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The innate immune brakes of
the lung
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Respiratory mucosal surfaces are continuously exposed to not only innocuous

non-self antigens but also pathogen-associated molecular patterns (PAMPs)

originating from environmental or symbiotic microbes. According to either “self/

non-self” or “danger” models, this should systematically result in homeostasis

breakdown and the development of immune responses directed to inhaled

harmless antigens, such as T helper type (Th)2-mediated asthmatic reactions,

which is fortunately not the case in most people. This discrepancy implies the

existence, in the lung, of regulatory mechanisms that tightly control immune

homeostasis. Although such mechanisms have been poorly investigated in

comparison to the ones that trigger immune responses, a better understanding

of them could be useful in the development of new therapeutic strategies against

lung diseases (e.g., asthma). Here, we review current knowledge on innate immune

cells that prevent the development of aberrant immune responses in the lung,

thereby contributing to mucosal homeostasis.
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Introduction

The “self/non-self model”, which has dominated Immunology since the 1950s, states that

an immune response is triggered against any foreign (i.e., non-self) antigen encountered by

the immune system, whereas no immune response is triggered against the organism’s own

constituent (i.e., self) (1, 2). More recently, Polly Matzinger proposed a rival theory, called the

“danger theory”, which claims that immune responses are triggered only when antigens are

accompanied by “danger signals” or “alarmins” derived from injured or stressed cells

(damage-associated molecular patterns; DAMPs) or pathogens (pathogen-associated

molecular patterns; PAMPs) (3, 4).

The respiratory tract is continuously exposed to both innocuous airborne antigens (i.e., non-

self antigens) and immunostimulatory molecules such as endotoxins (lipopolysaccharides; LPS)

released by Gram-negative bacteria (i.e., danger signal). According to either “self/non-self” or

“danger” models, this should systematically result in the development of immune responses

toward these inhaled harmless antigens, such as T helper type (Th)2-mediated allergic reactions.

However, only a small fraction of people develops airway allergy (5, 6), suggesting that

mechanisms exist that tightly control lung homeostasis and prevent aberrant immune

response. One might even argue that the development of an immune response in the lung
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only occurs when “PRO” mechanisms (i.e., mechanisms that drive the

immune response) overtake “CONTRA” mechanisms (i.e., mechanisms

that prevent the immune response). In this view, it is likely that

“CONTRA” mechanisms prevail in most people exposed to both

harmless antigens and immunostimulatory molecules, leading to

homeostasis, whereas “PRO” mechanisms predominate in patients who

develop allergic asthma (Figure 1).
Frontiers in Immunology 02
These immune brakes are far from being totally understood as

most research focuses on elucidating and identifying the cells and

pathways driving the development of immune response. Nevertheless,

it is generally accepted that regulatory T cells (Tregs) are the most

important cells in maintaining immune tolerance in the lung.

However, if Treg development was the normal outcome of harmless

antigen encounter, mediastinal lymph nodes (MLNs) draining the

airways would be the place of incessant Treg proliferation, which is

highly improbable in view of the small size of MLNs in uninfected and

unsensitized mice and the low percentage of Treg in these lymph

nodes (7). It is therefore reasonable to think that Treg form a second

(adaptive) line of defense against the development of aberrant

immune response, and that other innate cells, located in the lung

rather than in the MLNs, must constitute the first (innate) line

preventing the development of exaggerated immune responses. The

myeloid-derived suppressor cells (MDSCs) constitute another well-

known population of immunosuppressive cells (8). This heterogenous

population, defined by their T cell immunosuppressive functions,

appears in cancer and in pathologic conditions associated with

chronic inflammation or stress (9). However, their absence at

steady state in healthy individuals makes them unlikely to sustain

lung homeostasis.

In this article, we review current knowledge on cells endowed with

immunoregulatory properties in the lung, mainly focusing on innate

immune cells. MDSCs will not be discussed as they have been well-

documented since their initial description in the 1970’s (10) and

reviewed several times recently (8, 11).
Macrophages and monocytes

Macrophages are the first immune sentinels of the airways. Due to

their ability to induce Th1 immune response (12), they have been

considered as a target of choice to alleviate Th2-mediated allergic

responses. Several studies aimed at demonstrating that antigen-

stimulated macrophages are able to mediate suppression of allergic

airway inflammation in mice showed that the transfer of antigen

(Ag)-pulsed macrophages to sensitized mice led to a decrease of

airway eosinophilia and hyperresponsiveness to methacholine (13–

17). The Ag-specific IgE and Th2 cytokine production by T cells upon

Ag stimulation were also reduced (13–17). This immunosuppressive

response appeared to be antigen-specific and long lasting (15) and

was not associated with an increased Th1 profile, arguing against

Th1-mediated counter-regulation (16). However, many of these

studies were conducted with non-pulmonary macrophages [i.e.

peritoneal (13–15) and immortalized splenic macrophages (16)]

meaning that these studies were more focused on therapeutic

strategies than shedding light on cells sustaining lung homeostasis.

