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The NLRP1 inflammasome in
skin diseases
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Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
Healthy human skin is constantly exposed to sterile andmicrobial agents. The skin

immune system plays an important role in immune surveillance between

tolerance and immune activation. This is mainly mediated by neutrophils,

macrophages and most importantly lymphocytes. Keratinocytes, which form

the outer skin barrier (epidermis) are also critical for cutaneous homeostasis.

Being a non-professional immune cell, recognition of danger signals in

keratinocytes is mediated by innate immune receptors (pattern recognition

receptors, PRR). While Toll-like receptors are located on the cell membrane or

the endosomes, nucleotide-binding domain and leucine-rich repeat containing

gene family receptors (NLR) are intracellular PRRs. Some of these, once activated,

trigger the formation of inflammasomes. Inflammasomes are multiprotein

complexes and serve as platforms that mediate the release of innate cytokines

after successful recognition, thereby attracting immune cells. Moreover, they

mediate the pro-inflammatory cell death pyroptosis. Best characterized is the

NLRP3 inflammasome. The function of inflammasomes differs significantly

between different cell types (keratinocytes versus immune cells) and between

different species (human versus mouse). In recent years, great progress has been

made in deciphering the activation mechanisms. Dysregulation of

inflammasomes can lead to diseases with varying degrees of severity. Here we

focus on the structure, function, and associated pathologies of the NLRP1

inflammasome, which is the most relevant inflammasome in keratinocytes.

KEYWORDS

inflammasomes, nucleotide-binding domain and leucine-rich repeat containing gene
family, interleukin-1b , caspase-1, keratinocytes, skin, innate immunity,
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From the scratch

Keratinocytes not only form the outer structural barrier of human skin but also express

molecules that are actively involved in immune responses, such as the secretion of

proinflammatory cytokines (1). The recognition of molecules frequently found in

pathogens (pathogen-associated molecular patterns [PAMPs]) or non-microbial danger-

associated molecular patterns (DAMPs) is sensed by pattern recognition receptors (PRRs)

on the surface or intracellularly (2–4). While Toll-like receptors are located on the cell

surface or the endosome, intracellular recognition of danger signals triggers the activation
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of nucleotide-binding domain and leucine-rich repeat containing

gene family receptors (NLR) (formerly referred to NOD-like

receptors) (5, 6). Some extracellular stimuli such as ATP or

Flagellin can activate NLRs via specific receptors, while NLRs,

such as NLRP1 and NLRP3 can form intracellular protein

complexes, so-called inflammasomes. Inflammasomes activate

caspase-1, which cleaves cytokines of the innate immune system

(mainly IL-1b and IL-18). Once being unconventionally secreted,

these cytokines induce a cascade which attracts immune cells (7, 8).

Additionally, inflammasome activation can initiate a lytic form of

cell death called pyroptosis (9, 10).

All known inflammasomes usually consist of an intracellular

sensor (NLRP1, NLRP3, NLRC4, AIM2, Pyrin or CARD8) and can

recruit a proinflammatory caspase (cysteine protease). Some require

an additional adaptor protein to be able to bind caspases via CARD-

CARD interactions, and can therefore be viewed as a cytosolic hub

that recognizes a signal and subsequently triggers an inflammatory

response (8, 11–16).

After activation by stress or danger signals, oligomerization

with the adaptor molecule ASC (apoptosis-associated speck-like

protein containing a CARD) occurs. As the ASC specks can be

visualized in the cytosol, this is used as a read-out for

inflammasome activation (17–19). ASC consists of one caspase

recruitment domain (CARD) and one pyrin domain (PYD).

Through its CARD domain, ASC interacts with pro-caspase-1,

which in turn leads to dimerization of the caspase with

subsequent self-activation (12, 20, 21). In humans, 12

inflammatory caspases have been identified, distinguishing

initiator and effector caspases (the latter involved in apoptosis)

(22). Caspase-1, the most well characterized inflammatory caspase,

is expressed as an inactive pro-caspase-1 consisting of a CARD

domain and subunits p20 and p10 (catalytically active domains).

Dimerization and autoproteolytic processes induce its activation

and the cleavage of the N-terminal CARD domain (23–26).

