
D

A B

C

FIGURE 1

Exemplary immunofluorescence images of the incubated substrates esophagus and salt-split skin. The ‘intercellular’ pattern seen by intercellular
labelling of monkey esophagus in pemphigus vulgaris/foliaceus is shown in (A). In (B), the basal membrane zone (‘BMZ’) pattern typical for
pemphigoid diseases is indicated. The patterns found in salt-split skin are ‘epidermal’ (C) and ‘dermal’ (D). They arise by binding of autoantibodies in
pemphigoid patients to the epidermal or dermal side of the artificial split.
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on the practical experience of the professional and are subjective.

The high variance in the appearance of tissue segments complicates

the evaluation leading to an undesirably high variability of the

results. Computer-aided evaluation of IIF became popular both

because of the automated workflow and more standardized

objective evaluation of IIF (24–26). Computer-aided diagnostics

rapidly evolved as deep learning became a state-of-the-art method

for computer vision tasks. Deep learning enables the solution of

complex tasks such as image segmentation (27), object detection

(28, 29), and image classification (30). In the medical field, deep

learning has been successfully used for the detection of skin cancer

(31), lung nodules (32), and diabetic retinopathy (33).

Here, we show how deep learning can be used for computer-

aided evaluation of IIF images of highly complex tissue substrates.

The images are from slides containing millimeter-sized fragments

of coated cover glasses with biological substrates called biochips

(EUROIMMUN Medizinische Labordiagnostika AG, Lübeck,

Germany). The primary esophagus and primate salt-split skin

each cover large areas of the biochip, while only small structures

on specific parts of the tissue are decisive for the classification result.

Standard deep networks are not suitable for processing these images

due to limitations in computer memory and the number of images

available for training. We describe two architectures, both of which

use segmentation to aid the training process of a classification

network. We demonstrate their effectiveness on real data acquired

with a EUROPattern® Microscope (EPM) 1.5 microscope

(EUROIMMUN) by comparing their outputs with the results of

visual evaluation of the same images by a professional.

In the present study, we would also commemorate Detlef Zillikens,

director and chair of the Department of Dermatology, University of

Lübeck, Lübeck, Germany. Detlef passed away in September 2022 after

short and severe disease. He has been one of the leading clinician

scientists in the field of AIBD who authored more than 600 articles on

this subject. Detlef Zillikens has inspired, motivated, and mentored

numerous colleagues including N.v.B. and E.S. E.S. was amongst his

first students performing his medical thesis about the presence of

inflammatory mediators in sera and blister fluids of bullous

pemphigoid patients compared to sera and suction blisters of healthy

volunteers in 1993 (34–37). This fruitful and passionate cooperation

has been functional for 25 years bringing to light more than 250 articles

and book chapters about AIBD. N.v.B. and E.S. are greatly indebted to

Detlef Zillikens and thankful for his wise, winning, and kindmentoring

and his friendship. All authors are sad and affected about the early

death of this exceptional clinician and researcher.

Overall, we present classifiers for the detection and analysis of

these IIF patterns. In addition to the classification of circulating

antibodies as positive or negative, a brightness score is also returned

for titer estimation.
2 Materials and methods

2.1 Human sera

Serum samples from patients were collected for routine

diagnostic analysis by the Immunological Laboratory (Lübeck,
Frontiers in Immunology 03
Germany) and the Department of Dermatology, University of

Lübeck. Samples were anonymized for analysis and stored at -20°C

until use. Left-over patient samples were used for this study after

completion of all diagnostic procedures. Serum samples from healthy

blood donors served as controls. The study performed in accordance

with the ethical guideline stated in the Declaration of Helsinki and

positively evaluated by the ethics committee of the University of

Lübeck (12–178).
2.2 Salt-split skin and esophagus dataset

Data were acquired using the EUROPattern® Suite

(EUROIMMUN), a system of hardware and software components

for computer-aided IIF. Images were acquired using an EPM 1.5

microscope at 10x magnification. To picture an entire biochip, four

images are combined. This results in images with slightly varying

sizes of about 4,500 x 3,400 pixels.