Regarding the mechanisms displayed by these macrophages, the G

protein coupled receptor GPR101 was shown to be a regulator of

peritoneal macrophages phenotype and function, limiting the

propagation of inflammation and expediting its resolution (18).

The steady-state lung contains two different macrophage subsets,

the alveolar macrophages (AMs) and the interstitial macrophages

(IMs), residing in the alveolar space and in the lung interstitium

respectively. Besides their different localization, these cells can be

easily discriminated based on their phenotypic profile in lung without
FIGURE 1

The balance between “PRO” and “CONTRA” mechanisms determine
the immunological outcome of an antigen encounter in the lung. The
lung is continuously exposed to both airborne antigens and
immunostimulatory molecules called PAMPs and DAMPs. The
development of an immune response or not is the result of an
imbalance between some “PRO” (i.e., mechanisms that drive the
immune response) and “CONTRA” mechanisms (i.e., mechanisms that
prevent the immune response), where “PRO” mechanisms prevail in
airway allergic people while “CONTRA” mechanisms predominate in
most people leading to homeostasis.
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inflammation. In addition to typical macrophage markers (e.g. F4/80,

MertK, CD64), at the steady state, mouse AMs express CD11c and

SiglecF while IMs express CD11b and CX3CR1 (19, 20). Regarding

their function, it is generally accepted that AMs provides primary

defense via clearance and phagocytosis of incoming pathogens (20–

25) while IMs exert immunoregulatory activities (20, 21, 25–27).

However, AMs immunosuppressive functions have also been

reported. Both subsets have been described in the human lung.

Many similarities between mouse and human macrophages have

been reported based on marker expression, location, function and

even developmental pathway, especially for AMs, the most studied

lung macrophages (19, 20, 28, 29).
Alveolar macrophages

The ability of AMs to prevent inappropriate immune responses has

been inferred from depletion experiments prior to (30, 31) and after

antigen sensitization (17, 31–33). Intratracheal instillation of clodronate-

filled liposomes enables the specific depletion of phagocytic cells localized

in the airway lumen, i.e. AMs in vast majority. The depletion is therefore

transient and non-specific to AMs per se. More recently, AMs were also

depleted using CD169-DTRmice (34). However, caution should be taken

when interpreting the results obtained using these transgenic mice to

target AMs as IMs also express CD169, even though less than AMs (35).

In vivo elimination of AMs using clodronate-filled liposomes led to overt

inflammatory reactions in sensitized mice to model antigens, such as

trinitrophenyl-keyhole limpet hemocyanin (TNP-KLH) (30), ovalbumin

(OVA) (17, 32, 33) or house dust mites (HDM) (31, 33). Increased IgE

levels and development of mononuclear cell infiltrates in the lung were

also observed following AMs depletion in OVA-sensitized rats (36). AMs

exerted their immunosuppressive properties toward HDM no matter

whether their depletion occurs prior the sensitization or challenge phase

(31). Clodronate treatment during the sensitization phase resulted in a

reduction of HDM-induced IL-27 concomitant with exacerbation of Th2

pathology, suggesting a role for IL-27 in regulating Th2 responses at

mucosal surfaces (31). Surprisingly, AMs depletion alleviated the

trimellitic anhydride (TMA)-induced drop in lung function parameters

observed in TMA-sensitized rats (37). The levels of serum IgE were also

decreased (37). In contrast, TMA-induced tissue damage and

inflammation were augmented following AMs elimination (37).

Indeed, AMs seemed to suppress non-specific inflammation caused by

TMA conjugated to endogenous protein (TMA-BSA) challenge (38). In

line with this study, transfer of naïve AMs to OVA-sensitized AMs-

depletedmice resulted in decreased airway hyperreactivity and eosinophil

counts in the bronchoalveolar lavage (BAL) fluid whereas no

improvement was observed upon transfer of sensitized AMs (32). The

same phenomenon was observed in rats (39), suggesting that allergen

sensitization modulates AMs function. AMs phagocytosis was although

diminished in sensitized AMs (39) underscoring the importance of AMs

status for their control of the pulmonary response in a suppressive way.

Looking at the mechanisms, in vitro co-culture of rat AMs with

antigen presenting cells (APCs) across a semipermeable membrane

revealed an inhibition of APC maturation, amplified by TNF-a and

abrogated via blockade of the nitric oxide synthase pathway (40).

