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Cytotoxic T lymphocyte has been a concern for the etiopathogenesis of alopecia

areata (AA), some recent evidence suggests that the regulatory T (Treg) cell

deficiency is also a contributing factor. In the lesional scalp of AA, Treg cells

residing in the follicles are impaired, leading to dysregulated local immunity and

hair follicle (HF) regeneration disorders. New strategies are emerging to

modulate Treg cells’ number and function for autoimmune diseases. There is

much interest to boost Treg cells in AA patients to suppress the abnormal

autoimmunity of HF and stimulate hair regeneration. With few satisfactory

therapeutic regimens available for AA, Treg cell-based therapies could be the

way forward. Specifically, CAR-Treg cells and novel formulations of low-dose IL-2

are the alternatives.
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Abbreviations: AA, alopecia areata; APC, antigen-presenting cell; cAMP, cyclic adenosine monophosphate;

CAR, chimeric antigen receptor; CGRP, calcitonin gene-related peptide; CTLA-4, cytotoxic T lymphocyte-

associated protein 4; DCs, dendritic cells; EAE, experimental autoimmune encephalomyelitis; Foxp3,

forkhead box P3; GR, glucocorticoid receptor; GvHD, graft versus host disease; gp100, glucoprotein100;

HF, hair follicle; HFSC, hair follicle stem cell; ICOSLG, inducible costimulatory ligand; IDO, indoleamine 2,3-

dioxygenase; IL, interleukin; IP, immune privilege; JAK, Janus kinase; LAG-3, lymphocyte activation gene 3;

MC1R, melanocortin-1-receptor; MHC, major histocompatibility complex; NK cell, natural killer cell; pDCs,

plasmacytoid dendritic cells; T1D, type 1 diabetes; Tconv cell, conventional T cell; Teff cell, effector T cell; Treg

cell, regulatory T cell; TH17 cell, T helper 17 cell; TCR, T-cell receptor; TGF-b, transforming growth factor-

beta; TRP, tyrosinase-related protein; TSDR, demethylate the Treg cell-specific demethylated region; TYR,

tyrosinase; VIP, vasoactive intestinal peptide; a-MSH, alpha-melanocyte-stimulating hormone.
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Highlights
Fron
▪ Treg cells act as an indispensable component to maintain self-

tolerance and immune homeostasis.

▪ Defective Treg cells are a typical feature of almost all

autoimmune diseases, including AA.

▪ Skin-resident Treg cells are the HF-IP guardians. They

local ize to the HFSC niche and promote hair

regeneration, which is the basis for Treg cell-based

therapies for AA.

▪Antigen-specific Treg cells could be generated for trials of AA-

targeted therapy, and potential autoantigens need to be

identified urgently.

▪ Low-dose IL-2 in combination with other treatments is

expected to enhance the efficacy of therapy for AA.
Introduction

It is well acknowledged that alopecia areata (AA), which causes

non-scarring hair loss, is a T cell-mediated autoimmune

phenomenon affecting approximately 2% of the population (1, 2).

Patients with severe AA have poor quality of life and suffer from

high levels of anxiety and depression (3). Certain issues cause hair

follicle immune privilege (HF-IP) to fall apart, which is thought to

be the driver of AA (4). However, the exact pathogenesis of AA

remains to be fully characterized. The use of nonspecific

immunosuppressants were the mainstay of treatment for the

majority of AA patients in the past. Although novel therapies

have progressed rapidly in recent years (5), they are still

unsatisfactory and new treatment options are essential. New

evidence suggests that several other cells have been implicated

besides the “central players”, CD8+ T cells, such as T-helper (TH)

17 cells, natural killer (NK) cells, mast cells, plasmacytoid dendritic

cells (pDCs), and regulatory T (Treg) cells (6–9). Treg cell is one of

the regulatory lymphocyte subsets, maintaining self-tolerance and

immune homeostasis of the body. Interestingly, defects in Treg cell

function are strongly linked to various autoimmune disorders (10,

11) and AA is no exception (12). Therefore, by enhancing the

function of Treg cells, restoration of immune tolerance in patients

with autoimmune illnesses has now been achieved (13, 14), but for

AA, there are few relevant studies.