To generate the training dataset, the biochips were incubated at

various dilutions from 1:10 to 1:10,000 to ensure distinction of weak

patterns for AIBD from negative samples. The salt-split skin training

set consisted of 3,428 images, of which 1,040 images showed a

positive reaction in epidermal tissue and 326 showed a positive

reaction in dermal tissue. 2,076 of these images showed no positive

reaction. The esophagus dataset consisted of 7,022 training images

with 1,399 images with intercellular reactivity in the epithelium, 2,539

with anti-BMZ reactivity, and 3,166 images with no or unspecific

reactions. The dataset also contained images with patterns caused by

a variety of confounder antibodies (e.g., antinuclear antibodies), not

associated with AIBD resulting in images with multiple patterns.

To generate the validation dataset, 110 patient samples were

incubated at 1:10, 1:32, and 1:100 dilutions to test for correct

assignment including weak specific patterns, resulting in three images

of esophagus and salt-split skin per patient. For the 52 samples from

healthy controls, only a 1:10 dilution was incubated, resulting in one

image of esophagus and salt-split skin per control. For the validation

dataset, 26 patients with serologically tested epidermal binding to salt-

split skin and 8 patients with serologically tested dermal binding were

used. 30 patients with serologically tested bullous pemphigoid showed

linear binding at the BMZ on monkey esophagus, and 20 patients with

serologically tested pemphigus vulgaris/foliaceus stained monkey

epithelium with an intercellular pattern. One patient reacted

positively to both epidermal BMZ and epithelial desmosomes. In

addition, 52 substrates with no or with unspecific reactivity were

used, incubated with sera from control subjects or patients with, for

example, pemphigus on salt-split primate skin.

The collected training and validation data were read manually

by IF professionals. The readers were medical technicians with at

least 5 years of experience in reading IF tests including monkey

esophagus and salt-split skin.
2.3 Salt-split skin algorithm

The number of salt-split skin images for the training dataset and

the memory required to process images of a given size with a deep
frontiersin.org
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network is limited. In addition, generalization to unseen data is

difficult to achieve due to the large number of parameters needed in

a suitable network. Therefore, we chose to first identify relevant

subregions of the image and then analyze only those subregions.

This approach addresses both memory requirements and

generalization. The algorithm includes multiple steps of image

processing (Figure 2). First, the image is segmented to identify the

relevant subregions of the tissue. Based on the segmented regions,

lines of attention are computed. Image patches are sampled along

these lines and then processed individually by a deep neural

network. The individual outputs are aggregated to obtain the

final result.

Only the green channel is used for segmentation. The image is

downscaled to a resolution of 512 x 512 pixels and then fed into a U-

Net type deep network for segmentation. This type of network is

known to work well in segmenting microscopy images (27). Here,

we used a Fusion-Net, which incorporates recent developments in

deep learning and further improves performance (38). The

individual outputs are divided into roof (epidermal), floor

(dermal), interspace, and background. Here, the interspace is the

empty area between the roof and the floor.

The attention regions are then computed. The image content

relevant for analysis is located along these attention lines. They are

computed from the overlap of the segmented areas expanded by

dilation (DIL) (Figure 2) by a disc of 3 pixels in diameter. The

extended roof (R), floor (F) and interspace (I) subregions are

interpreted as sets in the following. The lines L on the epidermal

(LRoof) and dermal (LFloor) substrate are computed as

 LRoof = DIL(R) ∩​ (DIL(F) ∪​ DIL(I)),

LFloor = DIL(F) ∩​ (DIL(R) ∪​ DIL(I)) :

To focus on the relevant image content, image patches of size 64

x 64 pixels are extracted along the attention lines. They are taken

from a downscaled version of the original image with a size of 2,048

x 2,048 pixels. To achieve a uniform distribution of the patches

along the lines, Poisson disc sampling is used (39). For each line, 40

patches are extracted. The following inference steps are performed

separately for roof and floor.

Each patch is then processed separately by a deep neural

network to obtain local results (Figure 3). This is a very small
Frontiers in Immunology 04
network with only a few layers, so only a few parameters need to

be optimized. The network has two outputs: a probability for a

label and a brightness score for roof or floor. The label values are

‘positive’, ‘negative’, ‘background’, or ‘unclear’. The ‘unclear’

label is needed because not all sections along the attention lines

provide the information needed for classification. The

‘background’ label was only used during training to indicate

empty patches.