When mixed with T cells, AMs appear to allow T-cell activation and

expression of T-cell effector function, while selectively inhibiting T-
Frontiers in Immunology 03
cell proliferation (41) (Figure 2). This suppression involves a unique

form of T-cell anergy, associated with inhibition of IL-2 receptor

signal transduction (42). The induction of unresponsiveness was

reversed upon removal of AMs from the T cell (42) or upon

granulocyte-macrophage colony-stimulating factor (GM-CSF)

treatment (43) in rodents and by the addition of CD28

costimulation or IL-2 in human (44). Rodent and human AMs also

differ in the mechanisms employed to achieve this inhibition: rodent

AMs appear to utilize reactive nitrogen intermediates, while this does

not appear to be the case for human AMs (41). Nevertheless they both

release prostaglandin and TGFb (45, 46) suggesting that pulmonary

macrophages use multiple mechanisms for locally suppressing

lymphocyte activation. More recently, apoptotic cell uptake by lung

AMs was shown to suppress HDM-driven allergic asthma while

dampening AMs capacity to make inflammatory cytokine,

increasing their responsiveness to adenosine (whose receptor limit

allergic inflammation upon agonist treatment) and their retinoic acid

(RA) production (47). In line with this study, mouse AMs were also

shown to induce regulatory T cells (Tregs) in vitro through the release

of RA and TGFb (48, 49) (Figure 2) even though IMs appear to be

more potent in inducing the expression of the forkhead box P3

transcription factor, Foxp3, the master regulator of Tregs, in naïve T

cells (50). These Treg-inducing AMs were nevertheless able to

promote airway tolerance as their transfer into sensitized mouse

airways prevented the development of asthmatic lung inflammation

upon subsequent challenge with Ag (49). Several mediators from the

lung microenvironment such as TGFb production, SIRPa and

CD200R stimulation and low doses of nutrients are also able to

drive AMs toward tolerogenic function, preventing potentially

detrimental lung inflammation (51).

NO2 exposure induces the infiltration of an AM subpopulation in

rodent BAL fluid that may exert anti-inflammatory functions by the

production of high amounts of the immunosuppressive cytokine IL-

10 (52). In the same way, delivery of low-dose LPS in mice to prime

the lung was shown to augment AMs production of IL-10 in the BAL

fluid and enhance resolution of lung inflammation induced by a lethal

dose of LPS or by Pseudomonas bacterial pneumonia (53) (Figure 2).

On the other hand, a study revealed that mouse AMs do not produce

IL-10 upon LPS stimulation in vitro (54). These results are in

accordance with others, showing that IL-10 production by mouse

AMs is quiet low in comparison to mouse IMs, using IL-10-b-
lactamase reporter (ITIB) mice (35, 55) and in vitro culture with

LPS-containing OVA stimulation (56). Caution should be taken when

considering all BAL fluid cells as AMs since the presence of IMs was

shown in mouse BAL fluid upon stimulation with CpG-DNA (35).

Moreover, inflammatory stimuli induce phenotypical changes among

AM and IM populations making their discrimination more complex.

Recently, two subpopulations of macrophages have been described in

the human BAL fluid based on their degree of autofluorescence and

their ability to secrete IL-10 (57) suggesting that a fraction of human

IMs could be present in the airway lumen.
Interstitial macrophages

Besides their localization in the lung interstitium, IMs have been

defined as regulatory macrophages. Indeed, since the first description
frontiersin.org
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of their regulatory function in 2009 (56), many studies confirmed that

IMs produce IL-10 in the steady state (35, 58–60) and can in this way

contribute to lung homeostasis.

Upon LPS-containing OVA exposure, ex vivo cultured IMs were

found to impair the ability of co-cultured bone marrow-derived

dendritic cells (BMDCs) to maturate, migrate to the draining lymph

node and induce features of Th2-mediated airway allergy once

reinjected into the trachea of recipient mice (56). This effect was

mediated through IL-10 production by IMs since Il10-/- IMs failed to

do so (56) (Figure 2). In vivo, mouse IMs were shown to be localized in

close vicinity of lung dendritic cells (DCs), which are endowed with the

ability to trigger allergen-specific Th2 responses (56), and IMs-depleted

mice developed airway allergy following exposure to low doses of
Frontiers in Immunology 04
allergens and LPS (56). The immunosuppressive potential of IMs is

nevertheless surpassed by the high dose of the allergens and LPS, given

that 100% of WTmice develop asthma upon exposure to high amounts

of HDM extracts, a phenomenon that requires Toll-like receptor 4

(TLR4) activation by HDM-borne LPS (61). IMs also regulate Th17-

mediated inflammatory response since their transfer to HDM-exposed

Il10-/- mice reduce the Th17-related neutrophilic inflammation (59).

IL-10 production by IMs is increased upon inflammatory stimuli

such as HDM, LPS, CpG-DNA, Flagellin and FSL-1, a synthetic

lipoprotein derived from Mycoplasms salivarium (35, 56, 58, 59).