The current review focuses on Treg cells and their close

association with AA, and specific roles in HF have been discussed

with an emphasis on the therapeutic potential of Treg cells. We aim

to broaden the horizon of AA research and offer some suggestions

for therapeutic use.
Treg cell biology

Self-tolerance, the state of unresponsiveness to self-tissues

(antigens), is pivotal in the field of immunology. The breakdown
tiers in Immunology 02
of this state results in tissue inflammation and autoimmunity.

Central tolerance (recessive) and peripheral tolerance (dominant)

are the two mechanism categories (15). It is believed that regulatory

T cells, in particular, induce and maintain peripheral tolerance.

Early in the 1960s, neonatal mice with thymectomy were found

to have wasting syndrome, which closely resembles graft-versus-

host reactions (16). Further research suggested the existence of

“suppressor T cells” in lymphocytes (17–19), but the immunological

field remained skeptical of them (20). Until 1995, a subset of CD4+

T cells that constitutively express interleukin-2 (IL-2) receptor a-
chain (CD25) were first described by Sakaguchi et al. (21); these

CD4+CD25+ T cells potently repressed the function of conventional

T (Tconv) cells. The concept of regulatory T (Treg) cells was thus

formally put forward. However, as CD25 is upregulated in all

activated T cells, it is thought that CD25+ Treg cells are simply

Tconv in an active state. Finally, the forkhead box P3 (Foxp3)

discovery laid the foundation for Treg cell biology (22, 23). This

transcription factor is essential for the development, phenotype

maintenance, and activity of Treg cells (24–28). Since that, CD4/

CD25/Foxp3 have become reliable phenotypic markers to identify

Treg cells (in a narrow sense) and this field has been

facilitated largely.
Types of Treg cell

In fact, CD4+CD25+FOXP3+ Treg cells are just one of the classic

population of Treg cells. To date, several subsets of Treg cells have

been described. However, whether any definitive phenotypic

marker exists remains controversial (29, 30). The terms of these

subsets are not uniform and oftentimes confusing. A

recommendation has been proposed to simplify the nomenclature

but limited progress has been made (31). Some researchers classify

them according to their developmental origin: thymus-derived Treg

(tTreg) cells and peripherally derived Treg (pTreg) cells (32, 33).

Others divide them into natural Treg (nTreg) cells and induced Treg

(iTreg) cells (34, 35), and still, others argue that there are three

subgroups of Treg cells, namely, nTreg cells, pTreg cells, and iTreg cells

(36, 37). Undoubtedly, both nTreg cells and pTreg cells refer to

CD4+CD25+FOXP3+ Treg cells (29, 33), which are naturally

occurring Treg cells derived from the thymus as a separate lineage.

They are induced by the thymus’s TCR signal and costimulatory

molecules (36, 38). These CD4+CD25+Foxp3+ Treg cells constitute

5%–10% of CD4+ T cells (34, 39). pTreg cells develop from naïve

CD4+ T cells in the periphery after contact with antigens and in the

presence of specific factors such as transforming growth factor-beta

(TGF-b) and IL-2 (29, 40). Some of them circulate through the

blood and peripheral lymphoid organs. While others exist in non-

lymphoid tissues, these Treg cells are what we commonly call “tissue

Treg cell” or “tissue-resident Treg cell” (this notion was advanced in

2009) (41). Moreover, these cells fit the criteria for effector memory

cells (CD45RO+); thus, they are also named memory Treg cells (42).

