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Inborn errors of immunity (IEIs) are a group of inherited disorders caused by

mutations in the protein-coding genes involved in innate and/or adaptive

immunity. Hematopoietic stem cell transplantation (HSCT) is a mainstay

definitive therapy for many severe IEIs. However, the lack of HLA-matched

donors increases the risk of developing severe immunological complications.

Gene therapy provides long-term clinical benefits and could be an attractive

therapeutic strategy for IEIs. In this review, we describe the development and

evolution of clustered regularly interspaced short palindromic repeat (CRISPR)/

CRISPR-associated proteins (Cas) gene-editing systems, including double-

strand break (DSB)-based gene editing and DSB-free base editing or prime

editing systems. Here, we discuss the advances in and issues associated with

CRISPR/Cas gene editing tools and their potential as therapeutic alternatives for

IEIs. We also highlight the progress of preclinical studies for the treatment of

human genetic diseases, including IEIs, using CRISR/Cas and ongoing clinical

trials based on this versatile technology.
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1 Introduction

Inborn errors of immunity (IEIs), also known as primary immunodeficiencies (PIDs),

are a group of inherited disorders caused by monogenic mutations in encoded proteins

involved in immune responses. IEIs have been considered rare diseases with an overall

estimated prevalence of approximately 1/10,000 to 1/50,000; however, along with the

continued discovery of novel IEIs, the prevalence of these diseases appears to have been

underestimated by 10-fold, with IEIs actually affecting more than 1 in 1000 to 1 in 5000

births (1). The advent and application of next-generation sequencing has expedited the

discovery of novel gene defects that affect the development and function of the innate or

adaptive immune system (2). Currently, 430 distinct immunological disorders caused by
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known genetic defects have been identified, and they have diverse

underlying manifestations, such as susceptibility to infections,

allergy, autoimmunity, autoinflammation, and malignancy (1, 3).

Patients bearing a disease-causing mutation that disables the

immune system usually suffering from life-threatening infectious

disease, early diagnosis and proper management are of paramount

importance to prevent the development of complications, especially

for those with severe complications. The development of high

throughput sequencing technologies and advances in diagnostic

methods have resulted in a growing number of IEIs could be

identified in pediatric age (4). The treatment options for IEIs

include small-molecule inhibitor administration, immunoglobulin/

enzyme replacement therapy, hematopoietic stem cell transplantation

(HSCT), and gene therapy. These treatments have developed rapidly

based on remarkable biotechnological advances capable of

characterizing their molecular mechanisms (5). Small molecule

inhibitors like ruxolitinib, a Janus kinase (JAK) family protein

tyrosine kinase inhibitor, has been successfully applied in treatment

of infections caused by gain of function (GOF) mutations of signal

transducer and activator of transcription (STAT1) (6, 7). Intravenous

or subcutaneous injection of immunoglobulin improves the immune

phenotype of patients with absence of B cells or deficient antibody

production (8–10). Enzyme replacement therapy (ERT) with the

form of polyethylene-glycol-modified ADA (PEG-ADA)

administration displayed significant clinical improvement in

adenosine deaminase-deficient severe combined immunodeficiency

(ADA-SCID) patients (11–13). Targeted drugs ameliorate the clinical

symptoms of an IEI, however, the effects are often poorly sustained

and substantial treatment burdens are heavy over life-long

medication. Recently, HSCT has been the mainstay definitive

therapy for severe combined immunodeficiency (SCID) and other

severe forms of IEIs. HSCT from a well-matched donor can lead to a

lifelong cure for more than 90% of SCID patients, who subsequently

present very robust and long-lasting immune reconstitution (14, 15).

However, the availability of HLA-matched donors is limited for a

significant number of patients. Moreover, HSCT using an HLA-

mismatched donor increases the risk of developing severe

immunological complications, such as graft-versus-host disease

(GvHD) and infections (16–18). Considering the pathogenic

mutations of coding genes, gene therapy can provide long-term

clinical benefits and thus represents an attractive therapeutic strategy.