CpG-DNA is by far the most potent stimulator of IL-10 in mouse IMs

and it also induces a dramatic expansion of IL-10-producing IMs

(35). These CpG-induced IMs were able, by producing IL-10, to
FIGURE 2

A synthetic view of the innate immune brakes of the lung.
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confer protection against allergic inflammation even when mice were

sensitized and challenged with high doses of HDM (35) (Figure 2).

Intranasal delivery of mesenchymal stem cell-derived exosomes was

also able to substantially expand lung IL-10-producing IMs and thus

contributed to protection against allergic asthma in mice (62).

Signaling pathways that promote IL-10 expression in IMs have

been little studied but the constitutive production of IL-10 in IMs was

shown to be mediated through activation of the TLR4/myeloid

differentiation factor 88 (MyD88) pathway in a microbiota-

independent manner (59). In allergenic contexts, MyD88-

dependent upregulation of the transcription factor Hypoxia-

inducible factor 1-alpha (Hif1a) boosts the expression of IL-10 by

lung IMs (58). Recently, semaphoring 3E/plexinD1 signaling in IMs

was shown to be a critical pathway for their immunoregulatory

activity as IMs genetic deficiency in plexinD1 impaired IL-10

production leading to airway allergy in mice exposed to HDM

(63) (Figure 2).

While IL-10 production is the most studied immunoregulatory

mechanism used by IMs, it is not the only one. The interaction of

repulsive guidance molecule b (RGMb), expressed on IMs, with

programmed death ligand 2 (PD-L2), expressed on DCs, appear to

be essential for respiratory tolerance. Indeed, blockade of the RGMb-

PD-L2 interaction markedly impaired the development of respiratory

tolerance in a mouse model of tolerance to OVA (64). Lung IMs were

also shown to induce the proliferation and differentiation of Treg cells

(50) (Figure 2).

Functional studies on IMs have been mainly conducted in mice,

probably due the difficulties faced to isolate macrophages from healthy

human tissue. However their existence have been described in human

and non-human primates (60, 65). Human IMs produce IL-10 more

potently than human AMs, mainly upon LPS stimulation but also at

steady state (60) and would be functionally impaired in asthmatic

patients (66). Recently, a population of macrophages with properties

similar to IMs was described in the human BAL fluid (57). These cells,

identified as autofluorescentlow (AFlow) AMs in comparison to classical

AFhigh AMs, expressed a unique transcriptional signature associated

with specific immunoregulatory functions, including the ability to

secrete IL-10 (57) (Figure 2). Such signature, along with their small

size is reminiscent of what is described for IMs in the murine lung

indicating that some humans “IMs” might be present in the airway

lumen. This would facilitate investigations on human IMs.

Recent studies have begun to reveal heterogeneity among IMs

compartment (50, 55, 67) with at least two main populations with

different phenotypes and localizations in mice (50, 55). Mouse

CD206+ Lyve1hi MHCIIlo IMs are mainly located in the bronchial

interstitium (55) and associated to blood vessels (50) while mouse

CD206- Lyve1lo MHCIIhi IMs are mainly located in the alveolar

interstitium (55), and associated to nerve bundles (50). Regarding

their function, CD206+ IMs produce more IL-10 than CD206- IMs

(50, 55). On another hand, CD206- IMs were shown to induce Treg

more potently than CD206+ IMs, in accordance with their high

expression of MHCII (50). A study showed that MHCIIhi IMs can

be further divided on two subsets based on CD11c expression (67).

However, differences in function between these two subsets has not

been investigated. A population of mouse CD169+ IMs, named nerve

and airway-associated macrophage and described as a new subset of

IMs, was reported recently (68). However, their phenotypic analysis
Frontiers in Immunology 05
reveals that these cells largely overlap with CD206- IMs identified

previously. In humans, two subsets transcriptionally similar to

murine subsets were also described (50). However, unlike mouse

IMs, MHCII (HLA-DR) cannot be used to identify human IM subsets

as this marker is expressed at higher levels in CD206+ Lyve1+

IMs (50).
Monocytes

Two main populations of monocytes have been described in the

mouse lung: the Ly6Chi GR-1hi classical monocytes and the Ly6Clo

GR-1lo patrolling monocytes (69) with their human counterparts

consisting of CD14+ CD16- and CD14lo CD16+ monocytes

respectively (70). However, lung monocytes are mainly located in

the blood vessels associated to the lung (35). Only a fraction of Ly6Chi

monocytes, called Ly6Chi lung monocytes (35), and a discrete

population of CD64+ CD16.2+ N4RA1-dependent (patrolling

monocytes key transcription factor) monocytes (55) are truly

located in the mouse lung tissue. Monocytes can extravasate into

the lung tissue where they can differentiate into tissue macrophage or

DC or recirculate to lymph nodes without any differentiation (71).