The iTreg cells could be induced by TGF-b in vitro (36, 37). Many

researchers conflate the latter two and regard them as “iTreg cells”;

hence, it is not easy to understand whether they are referring to the

Treg cells generated in vitro or in vivo.
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Regarding the function of these subsets, it was not initially

thought that iTreg cells had sufficient suppressive activity compared

to nTreg cells (35, 43) due to the loss of Foxp3 expression in iTreg

cells, resulting from failing to fully demethylate the Treg cell-specific

demethylated region (TSDR). Then, by exploring the plasticity and

stability of iTreg cells (34, 40), recent studies have established the

position of iTreg cells in immunological tolerance. More details of

the types of Treg cells have been summarized (30, 44); no further

description will be given here, and they are also not strictly

differentiated in this review for the convenience of follow-

up discussion.
Mechanisms of Treg cell-mediated
suppression

Treg cell-mediated suppression serves as a vital mechanism for

negative regulation of immune-mediated inflammation. There are

concise descriptions of the three main categories of

mechanisms involved.

1. Cell–cell contact. Treg cells constitutively express cytotoxic T

lymphocyte-associated protein 4 (CTLA-4). CTLA-4 competes with

CD28, a T-cell costimulatory molecule, for CD80/CD86 on antigen-

presenting cells (APCs) and downregulates expression of the latter,

resulting in the inhibition of Tconv cells (45, 46). Furthermore,

CTLA-4 upregulates indoleamine 2,3-dioxygenase (IDO), resulting

in cell cycle arrest and increased sensitivity to apoptosis in effector T

(Teff) cells, and dysfunctional APCs (47, 48). Like CTLA-4,

lymphocyte activation gene 3 (LAG-3) is highly expressed on the

surface of Treg cells, which inhibits the function of dendritic cells

(DCs) (49, 50). Moreover, Treg cells could directly induce apoptosis

of target cells via cell contact, attributing to their release of cytotoxic

factors such as granzymes (51, 52).

2. Secretion of inhibitory cytokines. Treg cells secrete some

inhibitory cytokines such as IL-10, TGF-b, and IL-35, which

suppress both Teff cells and APCs. Major histocompatibility

complex (MHC) class II molecules of APCs are downregulated in

the presence of IL-10 (53). TGF-b may inhibit T cells and (or)

maintain Foxp3 expression in Treg cells (54), and IL-35 could reduce

T-cell proliferation (55).

3. Metabolic disruption of Teff cells. Treg cells scarcely produce

IL-2 but consume IL-2 from the surroundings via their high-affinity

IL-2 receptor, resulting in cytokine deprivation-induced apoptosis

of Teff cells (56, 57). Besides that, Treg cells express CD39 and CD73,

which generate adenosine and cyclic adenosine monophosphate

(cAMP); the former could increase intracellular cAMP of Teff by

adenosine receptor 2A, disrupting their metabolism (58, 59).
Treg cells in alopecia areata

Presumptive T cell-mediated autoimmune illness of the skin

with destruction to the hair follicle (HF) is known as alopecia areata

(AA). However, the pathobiology of this chronic, relapsing hair-loss

disorder is not entirely known. IFN-g, IL-15, and CD8+NKG2D+ T

cells have long been identified as the core contributors to
Frontiers in Immunology 03
pathological processes, but numerous studies have shown that

they are not the only drivers and several other cell populations

may be the new “player”. Treg cells, regulating the immune response

and maintaining peripheral tolerance. Thus, an important new

frontier is the role of regulatory lymphocytes in maintaining the

HF immune privilege (HF-IP). Meanwhile, the discovery of tissue-

resident Treg cells will give us a thorough grasp of Treg cells’ roles in

HF. Although the mechanism of Treg cell weakening in AA has not

been illuminated, it may be an exciting subject for future studies. To

avoid redundancy, we will analyze the contributions of Treg cells in

AA pathogenesis.
Impaired Treg cells

Many previous studies have revealed defects in the frequencies

and functions of Treg cells in virtually all the common systemic

autoimmune disorders (11, 60, 61), but little is known about AA. A

genome-wide association study in AA identified several genes

controlling the activation and proliferation of Treg cells (62). With

the growing appreciation of Treg cells, related articles have been

published. Circulating Treg cells from AA patients have been found

to have impaired inhibitory activity (63). In other words, Teff cells

are relatively dominant. Some researchers proposed that the

imbalance between TH17 cells and Treg cells is crucial in

the pathogenesis (64–66). However, some of the results in the

literature are controversial. Two excellent reviews (67, 68) gave an

overview of Treg cells in autoimmune skin diseases including AA,

vitiligo, psoriasis, and systemic sclerosis. Interestingly, almost all of

them were linked to abnormal Treg cell function. Thus, there is a

reasonable prospect that it may be a “universal law” in the

pathogenesis of the autoimmune disease. This raises a question:

why does the imbalance occur? Next, we seek to offer a perspective

of Treg cells in lesional HF.