Gene therapy for IEIs has been developed to provide an

autologous HSCT option by adding a normal copy of the

responsible disease-related gene or correcting the mutation in the

patient’s own HSCs. For loss-of-function mutations, viral vector-

mediated gene augmentation, which provides the correct copy of

defective genes, can be used for gene therapy. Gamma retroviral

vectors were used as delivery vectors in early clinical trials for gene

therapy of IEIs, including ADA-SCID, X-linked SCID (X-SCID),

Wiskott–Aldrich syndrome (WAS), and X-linked chronic

granulomatous disease (X-CGD) (19–27). To prevent insertional

oncogenic mutagenesis, self-inactivating (SIN) lentiviral vectors

have been developed and become the most commonly used

vectors for insertion of therapeutic genes into hematopoietic stem

and progenitor cells (HSPCs) in both research and clinical trials for

some IEIs, including X-SCID, ADA-SCID, X-CGD, and WAS (18,
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28, 29). For gain-of-function (GOF) mutations or genes that require

precise regulation, in situ correction of the pathogenic mutations is

needed and gene editing systems provide useful tools to revise GOF

mutations. Here, we describe advances in precise genome editing

using the lustered regularly interspaced short palindromic repeat

(CRISPR)/CRISPR-associated proteins (Cas) gene editing system

and reveal the great potential of CRISPR/Cas-based gene therapy

for the treatment of IEIs. In this review, we focus on DNA editing

using CRISPR/Cas; thus, RNA editing will not be included.
2 Gene editing systems mediate
efficient and precise genome editing

Targeted genome editing introduces stable genetic

modifications at sites of interest using engineered nucleases.

Methods for eukaryotic genomic manipulation have evolved

rapidly over the past decade. Programmable nucleases, including

zinc-finger nucleases (ZFNs), transcription activator-like effector

nucleases (TALENs), and CRISPR/Cas, are three popular nucleases

that have been engineered to induce double-strand breaks (DSBs) at

specific endogenous gene loci to enable targeted genome

manipulation. DSBs can be repaired by the error-prone non-

homologous end joining (NHEJ) pathway, which often results in

nucleotide insertions or deletions (indels), thus inactivating the

gene, or by the homology-directed repair (HDR) pathway, which

enables gene correction or insertion of a transgene when a

homologous donor DNA template is provided (Figure 1).

Compared with ZFNs and TALENs, which recognize target

sequences through protein-DNA interactions, CRISPR/Cas

genome editing systems are RNA-guided nuclease target

sequences based on RNA-DNA base pairing. For each new target

site, ZFN and TALEN require the engineering of a new protein,

whereas the CRISPR/Cas system can be reprogrammed simply by

RNA redesign, thus offering distinct advantages.
2.1 Gene editing based on DSBs induced by
CRISPR/Cas

CRISPR/Cas systems function as adaptive immune systems in

bacteria and archaea and have been exploited for biological research

and translational applications. The widely used CRISPR/Cas9 and

CRISPR/Cas12 systems belong to the class 2 CRISPR/Cas system,

which employs single large effector proteins with multiple domains

for nucleic acid cleavage (30). In the CRISPR/Cas9 system, target

DNA is cleaved by the formation of ribonucleoprotein complexes

with CRISPR RNAs (crRNAs) and trans-activating crRNAs

(tracrRNAs) in their native context, whereas in genome editing

applications, the tracrRNA and crRNA complexes have been

engineered as single guide RNA (sgRNA) chimeras to facilitate

simple and versatile genome manipulation (31). Two distinct

nuclease domains of Cas9, the HNH nuclease domain and RuvC-

like nuclease domain, are responsible for the cleavage of the guide

RNA–bound target DNA strand and the protospacer adjacent motif
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(PAM)-containing non-target DNA strand, respectively (31, 32).

Inactivation of either domain abolishes the nuclease activity of Cas9

and generates a nickase, while the simultaneous inactivation of both

domains results in a catalytically dead Cas9 (dCas9) (3). Cas9

nickase (nCas9) has been applied to improve the targeting

precision of Cas9 by using paired nickases together with two

sgRNAs (33, 34), and precision genome editing tools have been

developed, such as base editors (BEs) and prime editors (35–37).