Substrates of active caspase-1 are pro-IL-1b and pro-IL-18, which

are cleaved into their biologically active forms (27). Furthermore,

caspase-1 processes Gasdermin D (GSDMD), which is incorporated

into the cell membrane leading to pyroptosis via pore formation.

Secreted and activated proinflammatory cytokines can enter the

extracellular component, bind to their receptors, and attract

immune cells. The loss of membrane integrity, possibly due to the

formation of GSDMD pores in organellar membranes, contributes

to pyroptotic cell death (28, 29).

In the past years, inflammasomes have been studied mainly in

immune cells (macrophages or dendritic cells) where NLRP3

(nucleotide-binding domain and leucine-rich repeat pyrin domain

containing protein 3) was the focus of interest due to its

involvement in neurodegenerative or cardiovascular diseases and

cancer (30–32). Additionally, other NLRP3-associated hereditary

autoinflammatory syndromes from the group of cryopyrin-

associated periodic syndromes including Muckle-Wells-

Syndrome, familial cold autoinflammatory syndrome and chronic

infantile neurological cutaneous articular syndrome have been

classified (33). However, inflammasomes are also expressed in

epithelial cells such as keratinocytes. Here, NLRP1 (nucleotide-

binding domain and leucine-rich repeat pyrin domain containing
Frontiers in Immunology 02
protein 1) appears to play a central role (34–36). Innate cytokines

(IL-1a, IL-1b and IL-18) are constitutively expressed in

keratinocytes, unlike in myeloid cells. For this reason,

keratinocytes do not need a priming step by PAMPs (LPS) or

cytokines (TNF-a, IFN-g or IL-1) to induce pro-IL1 cytokines or

the NLRs (37–40). In this review, we present the basic features of the

structure and function of the NLRP1 inflammasome to understand

the pathogenesis of cutaneous diseases in particular.
From form to function

Human NLRP1 (hNLRP1) consists of an N-terminal pyrin

domain (PYD) followed by a NACHT domain and leucine-rich

repeats (LRRs). At the C-terminal end of hNLRP1 there is a

function-to-find domain (FIIND) and a CARD (Figure 1A) that

are autoproteolyzed between the ZU5 and UPA subdomains (43,

44). Constitutive autoproteolysis between the two subdomains is

required for NLRP1 activation, but is not sufficient on its own (45,

46). Despite constitutive autoproteolysis, the amino-terminal

fragment of NLRP1 (N-NLRP1) remains associated with the C-

terminal effector fragment (C-NLRP1), promoted by interaction

with dipeptidyl peptidase (DPP) 9 (47, 48). Activation signals such

as UVB (38) induce the proteosomal degradation of N-NLRP1,

which thus can no longer inhibit the C-NLRP1. The CARD-domain

of C-NLRP1 recruits ASC and caspase-1 to form the NLRP1

inflammasome (49).

In contrast to humans, mice express two NLRP1 paralogs

(NLRP1a and NLRP1b) and one pseudogene (NLRP1c) all of

which lack the N-terminal PYD domain (Figure 1A) (50, 51).

Interestingly, UVB irradiation of murine keratinocytes does not

lead to inflammasome activation; expression of pro-IL-1ß and

NLRP1 is only marginal (52). Unlike human keratinocytes, which

secrete IL-1ß upon UVB irradiation, this appears to be mediated by

a yet unidentified cell type. Therefore, murine models investigating

NLRP1-activation might not be transferable to the human system.

Murine NLRP1b is activated by bacterial enzymes, as for example

the E3 ubiquitin ligase IpaH7.8 of Shigella flexneri or the protease

lethal factor of Bacillus anthracis (53, 54).

In contrast to murine keratinocytes and human myeloid cells,

human keratinocytes do not require an initial “priming” signal but

can be activated directly by one stimulus. Among the best studied

activation mechanisms are (i.) proteolytic processes, (ii.) DPP9

inhibition, (iii.) double-stranded RNA, and (iv.) phosphorylation

(35). Briefly, the human rhinovirus (HRV) 3C protease cleaves

hNLRP1 between the PYD and NACHT domains and subsequently

the newly formed amino terminus of NLRP1 is ubiquitinated and

degraded by the proteasome (55). NLRP1 is also activated by the

anticancer drug talabostat (Val-boroPro, PT-100) (56). At steady

state DPP9 binds to one fragment of N-NLRP1 and two fragments

of C-NLRP1. Talabostat releases C-NLRP1 from DPP9, leading to

proteasomal degradation of N-NLRP1 (47, 48, 57, 58). Double-

stranded RNA (dsRNA) from alphaviruses can bind to the LRR

domain, most likely leading to a conformational change of N-

NLRP1 and proteasomal degradation and consequently activation

of C-NLRP1 (58). UVB and certain bacterial toxins activate the
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ribotoxic stress response (RSR) and in turn induce NLRP1