Gilhar et al. (69) theorized that the IFN-g “storm” and CD8+ T

cells might break the delicate balance of immune cells, and that

there will be tremendous and complex cytokines in the

environment after the HF under immune attack (Figures 1A, B).

TGF-b and IL-6 together stimulate the development of pathogenic

TH17 cells from naive T cells, and IL-6 can inhibit the production of

Foxp3+ Treg cells generated by TGF-b (70). Moreover, due to the

plasticity of Treg cells, IL-6 and IL-1b could also reverse their

suppressive function or result in their conversion to TH17 cells

(29, 71). This phenomenon has been demonstrated in some other

disorders (72–74). Considering that some reports on AA found that

the percentage of circulating Treg cells was normal, Treg cells’

intrinsic defects may be another main reason, such as defects in

suppression, survival, or stability. As we mentioned earlier, CD39 is

a key component in Treg cell suppressive machinery. However, there

was significantly reduced CD39 and HLA-DR expression on

circulating Treg cells and HF Treg cells in AA patients, and Hamed

et al. (12) speculated that impaired Treg cell function is mainly due

to a defect in cell–cell contact and CD39-mediated suppression. The

opposite is true in most cancers (75). CD39+ Treg cells are strong

suppressors of TH17 cells and NK cells in antitumor immunity (76,

77). Moreover, Conteduca et al.’s study suggested that Foxp3 and
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inducible costimulatory ligand (ICOSLG) polymorphisms may

predispose to AA by decreasing its mRNA expression (78), which

is due to the destruction of the stability of Treg cells. In conclusion,

there could be many reasons for defective Treg cell suppression.
Skin-resident Treg cells: “HF-IP guardians”
localize to the HFSC niche?

IP was proposed in the 1940s as a relative and dynamic special

status of self-tolerance, which occurs in tissues and organs including

the eye, testis, heart valves (79–81), and, of course, HF (82, 83).

There are at least two distinct areas of relative IP in HF: anagen hair

bulb and the bulge region (4). Mechanisms of HF IP (these two IP

areas are slightly different) are thought to downregulate the

expression of MHC I and b2-microglobulin (84), and the

secretion of immunosuppressive cytokines and neuropeptides (“IP

guardians”) such as TGF-b1/2, IL-10, alpha-melanocyte-

stimulating hormone (a-MSH), calcitonin gene-related peptide

(CGRP), and vasoactive intestinal peptide (VIP) (85–87). Anagen

hair follicles’ immune privilege maintaining mechanism collapses in

patients with AA, but the cause is a matter of debate (88). Recently,

there has been a suspicion that Treg cells may also be a type of key

HF-IP guardian. Perifollicular Treg cells create a local

immunoinhibitory environment to maintain HF-IP. This

peripheral tolerance is critical for HF because some HF-associated

antigens are not expressed in the thymus (89).

One of the most important advances in this topic concerns

tissue-resident Treg cells, a special population of Treg cells. Tissue-

resident Treg cells populate specific peripheral tissues in the body,

performing non-immunological functions and being devoted to
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maintain tissue homeostasis and wound repair (29, 90–93). Skin is

the largest organ and is home to a large proportion of the body’s

tissue-resident Treg cells, and skin-resident Treg cells are beginning

to be understood (42, 94, 95). They predominantly reside in the

dermis (96) and promote wound healing and tolerance to the skin

microbiota (97–99). Surprisingly, skin-resident Treg cells

preferentially localized to hair follicles and were most abundant

in the scalp and face (with high hair follicle density), whereas Tconv

cells displayed a more diverse distribution (42).