The sequence-specific DNA-binding property of dCas9 allows for

transcriptional regulation and epigenetic modification without

genetically altering the DNA sequence (38, 39) or chromosome

imaging in live cells (40). Moreover, dCas9 was harnessed to

increase the specificity of CRISPR/Cas9-mediated DSB formation

by fusing to the catalytic domain of Fok1 (41, 42). The presence of a

PAM sequence is critical for Cas protein binding, and a number of

Cas9 protein orthologs have been discovered to expand targeting

scope. For example, SaCas9 recognizes the NNGRRT PAM

sequence (43), CjCas9 recognizes the NNNNACA PAM sequence

(44), NmCas9 recognizes the NNNNGATT PAM sequence (45),

and ScCas9 recognizes the NGN PAM sequence (46). Compared

with Cas9, Cas12 possesses a single RuvC-like domain that cleaves

both the guide RNA complementary DNA strand and the

noncomplementary DNA strand (30). The CRISPR/Cas12 system

encompasses several sub-type effectors, many of which are guided

by a single crRNA, although some (such as Cas12b, Cas12c2, and

Cas12e) require both crRNA and tracrRNA for activation (47, 48).

Cas12a (formerly Cpf1) and Cas12b (formerly C2c1) are two Cas12

effectors that have been studied in detail. Cas12a is a single RNA-

guided endonuclease that recognizes a T-rich PAM sequence and

mediates robust DNA interference via a single RuvC catalytic

domain, and it has been widely used for genome editing

applications (49). Compared with Cas12a, Cas12b requires both

tracrRNA and crRNA for DNA cleavage. Guided by chimeric
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sgRNA, engineered Cas12b facilitates robust genome editing in

human cells and mice with high specificity (50, 51). Recently,

miniature Cas12f has been revealed as a compact nuclease with

high efficiency that offers more options for therapeutic applications

(52–54). For several Cas12 variants, RNA-guided target recognition

and binding unleash their robust, indiscriminate single-stranded

DNA or RNA cleavage activity (55, 56). This collateral cleavage

activity has facilitated the development of numerous strategies for

rapid nucleic acid detection and portable diagnosis (55, 57, 58).

Upon nuclease cleavage, two main DNA repair pathways, NHEJ

and HDR, are involved in the repair of nuclease-induced DSBs

(Figure 2, left panel). In most mammalian cells, error-prone NHEJ

is the predominant repair pathway, which often introduces indels at

sites of DSBs, resulting in the disruption of target gene sequences or

regulatory elements (59, 60). In some cases, indels resulting from

NHEJ are not sufficient to disrupt the function of gene clusters or

regulatory sequences; thus, large deletions are more desirable. Using

dual guide RNAs targeting adjacent regions of a chromosome

sequence, Cas9 nuclease can introduce two DSBs simultaneously,

which often leads to the deletion or inversion of the intervening

sequence (61, 62). By the delivery of Cas9 nuclease coupled with

paired sgRNAs flanking the mutated Dmd exon23, efficient target

sequence excision, and phenotypic restoration were achieved in the

mdx mouse model of Duchenne muscular dystrophy (DMD) (63).

CRISPR/Cas-mediated NHEJ exhibits great potential for the

correction of dominant-negative mutations underlying diseases.

Delivery of the CRISPR/Cas9:sgRNA complex through cationic

lipids into a mouse model of human genetic deafness disrupted the

dominant inherited mutation in Tmc1 and ameliorated the

pathogenic phenotype (64). The NHEJ repair process is fast and

flexible, and frameshifts resulting from indels are likely to generate

premature termination codons, which might lead to nonsense-

mediated decay of mRNA and prevent protein translation (65).
FIGURE 1

Programmable gene editing using ZFN, TALEN, and CRISPR. Upon cleavage of target DNA, DSBs induced by nuclease can be repaired by the error-
prone nonhomologous end joining (NHEJ) pathway which often resulting in nucleotide insertions or deletions (indels) thus disturb the target gene,
or by homology-directed repair (HDR) pathway which enables gene correction or insertion of a transgene when a homologous donor DNA template
are provided.
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Disruption of multiple genes simultaneously could be achieved

by simultaneously targeting multiple genomic loci (66, 67).