phosphorylation between PYD and NACHT domains via ZAKa
(a MAPK kinase activated by the RSR) and downstream p38.

Phosphorylation results in ubiquitination and proteasomal

degradation of N-NLRP1 (55, 59).

In summary, similarly to the NLPR3 inflammasome in myeloid

cells, the NLRP1 inflammasome in keratinocytes is activated by a

variety of microbial or sterile danger signals, leading to de-

stabilization of the N-terminal fragment of NLRP1 and, in turn,

driving NLRP1 activation (Figure 1B). As inflammasome activation

leads to the secretion of highly potent pro-inflammatory innate

cytokines, all inflammasomes are strictly regulated. Dysregulation

of inflammasomes of their downstream receptors or their

antagonists sometimes leads to severe diseases. While a putative

involvement of NLRP3 in numerous pathologies have been

described for NLRP3 in recent years (Figure 1C), the exact role of

NLRP1 or inflammasomes in the human skin immune system in

vivo is poorly understood and needs further investigation.
From health to disease

The intrinsic inborn function of inflammasomes is to maintain

the balance of the organism in the defense against pathogens or
Frontiers in Immunology 03
non-microbial danger signals (60). Impairment of inflammasome

regulation is known in many common and less common diseases in

the human system. There are diseases which are associated with

certain inflammasome subtypes. NLRP3 inflammasome for

example is associated with frequent diseases such as

artherosclerosis and Alzheimer’s disease, most probably activated

during the frustrated phagocytosis of cholesterin or fibrillar b-
amyloid proteins (31, 61). Once activated, the secretion of IL-1b
perpetuates inflammation.

When looking at inflammasome-associated diseases, it becomes

obvious that there are above mentioned tissue-specific differences in

function, as organ-specific symptoms can occur without a systemic

impairment (62). As stated above, NLRP1 is the most prominent

inflammasome sensor in the skin (63). Its function is not strictly

linked to the innate immune system, as common inflammatory skin

diseases (e.g. psoriasis and atopic dermatitis) are associated with the

NLRP1 inflammasome and more importantly proinflammatory

cytokines from IL-1 family (36, 60, 64–66). Atopic dermatitis is a

prototypical disease that is shaped by genetic and environmental

influences. A single nucleotide polymorphism (SNP) in the NLRP1

gene from Swedish patients with atopic dermatitis was classified as a

possible susceptibility for the occurrence of a disease manifestation,

although not the only contributing factor (67). Similarly, SNPs in the

NLRP1 gene have been studied in patients with psoriasis vulgaris and
A

B C

FIGURE 1

Inflammasome activation in myeloid cells and keratinocytes and their domain structure. Domain structure of human and murine NLRP1 (nucleotide-
binding domain and leucine-rich repeat [NLR], pyrin domain [PYD] containing protein 1), NLRP3 (NLR family PYD domain containing protein 3),
NLRC4 (NLR family caspase CARD [Caspase recruitment domain] domain containing protein 4), AIM2 (Absent in melanoma 2). GSDMD, gasdermin D
(A). Activation signals lead to oligomerization of the sensor (NLRP1/NLRP3) with ASC and caspase 1. Self-activation of caspase 1 and subsequent
activation of pro-IL-1b and pro-IL-18. Pore formation in the cell membrane allows secretion of mature IL-1b and IL-18. Myeloid cells (C), unlike
keratinocytes (B), do not constitutively express pro-IL-1b and pro-IL-18 and therefore require a priming step (41, 42).
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have shown a strong association with disease susceptibility (68). In