Furthermore, Ali et al. found that follicular Treg cells of mice

reside within 0–5 mm of bulge hair follicle stem cells (HFSCs) (9).

We are aware that HFSCs are responsible for the cyclic proliferation

of hair follicles, so do skin-resident Treg cells control hair growth via

HFSC? Inevitably, the authors further demonstrated that skin-

resident Treg cells with Jagged 1 expression promote HFSC

proliferation and differentiation to drive HF cycling through the

Notch signaling pathway. A new study reported that glucocorticoids

induce glucocorticoid receptor (GR) in skin-resident Treg cells to

produce TGF-b3, which activates HFSCs and promotes hair

regeneration (100). Given that HF is a sophisticated mini-organ

of the skin and offers a “niche” for stem cells (including HFSC)

(101), some investigators suggested that skin-resident Treg cells

might occupy a specialized HFSC niche (9, 102). Almost all Treg

cells (greater than 95%) in human skin have an effector memory

phenotype (42); that is to say, a substantial part of Treg cells in HF

promote both immunosuppression and HF regeneration

(Figure 1C). Actually, the dual role of skin-resident Treg cells has

been proposed by Maryanovich et al. (103). Taken together, given

the HF damage is reversible in AA, we believe that protecting and

restoring the functioning skin-resident Treg cells might be the

cornerstone of AA management.
A

B

C

FIGURE 1

Great importance of Treg cells in AA. (A) The anagen HF of AA patients. (B) There are tremendous amounts cytokines in the HF after immune attack.
IL-6 inhibits the generation of Foxp3+ Treg cells induced by TGF-b and induces the differentiation of pathogenic TH17 cells. IL-6 and IL-1b could
reverse Treg cells’ suppressive function or result in their conversion to TH17 cells. Some issues lead to intrinsic defects of Treg cells such as loss of
expression of CD39 and Foxp3. Eventually, impairment of Treg cells contributes to the imbalance of immunocyte populations including CD8+ T cells/
Treg cells and TH17 cells/Treg cells. (C) Skin-resident Treg cells have dual roles in maintaining immune homeostasis as HF-IP guardians and localizing
in the HFSC niche to drive the cyclic growth of HF. (Figure1 created with BioRender.com).
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Treg cell-based therapies:
Opportunities or challenges?

To date, the majority of traditional treatments for AA are of

limited efficacy (especially unsustainable remission) with a high risk

of adverse effects (5, 104, 105). As an established therapy withmarked

curative effect, corticosteroids (including topical, intralesional, and

systemic therapy) have been widely used to treat AA (106).

Nevertheless, they could increase the risk of folliculitis and skin

atrophy (105, 107). Methotrexate and cyclosporine may cause more

severe systemic adverse effects. Allergic reactions in the form of severe

dermatitis, lymphadenopathy, and urticaria are often associated with

contact immunotherapy (105). Minoxidil as a monotherapy might be

insufficient to achieve obvious hair regrowth (108). As for innovative

strategies, Janus kinase (JAK) inhibitors appear to be most successful

(109–111), while further large-scale studies are required to confirm its

safety and durability (112, 113). Therefore, seeking new ways is highly

desirable for patients suffering from AA. Notably, it has been widely

accepted that AA is an autoimmune disease (114–117), although this

concept remains a hypothesis (autoimmune target antigen has yet to

be defined) and even a few people challenge it (69). AA is also related

to various other autoimmune disorders (118). In fact, Treg cell-based

therapies have emerged as a new avenue in various human

autoimmune disorders, which aim to restore balanced immunity.

As Treg cells are important regulators of HFSC function, Treg cell-

based therapies could be a type of treatment that stimulates HF

regeneration. Here, we will review some existing related studies and

discuss the prospects and challenges of Treg cell-based AA therapies.
Antigen-specific Treg cells as
“living drug”

The impact of AA is frequently underestimated and perhaps

dismissed as only a “cosmetic problem” (116, 119). Coupled with

the high price of cell products, little attention has, to our knowledge,

been paid to cellular therapy for AA, but that could be the way to go.