Finally, the labels of the patches are aggregated to obtain a result

for the entire attention line and thus for the entire image. Every

patch xi is processed by a deep network f. For every index i∈N the

network returns ‘negative’ as the label with the highest probability.

Accordingly, i∈P if ‘positive’ is the label with highest probability.

The other labels ‘background’ and ‘unclear’ are ignored during

aggregation. Therefore, these regions do not influence the result.

The result y∈[0,1] is given by

y =
1 + ypos − yneg

2
 ,  where   yneg =

oi∈Nf (xi)

Nj j ,   ypos =
oi  ∈Pf (xi)

Pj j :

The brightness b∈R is obtained from the mean of the three

samples P3 with the highest probability value for the label ‘positive’:

b = oi  ∈P3
bi, 

P3j j :

These brightness scores are then combined for images of

different dilutions to estimate the titer.

2.3.1 Training of the salt-split skin
neural networks

Both the segmentation network and the network for processing

patches were optimized using adaptive moment estimation

(ADAM) (40). For the segmentation network, a generalized dice

loss (41) was used due to its robustness to imbalanced region sizes.

The patch analysis network has two outputs, containing

classification and regression output. Cross entropy was used to

derive the classification output, and mean squared error was used to

derive the regression output. Both were weighted equally. Separate

analysis networks were trained for roof and floor to achieve a better

adaption to the pattern features. In total, there are three networks:

one for segmentation, one for the analysis of the roof, and one for

the analysis of the floor.
FIGURE 2

Overview of the steps for processing salt-split skin images. Segmentation is used to identify relevant parts of the image. Samples of these subregions
are then analyzed via deep networks and the results are aggregated. This approach ensures low memory requirements and good generalization.
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Several augmentations were applied to improve the

generalization of these networks. When training the segmentation

network, flip and rotation were applied to the entire image. For the

analysis networks, the used augmentations flip and Gaussian noise

were applied only to the patches.

As mentioned earlier, when training the analysis networks,

empty patches are labeled as ‘background’ for technical reasons. It

is easier to train the networks with a fixed number of patches per

image, but since the size of the salt-split skin segment varies, the

number of extracted patches also varies. Therefore, a fixed, generous

number of patches is assumed for each image, and missing patches

are inserted as empty ones.
2.4 Esophagus algorithms

For the diagnosis of AIBDs, the detection of circulating

autoantibodies against epidermal/epithelial antigens is

essential. Monkey esophagus is the most sensitive tissue

substrate for serum autoantibodies in pemphigus vulgaris/

foliaceus. In pemphigoid diseases, autoantibodies label the

BMZ of monkey esophagus, but with a lower sensitivity

compared with primate salt-split skin (15, 42–45). The

algorithm for classification of the immunofluorescence (IF)

patterns on esophagus tissue is divided into two subtasks.

The first task is to localize and segment the tissue segments in

the image. An adapted version of the U-Net model (27) is trained on

an esophagus dataset containing image pairs of IF images and

segmentation ground truth images. The segmentation images

consist of seven segments representing the esophagus tissue

sections longitudinal muscle, circular muscle, muscular mucous

membrane, BMZ, lamina propria, epithelium, and background. The

trained neural network can process unseen IF images of the

esophagus and assigns one of the aforementioned sections to each

pixel of the image. The key information of the segmentation result is

the spatial information of the epidermal BMZ that could be used in

the following subtask.
Frontiers in Immunology 05
The second task is the classification of the IF image into the

classes ‘BMZ’, ‘intercellular’ and ‘negative’. One approach to achieve

this goal is a whole-image classification neural network that is

trained on a dataset of esophagus IF images and corresponding

target labels, assigning a probability between 0 and 1 for each class

to each image. However, the neural network had low accuracy in

predicting the ‘BMZ’ class. Presumably, the sparse information of

the very thin epidermal BMZ compared with the large number of

other pixels occurring in the image and the high variance of tissue

morphologies prevented the neural network from focusing on the

crucial image regions and features. To bypass this disadvantage, the

spatial information of the epidermal BMZ processed in the first step

can be utilized. The classification neural network is designed to

receive two input images: The first input is the original

IF image, and the second is a post-processed mask based on

the segmentation result. The post-processing drops all

segmentation information except the epidermal BMZ and

converts the remaining image to a binary image. The binary

image is used as attention mechanism input and is intended to

hint the neural network to pay special attention to the masked

region (Figure 4). This approach dramatically increased the

accuracy in our classification experiments.