addition, the impaired endogenous production of IL-1 by

keratinocytes also seems to play a role in the pathogenesis of

psoriasis. Here, the dysbalance of the skin microbiome could be

identified as a main cause (36, 69). A closer look at autoimmune

diseases reveals the double-edged role of inflammasomes. On the one

hand, activation is important for pathogen and sterile defense,

especially at border surfaces, such as the epithelia of the skin and

the gastrointestinal tract; on the other hand, overactivation and

dysbalance can lead to disease manifestation in almost any organ

[reviewed in (60)]. With regard to the skin, a classic inflammasome-

associated disease is vitiligo, a multifactorial disease that is based on

abnormal melanocyte function. Several SNPs in the NLRP1 gene were

reported to be associated with vitiligo (70) and patient-derived

monocytes were shown to secrete increased amounts of IL-1b upon

activation (71). A putative role of IL-1 cytokines is also described in

systemic lupus erythematosus (72, 73), leprosy (74, 75), oral

pemphigus vulgaris (76) and Addison’s disease (hyperpigmentation)

(77, 78). However, some of these studies lack the clear demonstration

of the functional pathogenetic role of NLRP1, as they only describe

genetic findings in the way of SNPs.

A functional connection between diseases and inflammasomes

was shown in autoinflammatory diseases, where the term

inflammasomopathies was shaped. It is an emerging group of

multisystemic diseases characterized by elevated levels of

proinflammatory cytokines in the serum, some of which present

with cutaneous symptoms (79–82) . Several of those

autoinflammatory diseases with skin manifestations have been

described in which germline-activating mutations in the

inflammasome sensor NLRP1 are present. Depending on the site in

which the mutations occur, clinical pictures vary from localized

cutaneous symptoms to accompanying systemic reactions with fever

(63). In multiple self-healing palmoplantar carcinoma (MSPC), gain-

of-functions are present in the pyrin domain of NLRP1 (63). Clinically,

ulcerated, hyperkeratotic nodules termed keratoacanthomas are seen

predominantly on the palmoplantar skin as well as on the conjunctiva

and corneal epithelium. These lesions normally regress spontaneously

but can predispose to the development of squamous cell carcinoma

(SCC), demonstrating a link between inflammasome and

carcinogenesis. Another disease with gain-of function mutations in

the LRR domain of NLRP1 is familial keratosis lichenoides chronica

(FKLC), in which affected individuals show disseminated lichenoid

papules predominantly on the extremities and trunk. In both cases, the

mutations lead to a loss of the autoinhibitory effect in NLRP1 with a

consecutive increase in proinflammatory cytokines (63). Secretion of

IL-1 cytokines implies the release of further proinflammatory

cytokines and growth factors creating a proinflammatory milieu.

This manifests in focal epidermal hyperplasia and hyperkeratosis,

one of the morphological hallmarks of psoriasis (63, 68).

A further disease called NLRP1-associated autoinflammation

with arthritis and dyskeratosis (NAIAD) is coined by a mutation

between the NACHT and the LRR region or in the FIIND domain.

It is accompanied by systemic reactions, especially fever, and high

levels of proinflammatory cytokines in the blood (83).

A promising therapeutic approach in treatment of systemic

autoinflammatory syndromes used in clinical practice is the
Frontiers in Immunology 04
blockade of the IL-1 pathway. Here, three modalities are available:

the IL-1 receptor antagonist anakinra, the fusion protein rilonacept

or canakinumab, a human monoclonal antibody directed against

IL-1b (84–86).

The last two decades elucidated several diseases associated with

mainly NLRP3 inflammasome dysregulation or IL-1 production

and it remains to be found out why certain inflammasome subtypes

lead to a distinct clinical picture. Although NLRP1 is also highly

expressed in myeloid cells, the germline mutations have a more

severe phenotype in the skin compared to systemic functions (63). It

is still currently under investigation if this might be due to

unknown, non-specific mutations, e.g. in non-coding areas or

through post-translational modifications.

There is also growing evidence of overlapping autoimmune-

autoinflammatory mechanisms. Innate and adaptive immune

processes cannot be strictly separated from each other, precisely

because they show similarities in the pathophysiology of clinically

different diseases (87).