Previously, adoptive transfer of polyclonal Treg cells has been

investigated extensively; these trials fully demonstrate its

feasibility and safety (120–122). However, polyclonal Treg cells

have been limited by the difficulty in producing quantities

sufficient for clinical use and systemic immunosuppression (such

as inadvertent suppression of immune responses to infection or

malignancies) (68, 123), while antigen-specific Treg cells could

overcome these difficulties. They migrate to lesions and respond

to their cognate antigen to provide more effective protection from

autoimmune activity (124–127). Chimeric antigen receptor (CAR)

and T-cell receptor (TCR) could redirect Treg cells. Specifically,

unlike TCR-Treg cells, CAR-Treg cells can bypass HLA restriction

(128, 129) and target more flexibly (antigens recognized by CARs

also include non-protein and soluble targets) (130, 131). Expectedly,

CAR technology might be available to AA.

Except for graft versus host disease (GvHD, with a very clear

target), selecting a suitable antigen is critical when constructing a

CAR for most autoimmune diseases, although this process is time-
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consuming and sometimes difficult (129, 132). Owing to the great

efforts of researchers, a variety of CARs have been developed and

show great potential for treating various diseases in preclinical

studies. Elinav et al. (133) were one of the first to develop a CAR to

cure mouse colitis. MacDonald and colleagues (134) transduced

human Treg cells with a CAR that targets the HLA-A2 and found

that A2-CAR-expressing Treg cells ameliorated the progression of

GvHD in a mouse model. CAR-Treg cells have also been reported to

be engineered with specificity for myelin oligodendrocyte

g l y copro t e in to pr even t expe r imen ta l au to immune

encephalomyelitis (EAE, a model relating to multiple sclerosis in

humans) (135). Excitingly, CAR-Treg cells have been tested in

studies on autoimmune skin disorders. A recent study described

the curative effect of CAR-Treg cells targeting ganglioside D3 to

provide antigen-specific immune tolerance for vitiligo (136).

Furthermore, the UK and US authorized the first CAR-Treg cell

clinical trial (STEADFAST, NCT04817774) for kidney transplant

patients (137, 138).

Regrettably, owing to the hurdle that the exact HF autoantigen

(s) is still disputed, there is hardly any research on the therapeutic

use of CAR-Treg cells for AA. Given the frequent clinical

observations that AA seems to target gray hairs rather than

pigmented hairs and nonpigmented hair regrowth, melanocyte

antigen epitopes have long been suspected as potential targets

(139–143), such as tyrosinase (TYR), tyrosinase-related protein-1

(TRP-1), TRP-2, glucoprotein100 (gp100, premelanosome protein

analog), Melan-A (also known as melanoma antigen recognized by

T cells 1 Leu27 analog, MART-1), and melanocortin-1-receptor

(MC1R) (140, 144). Why hair loss happens rather than just graying

could not be proven. That is to say, the destruction of melanocytes is

only part of the story of immunoreactive HF. Our recently

published review (145) argued that melanocytes might only be

the initiating factor of autoimmune attack. Wang et al. (146)

deduced that activated CTLs secrete multiple inflammatory

cytokines harmful to keratinocytes even without direct cell–cell

contact. IFN-g upregulates MHC I and MHC II molecules in HF,

potentially triggering antigen presentation in other cell populations.

Many researchers have discovered keratinocyte-derived

autoantigens, such as trichohyalin (expressed in the growing HF’s

inner root sheath) and keratin (expressed in the anagen HF pre-

cortical zone) (146–148). Although the authors speculated that

these proteins were the major autoantigens in human AA,

definitive evidence is lacking. We think that the above elusive

melanocyte- and keratinocyte-targeting antigens should be used

to exploit CAR-Treg cells and initially investigate their effects on AA

in animal models because of their great significance: some

autoantigens of AA could be confirmed on the one hand, and the

effectiveness of CAR-Treg cells could be examined on the other

hand (Figure 2A).