Although NHEJ mediates efficient gene disruption, the editing

results are usually uncontrollable due to the formation of indels at

sites of DSBs, which has hindered its broad application in

clinical transformation.

In the presence of a homologous donor template, the HDR

repair pathway can be initiated to insert a fragment of interest

through homologous recombination at a precisely targeted genomic

location. The HDR pathway competes with NHEJ for the repair of

nuclease-induced DSBs, and selection of a repair pathway is

influenced by many factors, such as the structure and sequence

context of cutting ends, the format of the donor template, the state

of the cell cycle, etc. (65). The donor template for HDR could be a

double-stranded DNA (dsDNA)-like plasmid donor or single-

stranded DNA (ssDNA), such as ssODN. ssDNA usually

mediates a more efficient HDR process, whereas dsDNA allows

for larger DNA fragment knock-in (68). With a proper donor, the

repair of CRISPR/Cas-induced DSBs by HDR can introduce a

variety of genome edits, including gene insertion or replacement

(69, 70). Compared with the NHEJ process, which is efficient in

most mammalian cells, HDR is inefficient and generally active only

in dividing cells; moreover, the frequency of intended sequence

insertion can be improved by synchronizing cells at the S and G2

phases using chemical factors (71). Efforts to improve the efficiency

of HDR include modifying the length and symmetry of homologous

arms, inhibiting the NHEJ pathway, or enhancing the HDR

pathway by manipulating core factors (72, 73).

CRISPR/Cas nuclease-mediated gene disruption is widely used

in biomedical research. Efficient and specific abrogation of protein

function is of particular interest in the study and treatment of
Frontiers in Immunology 04
genetic disorders caused by dominant-negative mutations.

HDR can be used to either insert a gene fragment into a specific

site or replace defective genes in situ. However, CRISPR/Cas9-

induced DSBs at a target locus often result in undesired mutations

and HDR appears to be inefficient in quiescent cell types. Moreover,

more than half of the known human pathogenic mutations are

point mutations (74); thus, alternative approaches that efficiently

and precisely install or reverse pathogenic mutations are

highly desirable.
2.2 Gene editing based on DNA base
editing systems

DNA BEs are mainly composed of a catalytically impaired Cas

nuclease and ssDNA deaminase enzyme. They enable efficient and

precise targeted base conversions at a single-base resolution without

producing DSBs or requiring a donor DNA template (74). DNA

BEs have been categorized into two major classes: cytosine BEs

(CBEs) and adenine BEs (ABEs), of which CBEs mediate C-G to T-

A base conversions using naturally existing cytidine deaminases

while ABEs mediate A-T to G-C base conversions through

revolutionized Escherichia coli tRNA adenosine deaminase TadA

(Figure 2, middle panel) (35, 36).

2.2.1 Development of DNA BEs
CBEs were first reported by Liu and co-workers in 2016 (35),

and base editor 1 (BE1) was developed by fusing a naturally existed

cytidine deaminase rAPOBEC1 to dCas9 (Cas9 variants containing

both D10A and H840A mutations). rAPOBEC1 catalyzes cytosine

(C) deamination into uracil (U), which is recognized as thymine (T)
FIGURE 2

CRISPR/Cas mediate efficient and precise genome editing. CRISPR/Cas nucleases generate DSBs upon target recognition, DSBs can be repaired
through NHEJ pathway to disturb the target gene, or through HDR pathway to enable targeted gene insertion or replacement. Base editing is
performed by a fusion complex of catalytically impaired Cas nuclease and a single strand DNA (ssDNA) deaminase enzyme. Base editing enabling
efficient and precisely targeted base conversion at single base resolution without producing DSBs or requiring a donor DNA template. Prime editing
requires a complex of Cas9 H840A nickase fused to an engineered reverse transcriptase enzyme as well as a pegRNA, enables base conversions,
insertions or deletions in a precise way.
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in base-pairing process; this results in the conversion of a C-G base