At last, not only the classification with a probability between 0

and 1 for each class, but also a quantification of pattern intensity,

which represents the titer of the autoantibodies in patient serum, is

valuable information for the evaluation of IIF images, in particular,

if more than one pattern is detected. Hence, the algorithm extracts

the intensity of the pattern in the regions where the pattern occurs

and predicts its titer. For a positive ‘BMZ’ pattern, the intensity

extraction is straightforward, when the segmentation information

of the esophagus is given. However, for a positive ‘intercellular’

pattern, more post-processing is required to find the relevant

region, since the desmosome region in the epithelium is in close

proximity to the BMZ and the segmentation contains the

epithelium as a whole region. Therefore, post-processing with

convolution operations is calculated on the segmentation image

to predict the region adjacent to the BMZ that extends into the
FIGURE 3

For processing the samples of the subregions of the salt-split skin substrate, the displayed deep network architecture is used. After processing by
convolution module shown below, the processing is divided into two branches of dense layers for the different outputs.
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epithelium (Figure 1A). In the case of a positive reaction, the

‘intercellular’ staining appears as the brightest part in that region

and can be extracted using a previously defined quantile of the

occurring pixel intensities.

2.4.1 Training of the esophagus neural networks
The segmentation neural network for esophagus tissue images

was trained on preprocessed and downscaled images of size 512 x

512 pixels. This ensures rapid and memory-optimized segmentation

of the images, with resolution high enough to distinguish the

different tissue regions that appear. In addition, the images were

augmented by horizontal and vertical flipping, random rotation and

zooming, resulting in a more generalized network. The

segmentation network has seven outputs corresponding to the

tissue segments longitudinal muscle, circular muscle, muscular

mucous membrane, epidermal basement membrane, lamina

propria, epithelium, and background. The network was optimized

using the ADAM optimizer and categorical cross-entropy.

The classification neural network was trained on preprocessed

images of size 2,048 x 2,048, preserving all the crucial information

available in positive reactions. For each image, the previously

trained segmentation network processes a segmentation map on

the fly, extracting the BMZ, converting it to a binary image and

upscales it to the size of 2,048 x 2,048 pixels, building an image

input pair of original tissue image and binary map of the epidermal

BMZ. The image pairs were also augmented by horizontal and

vertical flipping, random rotation and zooming to increase the

variance of the training dataset. The classification network also used

the ADAM optimizer. The employed optimization function was

binary cross-entropy.
2.5 Titer estimation

The titer value is computed for the positive IF patterns of each

patient to estimate the amount of serum autoantibodies. Titer

values are taken from the dilution series(1:10,1:32,1:100,1:320,…).

An image of dilution dk has the k
th dilution from that series. For a
Frontiers in Immunology 06
single image, the brightness score s∈[1,5]of a detected pattern is

converted to the titer by addition: dk+s-1. If multiple images are

available, the lowest-dilution image with a negative pattern is

defining the total dilution. If there is no image with a negative

pattern, the highest-dilution image is taken, and the total dilution is

computed in the same way as the single image.
3 Results

The esophagus and salt-split skin classification algorithms

were used to process the samples of the validation dataset.