Specifically, for CARs, the following aspects need to be

considered. In general, increasing CAR’s specificity could enhance

Treg cells’ effect. As a result, most people focused only on mono-

specific CAR-Treg cells, which sometimes fall short of our

expectations. For example, some scientists generated a CAR

against human insulin and found that the Treg cells were

suppressive and long-lived, but did not prevent type 1 diabetes
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(T1D) in mice (149). Mohseni et al. provided a new perspective in

their review (138); the methods of implementing universal

recognition of CAR-Treg cells were summarized: mixing CAR-Treg

cells against different antigens, constructing a Treg cell with several

CARs or one multi-specific CAR against different antigens, and

building UniCAR-Treg cells. Perhaps, these novel CAR-Treg cells

targeting multiple antigens in HF will make a difference, which

awaits confirmation. It should be pointed out that choosing the

appropriate costimulatory domain is also crucial. The costimulatory

domains of CAR-Treg cells currently used are the same as those used

in conventional CAR-T cells, but they could result in different

effector functions (150). A typical example is that 4-1BB may reduce

the suppressive function of CAR-Treg cells (151, 152). This means

that CD28 instead of 4-1BB should be considered the costimulatory

domain of CAR-Treg cells for AA. The relevant mechanism needs to

be better understood; perhaps the presence of one or several

costimulatory domains contributes to the optimal function in AA.

All in all, the identification of the specific autoantigen(s) is a

prerequisite for targeted therapy. Only our comprehensive

knowledge about the target antigens in AA could open the door

to antigen-specific Treg cell therapy for it.
Induction of Treg cells in vivo:
Low-dose IL-2

As an alternative strategy for Treg cell transfer, some agents

could also increase Treg cell numbers and support Treg cell function.

Compared to transferring living cells, this approach will bring two

obvious advantages: improved cost-effectiveness and lower risk for

adverse events. In a deeper sense, for AA, these therapeutics may

induce naïve T cells to develop into Foxp3+ Treg cells to re-establish
Frontiers in Immunology 06
immune homeostasis and activate skin-resident Treg cells to

promote HF regeneration in the lesional scalp.

Nowadays, there are lots of existing therapeutic agents that

target Treg cells, such as IL-2, TGF-b, rapamycin, or CTLA-4Ig.

Foxp3 expression and histone acetylation are induced by TGF-

signaling (153–155). The PI3K–AKT–mTOR axis activation is a

crucial negative regulator of Treg cells (156, 157), and rapamycin

could promote the Treg cell expansion (158–161). IL-2 is the most

widely used during the last couple of years. Treg cell activation and

proliferation highly depend on IL-2 production, mainly by Tconv

cells, a key mechanism to prevent T cells’ overexpansion (162–164).

Tconv cells can be induced to express Foxp3 in the presence of IL-2

(43, 165), whereas anti-IL-2 antibodies could impair Treg cells (166).

In vivo, IL-2 is crucial for Treg cell survival, proliferation, and

stability (167–169), suggesting that IL-2 is an important agent for

regulating Treg cells.

Encouragingly, some promising data have been achieved with

IL-2 to treat AA. Subcutaneous injection of low-dose recombinant

IL-2 allowed the recruitment of Treg cells inside the lesional scalp

skin in four of five patients with severe AA refractory to prior

systemic therapies, as shown by Castela et al. (170), but the

remaining patient did not show improvement. In addition to AA,

low-dose IL-2 has positively affected other autoimmune diseases,

including systemic lupus erythematosus, T1D, hepatitis C virus-

induced vasculitis, and immune thrombocytopenia (171–175).