pair to T-A base pair. To elevate base editing efficiencies, uracil

DNA glycosylase inhibitor (UGI) was introduced into BE2 to

inhibit uracil N-glycosylase (UNG), which mediates base excision

repair (BER) of U-G mismatch, usually resulting in the reversion of

the U-G intermediate back to a C-G base pair. BE3 was generated by

replacing dCas9 of BE2 with an nCas9 (D10A mutation), which

specifically nicks the non-deaminated strand to induce mismatch

repair (MMR) process resulting in U-G mismatch transformation

into the desired T-A base-pair. BE3 is the first reported CBE that

enabled efficient C-G to T-A base conversions in mammalian cells

with an editing window at positions 4–8 (counting the first

nucleotide of the protospacer as position 1 with the PAM at

positions 21–23); a small frequency of indels was also observed

(35). Similar to cytosine that deaminates into uracil, deamination of

adenosine (A) yields inosine, which pairs with C and therefore is

recognized as guanine (G). To achieve A-T to G-C base conversion,

Liu’s group performed protein evolution and engineering of an

adenosine deaminase TadA due to the lack of any known natural

enzymes capable of acting on ssDNA (36). Following several rounds

of evolution, a TadA mutation (TadA*) was identified and fused to

nCas9 in a heterodimeric form (wtTadA-TadA* complex) to

generate ABE7.10. ABE7.10 enables efficient A-T to G-C base

conversion in mammalian cells with very high product purity and

very low rates of indels within an active editing window of positions

4–7 (counting the first nucleotide of the protospacer as position 1

with the PAM at positions 21–23) (36).

Both CBE and ABE are powerful tools for irreversible DNA base

transitions (A-G, C-T, G-A, and T-C) in various cell types. The

editing efficiency of BEs was continuously increased through linker

selection, additional UGI appending, nuclear localization sequence

modification, codon optimization, and Cas protein or deaminase

engineering (75–78). For example, BE4max and AncBE4max were

developed by optimization of the nuclear localization sequence and

codon usage, and ancestral reconstruction of the deaminase,

respectively (76). Joung and co-workers developed miniABEmax

by removing wild type TadA monomer and demonstrated that this

component is unnecessary for ABE activity (77). Further, ABEs

were considered to have poor compatibility with some Cas

homologs (such as Cas12). In contrast to CBEs, the developed

ABE8e through deaminase evolution exhibits substantially

improved editing efficiencies especially when paired with a variety

of Cas homologs (78). The invention of CBEs and ABEs has enabled

efficient base transitions (A-G, C-T, G-A, and T-C). Despite being

valuable, the utility of these two category BEs in correcting

pathogenic variants is hindered due to the inability of base

transversions. To achieve C to G base transversion in mammalian

cells, cytosine deaminase rAPOBEC1 and uracil excision-related

protein UNG were fused with nCas9 by researchers (79, 80).

Another group developed CGBE by the fusion of nCas9 with

rAPOBEC1 and base excision repair protein rXRCC1 to enable

efficient C-G base transversion in WCW, ACC, or GCT sequence

contexts with a precise editing window (81). To further expand the

editing competency of the system, dual-function BEs which enable

concurrent cytosine and adenine editing were developed by

simultaneously fusing cytosine and adenine deaminases into Cas9
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variants and applied in mammalian cells and plants (82–87). Most

recently, an adenine transversion base editor, AYBE, was developed

for A-C and A-T transversion editing in mammalian cells by fusing

an ABE with hypoxanthine excision protein N-methylpurine DNA

glycosylase (MPG) (88).

2.2.2 Improvements made for precise
base editing

The improvements of BEs for precise base editing have mainly

focused on several aspects, such as broadening the targeting scope,

enhancing product purity, reducing off-target activity, and others.

As mentioned above, BEs employ Cas proteins to localize

deaminases to the target regions, and target bases must be

positioned in the editing window to ensure efficient base editing.

Thus, the PAM availability together with the width of the editing

window determines the targeting scope of base editing. SpCas9

requires an NGG PAM for target DNA recognition and binding;

this PAM requirement restricts the target space of SpCas9 to every 8

bp on average in the human genome (66). To broaden the targeting

scope of BEs, other Cas orthologs and engineered Cas variants

recognizing different PAMs have been incorporated into BEs (75,

89–94). Among Cas orthologs, SaCas9 and ScCas9 are two smaller

Cas9 proteins, and BEs developed with these homologs should be

easier to deliver in vivo (75, 93). Engineered SpCas9 variants VQR-

Cas9, EQR-Cas9, VRER-Cas9, xCas9, SpCas9-NG, and Cas9-SpRY

with alternative PAMs have been employed to develop BEs (89–92).