Therefore, each individual image was processed. For sera with

several dilutions, each individual image was classified. The

identified pattern and intensities were used to compile a

patient-based result including the predicted titer. For sera with

only one dilution, the result depended solely on the result of

that image.
3.1 Salt-split skin classification results

The trained salt-split skin models were evaluated using the

validation dataset. One patient had to be discarded from this

analysis due to a defect in the substrate image. Thus, the

validation dataset consisted of 109 patient sera for analysis

(Table 1). A pattern detection accuracy of 96% was achieved for

the salt-split skin ‘epidermal binding’ algorithm. Both positive

percent agreement (PPA) and negative percent agreement (NPA)

were 96%. Here, the results of one patient serum with a titer of 1:10

gave a barely positive IF result and were incorrectly classified as

negative. The salt-split skin ‘dermal binding” algorithm achieved

97% accuracy, with 100% PPA and 97% NPA. Of note, only eight

patients showed dermal binding. The classification errors are

exemplified in Figure 5. These errors occurred mostly in

borderline cases where luminance was low and sometimes

unspecific. When only ‘binding’ was evaluated, regardless of

epidermal or dermal localization, binding was detected with 95%
FIGURE 4

Steps for processing esophagus images. The first processing path segments the image with a convolutional neural network (CNN) into six tissue
segments plus background and extracts the epidermal basement membrane as input to the classification path. The segmentation mask is post-
processed to calculate the desmosome region. The spatial information is used for intensity estimation of found pattern.
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accuracy, with 97% PPA and 95% NPA. Titer estimates were almost

all in the +/-1 range for both patterns.
3.2 Esophagus classification results

The algorithm detected 46 of 49 positive patterns. The algorithm

classified no patient serum as false positive and 61 patient samples as

true negatives. This resulted in an overall agreement of 97%, a PPA of

94% and a 100%NPA (Table 2). Of note, 3 sera that were classified as

false negative by the algorithm were identified by visual classification

as marginally positive with a titer of 1:10.
Frontiers in Immunology 07
Regarding the pattern recognition for the ‘BMZ’ pattern, 27 of

30 patient sera were classified by the algorithm as true positive

reactions, three patient sera were classified as false negative (the

three marginally positive sera, example in Figure 6A), and two

patient sera were classified with a positive pattern, but instead of a

‘BMZ’ the algorithm predicted an ‘intercellular’ pattern (an example

is shown in Figure 6B). The algorithm predicted 78 patients as true

negative samples to BMZ and two patients as false positive samples.

The overall agreement for the pattern is 96% compared to the

manual reading with a PPA of 90% and NPA of 98%. The

agreement of titer prediction for BMZ, calculated only for

the true positive samples, agreed in 70% of patients. 30% of the
A B

C

FIGURE 5

Classification errors usually occur in borderline cases. (A) The roof was incorrectly classified as positive due to unspecific immunofluorescence. (B) A
false negative result was caused by weak staining along the epidermal side of the artificial split. (C) The false positive reactivity along the dermal side
was the result of unspecific labelling which may occur with strong staining along the blister roof.
TABLE 1 Performance of the salt-split skin classifier (EPa-Classifier) compared to the conventional evaluation by an IIF professional.

EUROPattern® visual mode

EPa Classifier

Combined ‘epidermal’ ‘dermal’

positive negative total found not found total found not found total

positive 31 4 35 25 3 28 8 3 11

negative 1 73 74 1 80 81 0 98 98

total 32 77 109 26 83 109 8 101 109

Accuracy: 95.4% Accuracy: 96.3% Accuracy: 97.3%

PPA: 96.9% PPA: 96.2% PPA: 100.0%

NPA: 94.8% NPA: 96.4% NPA: 97.0%
frontie
The combined section shows the overall result when any positive pattern is counted as positive. Samples were present that were positive in both patterns. ‘Epidermal’ and ‘dermal’ indicate
reactivities detected along the epidermal and dermal side of the artificial split by IIF on primate salt-split skin.
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predictions differed by +/-1 titer step. There were no deviations

greater than this (Figure 7).