Theoretically speaking, Treg cells can efficiently compete for a

limited amount of IL-2 with effector cells because the former

expresses a higher-affinity IL-2 receptor, and is sensitive to low

levels of IL-2 (56, 176, 177). However, the dose of IL-2 should be

treated with caution, because its slight increase could activate

conventional memory T cells and NK cells, namely, off-target

complications (172, 178). Patients must be administered IL-2
A

B

FIGURE 2

Possible Treg cell-based therapies for AA. We classified possible Treg cell-based therapy into two groups: cellular therapy and non-cellular therapy.
(A) Cellular therapies such as adoptive transfer of CAR-Treg cells that could target dual (or multiple) potential antigens on melanocytes and
keratinocytes with appropriate costimulatory domains should be tried. (B) Non-cellular therapies mainly work by inducing Treg cells; novel
formulations of IL-2 are constantly being developed and they could be combined with other drugs such as JAK inhibitors and IL-15 blockers to
enhance the efficacy. (Figure2 created with BioRender.com).
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regularly and at short intervals because of its short half-life (179).

Consequently, the IL-2 therapy protocol in AA should be optimized

in Castela et al.’s study. To address the drawbacks of utilizing pure

IL-2, many investigators have improved IL-2 therapy. For example,

controlled release formulations (IL-2/TGF-b1/rapamycin) (180),

dual-acting cytokine fusion protein (IL2-EHD2-sc-mTNFR2)

(181), long-lived IL-2 mutein [IgG-(IL-2N88D)2] (182), and IL-2/

UFKA-20 complex (183) have been developed successively. These

novel formulations achieved superior Treg-expanding properties

and selectivity.

Recently, some negative results attracted our attention. In 2020,

43 adult patients with severe AA completed a multicentric

randomized placebo-controlled trial with a 52-week follow-up

period (184). Unfortunately, despite significantly increasing

peripheral Treg cells due to IL-2 therapy, these patients failed to

achieve noticeable hair regrowth. The authors hypothesized that the

limitation of increasing Treg cells only to the naïve subset (without

skin-homing capabilities) is partly responsible for poor efficacy. Not

coincidentally, another study reports a similar phenomenon: the Treg

cells of mice injected with the IL-2 cytokine antibody complex

(consisting of human IL-2, anti-hIL-2 antibody, and mouse IL-2

Fc) were 8–10 times higher than those of the control group. However,

this administration cannot reverse AA on the established mouse

model (185). As the authors note, the treatment of IL-2 confronted

the problem of whether combination therapy is needed. Indeed, co-

medication has shown promise in other autoimmune diseases (186).

The IL-2 therapy combined with the application of JAK inhibitors

(187, 188), blocking IL-15 transpresentation (189), and more would

be worth investigating in future studies (Figure 2B). Additionally,

Ferreira et al. (131) suggested that IL-2 therapy could be combined

with cellular therapy of Treg cells. Three clinical trials are currently

testing whether this hypothesis could increase efficacy in T1D

(NCT02772679), steroid-refractory chronic GvHD (NCT01937468),

and amyotrophic lateral sclerosis (NCT03241784), which could also

provide us some insight.
Conclusions

Autoimmune disorders go together with the impairment of Treg

cells. Suppressing abnormal autoimmunity by boosting Treg cells in

patients is a rational approach. An increasing number of clinical

trials on them are being conducted to evaluate safety (including

possible side effects) and efficacy. Although the pathogenesis of AA

remains incompletely understood, Treg cells have been considered

to be involved. It should be pointed out that many questions need to

be answered: “what is the exact autoantigen of AA?”, “do

autoantigen responses play a primary role in AA pathobiology?”,

“are the defects of Treg cell the cause or effect of HF-IP collapse?”,

and so on. However, this does not deny the strong link between Treg
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cells and AA. Treg cells play a major role in establishing and

maintaining local self-tolerance as HF-IP guardians. Moreover,

recent studies on tissue-resident Treg cells revealed their unique

biological functions. In particular, Treg cells located in the HFSC

niche could promote hair follicle regeneration, allowing us to better

understand the greater potential of Treg cell-based therapies in AA

than other autoimmune skin diseases. Owing to its unique

pathophysiology, AA is difficult to manage medically. Despite the

promising drug JAK inhibitors, long-term efficacy is still limited.

Thus, there is no harm in conducting a Treg cell-based therapy

investigation; this work could guide clinical practice. We believe

that Treg cell-based therapy is the next logical step for AA

management, which ultimately may improve patient outcomes.
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