In addition to pursuing PAM availability, altering the location and/

or width of the editing window by replacing Cas and/or deaminase

of BEs also expands the number of targetable sites. BEs with

different Cas proteins or deaminases possess different editing

windows. By combining pmCDA1 with nCas9, Nishida et al.

developed a cytosine base editing system named ‘Target-AID’ that

enabled targeted C-G to T-A base conversion in yeast and

mammalian cells with an editing window shift comparable to that

of BE3 (95). BEs with AID and A3A deaminases typically have

wider windows, and CBEs containing highly active deaminases,

such as human AID and some APOBEC3 family members, have

been developed to mediate base conversions with high efficiency in

different editing contexts (96, 97). The editing window of BEs

generated with circularly permuted Cas9 expanded from ~4–5

nucleotides to ~8–9 nucleotides while also retaining product

purity (98). Except for SpCas9 and engineered variants, the

editing efficiency of ABE variants developed with other Cas

enzymes is modest. The poor compatibility of ABEs has been

overcome through the evolution of ABE8, which exhibits

substantially improved editing efficiencies when paired with a

variety of Cas homologs, including Cas12 enzymes (78). By

combining the rapidly expanding Cas effectors with the growing

set of deaminases, the targeting scope of BEs has been

substantially expanded.

The product purity of base editing is a critical aspect that should

be considered when optimizing BEs, especially for therapeutic

applications. Ideal DNA BEs enable efficient and precise target-

base conversion without generating excess by-products, unexpected

edits, or detectable indels. Bystander editing occurs when multiple

editable nucleotides are present within the editing window because
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the deaminase of BEs can deaminate all cytosines or adenines

within the activity window. Due to degeneracy in the genetic

code, some bystander edits will result in a synonymous mutation,

whereas in some other cases, bystander editing results in amino acid

alteration and is often problematic. Engineered deaminase variants

with narrow activity windows or high sequence context dependence

have been integrated into BEs to reduce or avoid bystander editing

(77, 89, 97). The presence of unexpected edits caused by UNG-

mediated uracil removing reduces the product purity of CBEs;

additional expression or recruitment of UGI copies to the BE3

construct has been demonstrated to decrease unexpected editing

and increase editing efficiency (75, 99, 100). Editing by BEs can also

yield detectable indels due to the nicks formed on the deaminated

strand by DNA-(apurinic or apyrimidinic site) lyase (AP lyase) and

non-deaminated strand by Cas9 nickase; the two nicks may result in

a DSB which is likely to be repaired by indel-prone NHEJ process.

The Mu bacteriophage-derived Gam protein (Mu-GAM) binds to

the free ends of DSBs and protects them from degradation (101),

and fusing CBEs with Mu-GAM leads to substantial reduction of

indels in human cells, rabbit embryos, and human tripronuclear

(3PN) zygotes (75, 102, 103). Compared to CBEs, ABEs typically

exhibit high product purity as well as very low and often

undetectable indel frequencies, presumably because the removal

of inosine is substantially inefficient and causes fewer nicks in the

deaminated strand, resulting in fewer DSBs and indels (74).