Most of the monocytes and monocyte-derived cells harbor

proinflammatory properties and contribute to the development of

immune response. Nevertheless, some regulatory functions have

been reported.

First of all, a fraction of lung resident CD64+ CD16.2+ monocytes

were shown to express IL-10 (55), suggesting regulatory properties.

Regarding Ly6Chi lung monocytes, CpG-DNA exposure induced their

differentiation into hypersuppressive CpG-induced IMs (35). Splenic

monocytes were also recruited to the lung to constitute the pool of

CpG-induced IMs (35). Infection with the murid herpesvirus 4

(MuHV-4) was shown to inhibit the development of HDM-induced

experimental asthma by modulating lung innate immune cells (72).

This immunosuppressive effect was attributed to monocytes that

replenished resident AMs upon MuHV-4 infection (72). These

monocyte-derived AMs displayed regulatory properties, including

IL-10 production, and blocked the ability of DCs to trigger a

HDM-specific response by Th2 cells in mice (72) (Figure 2).

MuHV-4-imprinted monocytes are also able to recruit CD4 T cells

to the airways and trigger immunosuppressive signaling pathways

through the PD-L1/PD-1 axis, thereby dampening the deleterious

activation of cytotoxic CD4 T cells (73). Monocytes can also act as

suppressor cells that promote Treg development (74). Indeed,

adoptive transfer of GR-1+ monocytes in tumor-bearing mice

revealed the differentiation of such monocytes into tolerogenic DCs

that produce IL-10 and potently induce Treg response and expansion

(74). During gut infection, monocytes can acquire regulatory

properties in the bone marrow thanks to a priming by natural killer

(NK) cells (75). This process could potentially occur in other mucosa

like the lung. A population of GR-1+ cells was observed in ozone-

exposed mice (76). These cells were diminished in the absence of

CX3CR1 and appeared to protect the host from the biological

response to ozone (76). Indeed, CX3CR1-null mice exhibited

enhanced responses to ozone, including increased airway

hyperresponsiveness, exacerbated neutrophil influx, accumulation

of 8-isoprostanes and protein carbonyls and increased expression of
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cytokines (76). This population was identified by the authors as a

novel macrophage subset, distinct from AMs. Despite their expression

of F4/80, a major macrophage marker (77), these cells do not look like

any population of lung macrophage already described and highly

express GR-1 (76), a monocytic marker. As mentioned earlier,

inflammation makes discrimination between cell population harder

due to phenotypic changes and overlapping marker expressions, so it

is possible that these cells are stuck at an intermediate state between

classical monocytes and macrophages.

Human CD14+ monocytes are potent activators of TGFb, via
expression of the integrin avb8 and matrix metalloproteinase 14,

which dampens their production of TNFa in response to LPS (78). In

the healthy human intestine, a mucosa which, like the lung, have to

deal with foreign compounds, integrin avb8 is highly expressed on

mature tissue macrophages, with these cells and their integrin

expression being significantly reduced in active inflammatory bowel

disease (78). This suggests a key role of integrin avb8-mediated TGFb
activation in the regulation of inflammatory responses and mucosal

homeostasis by monocytes and macrophages.
Dendritic cells

The idea that DCs are able to induce tolerance in vivo originated

from experiments on DCs that are not fully mature (79). These

immature DCs were shown to inhibit T cell proliferation (80, 81) and

to induce Treg cells (81) through IL-10 production (82). DCs were

also treated with IL-10 (83) or engineered to express IL-10 (84, 85) in

an attempt to develop therapeutic strategies. Since then, some

physiological counterpart of these ex vivo-derived DCs were

identified as some resident lung DCs were shown to exert

immunoregulatory properties.

At the steady state, the lung comprises two main populations of

DCs, plasmacytoid DCs (pDCs) and conventional DCs (cDCs), also

called myeloid DCs (mDCs), the latter subdivided into two

functionally distinct subsets, type 1 and type 2 cDCs. Despite

different surface markers expression between human and mouse

cDC subsets, the transcription factors interferon regulatory factor 8

(IRF-8) and basic leucine zipper ATF-like transcription factor 3

(Batf3) drive the development of cDC1 while IRF4 drives the

development and terminal differentiation of cDC2 in both species

(86–89).