For the ‘intercellular’ pattern, all 20 patient sera were correctly

identified by the algorithm and all 90 sera without this pattern were

correctly classified as negative pattern. Thus, the overall agreement

for the ‘intercellular’ pattern was 100% with a PPA of 100% and

NPA of 100%. The titer prediction for the pattern had a 60% match

rate for the true positive patient samples. 40% of the titer

predictions had an error of +/- 1 titer step. As with the ‘BMZ’

pattern, no deviations greater than this were detected (Figure 7).
4 Discussion

The diagnostics of AIBD is based on the detection of circulating

and tissue-bound autoantibodies, with the latter remaining the gold

standard. However, detection of circulating autoantibodies allows

further differentiation of disease entities, which is relevant for both

prognosis and choice of treatment. IIF testing on monkey

esophagus and salt-split skin is commonly used as screening test

and provides initial insight into likely disease entities (46). Delayed

testing for AIBD and delayed treatment can lead to adverse

outcomes with permanent impairment or even fatality (47, 48).

While monkey esophagus epithelium has the highest sensitivity for
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autoantibodies against desmosomal proteins, autoantibodies

against BMZ proteins can also be detected (5, 48–50). For the

detection of BMZ structures, sensitivity is higher when salt-split

skin is used as substrate, which has the advantage that epidermal-

binding can also be distinguished from dermal-binding AIBD types

(5, 50–52). Analysis of IIF on these substrates requires experienced

readers. In this study, automated reading of IIF on primate

esophagus and salt-split skin was evaluated. The presented

algorithms for classification of both monkey esophagus and salt-

split skin tissue sections for the detection of autoantibodies specific

for AIBD showed a high accuracy with over 95% agreement

compared to the results of conventional reading by an IIF

professional. The PPA was above 97% for all positive IF patterns,

on both the esophagus and salt-split skin. The NPA was at least 95%

for all patterns. The results showed a slightly higher agreement for

blister floor staining on salt-split skin and for intercellular staining

on monkey esophagus, whereas for blister roof staining on salt-split

skin and BMZ staining on monkey esophagus, some samples with

low staining intensity were not detected and some samples with

unspecific staining were classified as positives.

The confounder autoantibodies described previously were

present on both positive and negative samples of the training

dataset. The deep learning algorithm was trained to assign a

negative label to the patterns caused by the confounder antibodies
A B

FIGURE 6

Classification errors on esophagus with faint staining. (A) ‘BMZ’ pattern incorrectly classified as ‘negative’. (B) ‘Intercellular’ pattern incorrectly
classified by the algorithm as ‘BMZ’ in a patient with pemphigoid disease.
TABLE 2 Performance of the esophagus classifier (EPa-Classifier) compared to the conventional evaluation by an IIF professional.

EUROPattern® visual mode

Combined ‘BMZ’ ‘Intercellular’

EPa Classifier

positive negative total found not found total found not found total

positive 46 0 46 27 2 29 20 0 23

negative 3 61 64 3 78 81 0 90 87

total 49 61 110 30 80 110 20 90 110

Accuracy: 97.3% Accuracy: 95.5% Accuracy: 100.0%

PPA: 93.9% PPA: 90.0% PPA: 100.0%

NPA: 100.0% NPA: 97.5% NPA: 100.0%
frontie
The combined section shows the overall result when any positive pattern is counted as positive. Samples were present that were positive in both patterns. The basal membrane zone (‘BMZ’) and
‘intercellular’ pattern reflect IF reactivity against the BMZ and intercellular staining of the epithelium as seen with pemphigoid and pemphigus patients, respectively.
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on images if only confounder patterns are present. When both a

cofounder pattern and an AIBD-relevant pattern, i.e. “BMZ”,

“intercellular”, “epidermal”, or “dermal” were present, the

confounder pattern was suppressed and only the AIBD-relevant

pattern indicated. Therefore, the algorithm learned that the patterns

caused by confounder antibodies are irrelevant for the desired

outcome and can be ignored.

Both algorithms can assist laboratory staff in the challenging

task of evaluating IF patterns on tissues. The classifiers are an

excellent extension of the screening methods for AIBD. Automation

of IIF evaluation has already been successfully used in

rheumatology for the detection of antinuclear antibodies. Several

commercially available systems can be used here [reviewed in (53)].