DNA BE-induced off-target mutations have been reported

(104–106), and genome-wide and transcriptome-wide off-target

effects of BEs can occur in a Cas-dependent or Cas-independent

manner. The former is usually caused by the Cas effector and

sgRNA binding to sequences that are similar to the on-target locus,

and the latter is due to the overexpression of deaminases that can

randomly deaminate accessible nucleotides. To combat Cas-

dependent off-target effects, engineered Cas9 variants with high

fidelity, such as Cas9-HF and sniper-Cas9, have been incorporated

into CBE structures (107, 108). SgRNA truncation and deaminase

embedding have also been used to reduce the off-target editing of

BEs (96, 109). Cas-independent DNA off-target as well as RNA off-

target effects of CBEs can be ameliorated by engineering cytosine

deaminase to generate various high-specific deaminase variants. For

example, engineered rAPOBEC1 and human APOBEC3 family

members have been incorporated into CBEs to reduce Cas-

independent off-target effects (89, 110, 111). SECURE-BE3,

another CBE variant using engineered rAPOBEC1 to deaminate

cytosines, has been reported to reduce RNA off-target edits and

narrow the editing window (77). Additional deaminases have also

been identified and employed to generate next-generation CBEs

with minimal Cas-independent DNA and RNA off-target edits

(112). Although no genome-wide off-target A-T to G-C base

editing has been observed, ABE can create substantial off-target

edits on RNA (104, 105). Similar to CBEs, rational engineering of

adenine deaminase can minimize the Cas9-independent RNA

editing activity of ABEs (77, 111, 113, 114). Additionally,

delivering BEs as purified ribonucleoprotein (RNP) complexes

instead of DNA constructs to limit the exposure time of BEs

greatly decreases off-target editing while maintaining comparable

on-target editing (115).
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2.2.3 Base editing in inherited disorders
BEs utilize Cas effector-tethered nucleotide deaminases to induce

efficient target base substitutions at a single-base resolution without

introducing DSBs, which enables the use of base editing as a new

therapeutic option for disorders caused by point mutations. Numerous

studies have demonstrated the ability of BEs to correct pathogenic

mutations underlying various human genetic diseases, including

Duchenne muscular dystrophy (116), metabolic liver diseases (117,

118), hereditary deafness (64), progeria (23), Marfan syndrome (119),

sickle cell disease (120), b-thalassemia (121), among others. Efficient

modeling of pathogenic point mutations using BEs has also been

performed in cultured human primary cells (122), embryos (123, 124),

and various organisms, including mice (125), rabbits (102), pigs (126),

and non-human primates (127–129). In addition to modeling or

correcting human pathogenic point mutations, BEs can be used to

regulate gene expression in a more precise manner. By targeting CAA,

CAG, CGA, and TGG, CBEs can introduce premature stop codons,

which usually result in the degradation of the target mRNA via

nonsense-mediated decay (NMD), thus silencing gene expression

(130, 131). Gene expression can also be shut down by ABE-

mediated destruction of the start codon, ATG (132). Decreased

abundance of abnormally expressed proteins could palliate the

disease progress of these incurable disorders. In addition,

modification of alternative splicing sites (donor or acceptor) using

BEs facilitates selective skipping of mutation-containing exons while

maintaining the preferred normal isoforms for gene therapy (133).

A major application of BEs is modeling or correcting point

mutations underlying human genetic diseases along with the

engineering of deaminase enzymes as well as Cas effectors. The

editing characteristics of BEs, including the targeting scope, product

purity, and potential off-target edits, have been improved to a large

extent; thus, more BE variants with therapeutic potential are available.
2.3 Gene editing based on prime
editing systems

Although BEs have been considered a safer and more precise

genome editing tool, they can only mediate very limited editing

types. Prime editors (PEs) have emerged as a genome-editing

approach to enable all 12 types of base conversions, base pair

insertions or deletions, and even combinations without the

generation of DSBs in a targeted way (37). PEs are composed of

Cas9 H840A nickase fused to an engineered reverse transcriptase

(RTase) enzyme as well as a prime-editing guide RNA (pegRNA)

(Figure 2, right panel). The pegRNA contains an sgRNA sequence

for Cas9 targeting, a primer binding site (PBS) for RT initiation, and

an RT template with the desired edits. To achieve more efficient and

precise editing, an additional sgRNA (nicking sgRNA) has been

introduced into the PE3 and PE3b systems (37). Although PEs

enable precise genome editing with great versatility, the editing

efficiency among endogenous sites varies (134, 135). The design of

optimal pegRNAs plays a critical role in PE with high efficiency, and

numerous efforts have been made to improve the editing efficiency of

PE by modifying pegRNAs. For example, ePE was developed by

introducing multiple modifications to pegRNAs, which resulted in a
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marked increase in editing efficiency (136). Nelson et al. reported

pegRNAs with enhanced stability and improved editing efficiency,

and they did not show increased off-target editing activity (137).