In addition to their production of type I interferon upon viral

infection, lung pDCs were shown to induce tolerance. Indeed, in a

mouse model of tolerance, an increase of pDCs in the lung draining

lymph node was reported (90). Moreover, pDC depletion during

inhalation of normally inert Ag led to IgE sensitization, airway

eosinophilia, gobelet cell hyperplasia and Th2 cytokine production

while adoptive transfer of pDCs before sensitization or challenge

prevented such features in mice (91, 92). On a functional level, mouse

pDCs did not induce T cell division in the lung but suppressed the

generation of effector T cells induced by cDCs (90, 91). They were also

shown to induce in vitro the differentiation of Treg cells capable of

suppressing Ag-specific T cell proliferation (91, 93) (Figure 2). Lung

pDCs exhibited these tolerogenic properties irrespective of their

maturation state since the efficiency of CpG-matured pDCs and

immature pDCs were the same, through programmed death (PD)-
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1/PD ligand (PDL) 1 interactions but not through ICOS ligand, IDO

and IFNa unlike splenic pDCs (92, 94). Although human pDCs were

discovered long before their mouse counterparts, their identification

in human lung failed for a long time (88, 95, 96). However, human

pDCs isolated from blood or lymphoid tissues efficiently promote the

generation of CD4+ CD25+ Foxp3+ IL-10-producing Treg cells (97–

99), suggesting that human lung pDCs might play a role in the

maintenance of immunological tolerance.

Lung cDCs are also endowed with regulatory properties. A study

even reported that mice lacking CD11chi lung DCs, but containing

pDCs, failed tolerization with inhaled Ag and could not support

Foxp3 induction in vivo in naïve CD4+ T cells (100). The different

conditions and mouse models used in these studies are probably

responsible for this discrepancy.

Likewise, mDCs from mice exposed to OVA were reported to

transiently produce IL-10 (101). The adoptive transfer of these DCs

isolated from OVA-exposed mice prevented the recipient mice from

the development of airway inflammation (101). The protection was

mediated through IL-10 production by DCs since the adoptive

transfer of IL-10-/- DCs failed to protect from Th2-mediated

inflammation (101). In line with that, a study revealed that IL-10

production by DCs is diminished in atopic children (102). In mice,

IL-10-producing DCs exhibited a mature profile and stimulated the

development of CD4+ T regulatory 1-like cells that also produced

high amount of IL-10 (101) through a pathway involving ICOS-ICOS

ligand (103) (Figure 2). Despite their expression of CD11c, no further

phenotypic characterization has been done on these IL-10 producing

DCs that would allow these cells to be more clearly identified.

Digging a little deeper into identifying a cDC subset endowed

with immunoregulatory properties, several studies have shown that

Batf3-/- mice, which are devoid of cDC1, challenged with Ag failed to

develop tolerance and developed exacerbated Th2 and Th17 immune

responses and exacerbated airway inflammation (100, 104, 105).

Mechanistically, Batf3 absence does not affect induction of Treg or

IL-10 production by lung CD4+ T cells following Ag challenge but

impaired IL-12p40 production (104). IL-12 treatment reverts

exacerbated allergic airway inflammation in Batf3-/- challenged

mice, restraining Th2 and Th17 responses without triggering Th1

immunity (104), suggesting a protective role for lung cDCs 1 in

allergic airway inflammation through the production of IL-12. Lung

cDCs 1 were also shown to be able to induce Foxp3 in naive CD4+ T

cells. They upregulated retinaldehyde dehydrogenase 2 (aldh1a2)

(100), which is a key enzyme involved in the production of a

cofactor for TGF-b to induce Foxp3 expression. RA-producing DCs

were accordingly identify in the lung (106) (Figure 2). Thus, lung

cDCs 1 would induce Treg differentiation through RA production as

demonstrated for gut musocal cDCs 1 (107, 108). Regarding cDCs 2,

their expression of C5aR1 was shown to promote tolerance towards

aeroallergen such as OVA and HDM through downregulation of

CD40 (109). Different stimuli can also modulate DC function

orienting them toward immunoregulatory profile. Indeed, mouse

and human cDCs were shown to produce IL-10 upon Helicobacter

pylori exposure, subsequently protecting from allergen-induced

asthma in mouse models (105). H. pylori was also reported to

inhibit LPS-induced maturation of DCs and reprogram DCs toward

a tolerance-promoting phenotype (110). These reprogramed DCs

failed to induce T cell effector functions and instead induced
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expression of FoxP3 in naïve T cells through IL-18 production (110)

(Figure 2). Lipid mediators such as peroxisome proliferator-activated

receptor (PPAR)-g agonists and prostaglandin D2 were also shown to

inhibit DC migration to the MLN and reduce the T-cell response in

the MLN in OVA sensitization mouse models (111, 112).
Granulocytes

Eosinophils

Accumulating evidence indicates that, besides their pro-

inflammatory roles in Th2 responses associated with helminth

infections or allergic diseases, eosinophils also regulate homeostatic

processes at steady state and exhibit protective role under certain

conditions (113, 114).