In the latter review, the authors conclude that higher

standardization of results is achieved by less subjectivity and less

influence by expertise and that automated workflows are more

efficient due to higher throughput. We think standardization of

reading IF patterns, especially tissues can be prone to have a high

variance between the readings of different personnel. Computer-

aided classification, therefore offers a second opinion in a

deterministic manner. However, the limitation of our algorithm

lies in the design of a pattern proposal system that only can give

hints on learnt patterns. For rare patterns that were not contained in

the training dataset, the algorithm will likely fail with its proposal

and the IF professional must act independently. Also, our study

revealed some discrepancies between the algorithm and the reading

of the IF professionals. In these cases, the IF professional must take

the final decision. Obviously, the benefit of having a high-

throughput systems only takes effect in laboratories with a high

number of sera subjected to IIF on esophagus and salt-split skin.

Software solutions for computer-aided diagnostics of IIF are

already available for other substrates, using the EUROPattern®

Microscope (EUROIMMUN), which was also used in the present

study (54). The EUROPattern® Suite software is capable of

classifying images of HEp-2/HEp-2010 cells for the detection of
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anti-nuclear antibodies (ANA) (25, 55), anti-neutrophil

cytoplasmatic antibodies (ANCA) (56), anti-mitochcondrial

antibody (AMA), anti-Epstein- Barr virus (EBV) antibodies, anti-

dsDNA antibodies using Crithidia luciliae-based IIF (26),

recombinant cell-based assays for multiparametric serological

testing in autoimmune encephalitis, e.g., with recombinant cells

(54), and rat liver and kidney for detection of reactivity against

liver-kidney microsomes (LKM). In the present study, the main

challenge was that the small structures relevant for classification

were present only on certain parts of the large area covered by the

tissue on the biochip. This prevented the use of standard deep

networks. We applied segmentation to focus the attention of the

classification networks to the crucial regions. For salt-split skin

substrate, unspecific and low luminance borderline cases led to the

most difficulty because there is no clear decision boundary. The

segmentation of esophagus tissue was particularly challenging due

to its naturally high variance in tissue layout. Specifically,

segmentation and thus detection of the BMZ, which is very thin

compared to other sections of the tissue, is a challenging task.

Furthermore, classification of the BMZ is complex because it lacks

specific structural features. Besides the challenging algorithmic

processing, collecting a sufficient amount of training data

containing hand-labeled ground truth masks for the segmentation

neural network is a tedious and time-consuming manual task.

Our results show that deep learning as a method for computer-

aided diagnostics on microscopy images has evolved into a state-of-

the-art method besides traditional computer vision. Segmentation

and classification of neural networks showed good results in this

work. Even very complex microscopy images with tissue layers that

are difficult for professionals to evaluate can reliably be segmented

and classified via computer-aided algorithms.

The present study has several limitations. Only a limited number of

sera with salt-split skin dermal binding pattern were applied. Therefore,

the accuracy for this pattern is of lower significance. A larger study

focusing on the clinical application of the classifiers will certainly
FIGURE 7

Titer deviation of each pattern compared to the evaluation by an experienced reader of indirect immunofluorescence images. Titer deviation was
only calculated in samples where the algorithm and conventional reading detected the same pattern. The reading by experienced personnel was
used as a reference. A negative deviation indicates an underestimation of the titer steps, a positive deviation an overestimation by the algorithm.
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improve this aspect and is anticipated. Also, the algorithm only helps to

find the expressing patterns for IgG autoantibodies in pemphigus and

pemphigoid diseases. Patterns due to IgA autoantibodies are not

expected to greatly differ between the ones by IgG reactivity but have

not been formally employed in the present study. Currently, there is

also no automated assignment of the identified patterns to a specific

AIBD. Additional algorithms for advanced diagnostics of AIBD using

BIOCHIP® mosaic-based IIF, including classifiers for recombinant

BP180 as well as for cell-based IIF with recombinant BP230, DSG1, and

DSG3 classifiers, are under development to detect autoantibodies

specific for these disorders. The great advantage is that the results of

IF image evaluation will be automatically proposed for verification and

approval by laboratory personnel. In conclusion, the presented

classifiers and algorithms allow the semi-automated assessment of

autoantibody binding onmonkey esophagus and primate salt-split skin

in routine diagnostics of pemphigus and pemphigoid diseases. This

innovation will further improve and facilitate the diagnosis of these rare

autoimmune disorders.
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