Gain-of function mutations in NLRP1 inflammasome

demonstrate the link between inflammasome dysfunction and

carcinogenesis (63). Inflammation and recognition of tumor cells

by the immune system is crucial to control tumor growth. In clinical

practice, inducing inflammation is used to treat superficial non-

melanoma skin cancer (88). However, proinflammatory processes

also drive tumorigenesis, for instance in lichen planus or chronic

wounds (89). UVB radiation is the major risk factor for

nonmelanoma skin cancer (90) as well as a known activator of

the NLRP1 inflammasome in human keratinocytes leading to

secretion of proinflammatory cytokines (38). Additionally, it

results in decreased levels of anti-apoptotic proteins (Bcl-2 and

Bcl-XL) (91). Other recent reports present downregulation of

inflammasome components in SCC, which may contribute to

tumor progression, especially at later time points (92). One might

postulate different functions of innate immunity or inflammasomes

at different stages of disease progression. In tumorigenesis,

inflammation might favor tumor progression, while once the

tumor is established, innate immunity might control tumor

growth or even induces tumor regression. The proinflammatory

anti-carcinogenic effect of inflammasomes is also exploited in the

topical therapy of early SCC or its precursor, actinic keratosis.

Imiquimod which is used as a topical treatment is both an activator

of TLR7 and of NLRP3 (93, 94). In primary malignant melanoma, a

pro-tumorigenic role of the NLRP3 inflammasome was shown (95),

while anti-apoptotic influence of the NLRP1 inflammasome seems

to play a role particularly in metastatic malignant melanoma (96).

Besides the previously discussed cancers, rare mutations

associated with DPP9 deficiency should also be mentioned. Here,

not only immunological and neurological deficits, but skin changes

can also occur in the setting of DPP9 deficiency (97). In addition, a

mutation leading to impaired binding of DPP9 to the

inflammasome, resulting in loss of autoinhibition with enhanced

activation was recently described (16). The clinical relevance

and the question of why NLRP1 deficiencies or functional

disorders lead to isolated skin manifestations is still the subject of

current research.

For an overview of the diseases mentioned, see Figure 2.
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From now to future

Since the discovery of inflammasomes in 2002 (8) there have

been major advances in understanding how PAMPs and DAMPs

are recognized by the immune system and how it triggers both

innate and adaptive inflammation. Likewise, during the past two

decades, the impact of IL-1, inflammatory caspases or

inflammasomes on various human diseases, such as gout,

arteriosclerosis, pyoderma gangrenosum became more apparent,

with a still growing list of diseases (62). The investigation of the

activation and regulation of inflammasomes at molecular levels is

most advanced in monogenic hereditary syndromes described

above, where a targeted treatment is now possible (98). The effect

of anti-IL-1 treatments in other non-monogenetic disorders is still

under investigation (99). However, some essential questions have

not yet been answered. With regard to the skin, no physiologically

relevant activator of NLRP1 inflammasomes has been identified so

far, apart from UVB (38). In the future, it will be important not to

overlook the role of commensal microorganism on the skin and

their secreted products (such as metabolites but also secreted

colonization/virulence factors). A challenge will be to differentiate

the effect of commensals or pathogens on the NLRP1

inflammasome in the skin. Microbe-specific virulence factors

could have distinct effects on the fine regulation of inflammasome

activity. It is yet cryptic if NLRP1 activation in keratinocytes itself,

the subsequent activation of inflammatory caspases or the secretion

of innate cytokines impair the skin barrier or induce the

recruitment of inflammatory cells to the epidermis. As the skin is

involved in most of the “inflammasopathies” and inflammasome

activation was reported in various diseases, NLRP1 inflammasome

might be a promising pathway to develop targeted therapies. Future
Frontiers in Immunology 05
inflammasome studies should primarily be investigated in the

human model to depict physiological conditions.
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FIGURE 2

Overview of NLRP1-associated diseases with primary cutaneous manifestation or associated cutaneous clinical symptoms. The primary genesis may
be inflammatory, autoimmune, autoinflammatory, and cancerogenic. There is overlap between the different entities, which can lead to symptom
complexes that are not clearly assignable diagnostically and therapeutically. [FKLC, familial keratosis lichenoides chronica; MSPC, Multiple Self-
Healing Palmoplantar Carcinoma; NAIAD, NLRP1- associated autoinflammation with arthritis and dyskeratosis; SLE, systemic lupus erythematodes].
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