At steady state, the mouse lung contains resident eosinophils

(rEos) which display unique morphological and phenotypical features

that unambiguously distinguish them from the inflammatory

eosinophils (iEos) that are recruited to the lung during HDM-

induced allergic airway inflammation (115). CD101 is the main

characteristic that enable to distinguish rEos from iEos: rEos do not

express CD101 while iEos are CD101+ (115). These rEos were shown

to inhibit the maturation, and therefore the pro-Th2 function, of

allergen-loaded DCs and correspondingly, mice lacking lung rEos

showed an increase in Th2 cell response to inhaled allergens (115)

(Figure 2). In human, the parenchymal rEos identified in non-

asthmatic lungs were phenotypically distinct from the iEos isolated

from the sputa of eosinophilic asthmatic patient, suggesting that the

findings in mice are relevant to humans (115). Mouse lung

eosinophils play also a crucial role in lung allograft acceptance.

While associated with rejection of other solid organs, local nitric

oxide (NO) generation is critical for lung allograft acceptance (116).

Eosinophils were shown to be the dominant inducible NO synthase

(iNOS)-expressing cells in the lung allograft and their depletion

reduced NO levels to that of recipient mice and led to allograft

rejection (117). NO production by eosinophils depends on

stimulation by IFN-g and TNF-a since neutralization of such

mediators in graft recipients abrogates eosinophil suppressive

capacity (117). The iNOS+ lung eosinophils were phenotypically

similar to the previously described lung rEos, indicating that rEos

may display several immunoregulatory functions.

In guinea pigs, ozone exposure induced eosinophil hematopoiesis

which limit ozone-induced airway hyperreactivity since depletion of

these newly recruited eosinophils worsened airway hyperreactivity

(118). This ozone-induced hematopoiesis of beneficial eosinophils

was blocked by TNF-a antagonist or by prior allergen sensitization,

suggesting that atopic individuals might have worsened airway

hyperreactivity following ozone exposure or delayed resolution of

symptoms because of a lack of bone marrow response (119).
Neutrophils and mast cells

Like for eosinophils, emerging evidences point out regulatory

functions for neutrophils (120). Indeed, it was shown that neutrophils

can decrease DCs function (121–123), protect host from LPS-induced
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lethal inflammation (124) and produce anti-inflammatory molecules

such as IL-10 and act as T-cell suppressors in different contexts (125–

128). However, these functions have been mainly attributed to

circulating neutrophils and immunoregulatory properties of lung

neutrophils have been poorly investigated. So far, a study revealed

that mycobacteria-infected DCs attract neutrophils that produce IL-

10 and specifically shut down the otherwise exuberant Th17 response

in the mouse lung (127).

Besides their well-known roles in allergy and innate immunity,

mast cells have also the potential to turn immune responses off (129,

130). Although an immunosuppressive role has not been uncover yet

in the lung, several protective properties have been reported in the

skin where mast cells are important to suppress UVB-induced contact

hypersensitivity (131), limit leukocyte infiltration in contact

dermatitis (132), impair the development of Ag-specific T cell

response following Anopheles mosquitoes bites (133) and induce an

optimal tolerance to skin allograft through Foxp3+ Treg cells (134).
MDSC-like cells

The hygiene hypothesis postulates that living in a microbe-rich

environment reduces the risk of developing asthma (135–138).

Several studies have uncovered mechanisms that may underlie this

phenomenon, such as exposure to CpG-DNA inducing high amount

of IL-10 producing-IMs (35) or early exposure to MuHV-4 inducing

the replacement of AMs by regulatory monocytes (72). A study also

showed that in mice, continual exposure to LPS induced the

generation of a suppressive myeloid cell type that express CD11b,

GR-1 at intermediate levels and F4/80, distinguishing it from

neutrophils, macrophages and DCs but resembling myeloid-derived

suppressor cells (139). LPS promoted the development of MDSC-like

cells, that were both phenotypically and morphologically similar to

those described in the tumor environment, in a TLR4/MyD88-

dependent manner (139, 140). These cells did not traffic to the

lung-draining lymph node but blunted the ability of the lung DCs

to upregulate GATA-3 or to promote STAT5 activation in primed

Th2 cells, both transcription factors having critical roles in Th2

effector function (139). This effect was reversed by anti-IL-10 or

inhibition of arginase 1 (139) (Figure 2).
Lymphoid cells

In addition to Treg cells, other lymphoid cells have regulatory

potential. Indeed, it was shown that regulatory type of B cells (Breg)

play a critical role in the development of T cell tolerance to

aeroallergens (141, 142) and that their deficiency increases allergic

airway inflammation in mice (143). Depletion of mouse CD8 T cells

before prior immunization lead to increased Th2 responses (144) and

these cells seem to play important role in the negative regulation of

IgE production and airway responsiveness (145). Moreover, gd T cells

deficient mice are naturally hyperresponsive upon airway challenge

(146). However, the regulatory properties of these lymphoid cells are

subject to debate since they have generally been described under

certain conditions uniquely as these cells can paradoxically also

promote Th2 responses (144, 147).
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A subset of regulatory innate lymphoid cells (ILCreg) that produce

IL-10 have been described in mouse and human intestine (148). These

cells play regulatory role in intestinal homeostasis akin to Treg cells (148).

In the lung, RA was shown to convert ILC type 2 (ILC2, i.e. IL-5 and IL-

13-producing ILC) to IL-10-producing ILCreg (149).
Epithelial cells

Epithelial cells are key cells in the maintenance of pulmonary

homeostasis. Besides their physical role in immune regulation,

epithelial cells can communicate with innate immune cells to

mount adapted immune responses or to dampen them. Indeed,

their production of cytokines such as IL-33 and thymic stromal

lymphopoietin (TSLP) are responsible for the activation of different

innate immune cells (i.e. DCs and ILC2) that promotes the

development of immune responses (150–152). However, in link

with hygiene hypothesis, farm dust was reported to induce the

ubiquitin-modifying enzyme A20 in epithelial cells, modifying their

communication with DCs and thus protecting from allergy

development (153). Moreover, epithelial cells were shown to

intercommunicate with AM to reduce endotoxin-induced lung

inflammation (154) and to control inflammatory signaling through

signal transducer and activator of transcription (STAT) signaling

inhibition (155). The cross-talk between ILCs and epithelial cells is

also important to promote airway epithelial repair and lung tissue

homeostasis following acute lung damage (156).
Conclusions

Due to its permanent exposure to both innocuous foreign

antigens and immunostimulatory molecules, the lung has developed

mechanisms, which we called “CONTRA” mechanisms, to prevent

unwanted immune responses towards these harmless molecules

(Figure 2). Besides some lung immune cells, like IMs whose main

function known so far is dedicated to immunoregulation, most of the

lung cells display plasticity that enable them to exert regulatory

function under certain conditions while promoting immune
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responses in others. Even though progress has been made in our

understanding of mechanisms preventing the development of

unnecessary immune responses, all of these regulatory mechanisms

are probably far from being discovered. Indeed, cell types known as

pro-inflammatory ones for decades (e.g. eosinophils) are more and

more reported with regulatory functions. Future research should

allow a better understanding of these immune brakes and could

therefore be beneficial for the development of therapeutic strategies

against lung diseases.
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84. Henry E, Desmet Cj., Garzé V, Fiévez L, Bedoret D, Heirman C, et al. Dendritic
cells genetically engineered to express IL-10 induce long-lasting antigen-specific tolerance
in experimental asthma. J Immunol (2008) 181:7230–42. doi : 10.4049/
jimmunol.181.10.7230

85. Besche V, Wiechmann N, Castor T, Trojandt S, Höhn Y, Kunkel H, et al. Dendritic
cells lentivirally engineered to overexpress interleukin-10 inhibit contact hypersensitivity
Frontiers in Immunology 10
responses, despite their partial activation induced by transduction-associated physical
stress. J Gene Med (2010) 12:231–43. doi: 10.1002/jgm.1436

86. Bosteels C, Neyt K, Vanheerswynghels M, van Helden MJ, Sichien D, Debeuf N,
et al. Inflammatory type 2 cDCs acquire features of cDC1s and macrophages to
orchestrate immunity to respiratory virus infection. Immunity (2020) 52:1039–1056.e9.
doi: 10.1016/j.immuni.2020.04.005

87. Bajaña S, Turner S, Paul J, Ainsua-Enrich E, Kovats S. IRF4 and IRF8 act in CD11c
+ cells to regulate terminal differentiation of lung tissue dendritic cells. J Immunol Baltim
Md 1950 (2016) 196:1666–77. doi: 10.4049/jimmunol.1501870

88. Patel VI, Metcalf JP. Airwaymacrophage and dendritic cell subsets in the resting human
lung. Crit Rev Immunol (2018) 38:303–31. doi: 10.1615/CritRevImmunol.2018026459

89. Sichien D, Scott CL, Martens L, Vanderkerken M, Van Gassen S, Plantinga M, et al.
IRF8 transcription factor controls survival and function of terminally differentiated
conventional and plasmacytoid dendritic cells, respectively. Immunity (2016) 45:626–
40. doi: 10.1016/j.immuni.2016.08.013

90. Oriss TB, Ostroukhova M, Seguin-Devaux C, Dixon-McCarthy B, Stolz DB,
Watkins SC, et al. Dynamics of dendritic cell phenotype and interactions with CD4+ T
cells in airway inflammation and tolerance. J Immunol (2005) 174:854–63. doi: 10.4049/
jimmunol.174.2.854
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