xrPE presents substantially enhanced editing efficiency based on

appending an RNA motif to prevent pegRNA degradation (138). Li

et al. developed spegRNA and apegRNA to increase the PE base-

editing and indel editing efficiency by introducing same-sense

mutations into the RT template of pegRNA and altering the

pegRNA secondary structure, respectively (139). Modification of

pegRNAs with G-quadruplexes also effectively improved the editing

efficiency of Pes (140). PE4 and PE5 were developed by transient co-

expression of an engineered DNA mismatch repair inhibiting

protein MLH1 with PE2 and PE3, respectively (141), and further

optimization resulted in PEmax with enhanced PE performance.

Employing paired pegRNAs that target opposite DNA strands,

PRIME-Del has been reported to enable precise genomic deletions

of up to 10 kb, and extended expression of PE components can

substantially enhance efficiency without compromising precision

(142). Zhuang et al. reported an approach named HOPE in which

paired pegRNAs encoding the same edits in both sense and antisense

DNA strands were used to achieve high editing efficiency as well as

high editing purity (143). Using a PE protein and two pegRNAs,

twinPE enables efficient gene replacement or excision, large DNA

plasmid (>5,000 bp) integration, and targeted sequence inversions

(144). A similar strategy has been implemented to enable the donor-

free insertion of large DNA sequences by GRAND editing (145). PE-

Cas9-based deletion and repair (PEDAR) has been reported to

enable precise genomic deletion and replacement of genomic

fragments (146). Replacing SpCas9 H840A nickase with PAM-

flexible Cas9 variants has been reported to expand the editing

modality of PE (147, 148). By generating an all-in-one PE system

and a Cas9 nuclease instead of a nickase, Adikusuma et al. showed

improved editing efficiency in cultured cells and mouse zygotes

(149). Furthermore, for efficient and simple manipulation,

researchers have developed computational tools to design

pegRNAs or predict pegRNA efficiency (150–152). As a versatile

genome editing tool, PEs have been used in cultured mammalian

cells (37), plants (135), and model animals (134, 153, 154) to enable

the introduction of any small genetic mutation. The off-target effect

of PE is relatively low at the same target sites compared with that of

Cas9, which may be due to the two additional nucleic acid

hybridization steps (nicked target strand–PBS hybridization and 3′
flap–target strand hybridization) that are required for PE (96). Using

genomic and transcriptomic sequencing analyses, researchers

demonstrated that PE3 did not induce any pegRNA-independent

off-target mutations in mammalian cells or zygotes (155–157).
3 CRISPR/Cas based gene therapy
for IEIs

3.1 Progress in CRISPR/Cas gene therapy
for genetic diseases

CRISPR/Cas systems enable targeted genome manipulation in a

programmable and efficient manner and have remarkable potential
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for correcting mutations underlying human genetic diseases. Recent

progress in the development of advanced gene editing approaches

with high activity and precision has paved the way for theories to

enter practice.

CRISPR/Cas-mediated gene disruption may be useful for

removing disease-causing replicated fragments or GOF mutants.

Huntington’s disease (HD) is caused by a dominantly inherited

CAG repeat expansion in exon 1 of the huntingtin gene (HTT),

which can be removed through CRISPR-Cas9-mediated fragment

deletion in patient-derived fibroblasts and mouse models (158,

159). Mutations in the hemoglobin subunit beta gene (HBB),

which encodes b-globin, is related to hereditary anemias such as

sickle cell disease (SCD) and b-thalassemia. Re-expression of the

paralogous g-globin genes (HBG1/2) could ameliorate the severe b-
globin disorders. Diminishing the expression of the g-globin
transcriptional repressor or attenuating g-globin-to-b-globin
switching through CRISPR/Cas9-mediated gene disruption

resulted in increased g-globin expression, which ameliorated the

pathogenic phenotype (160–166). Clinical trials for the treatment of

patients with b-thalassemia and severe sickle cell disease by

transfusion of CRISPR/Cas-edited HSCs have been initiated and

have displayed exciting results (167, 168). Leber congenital

amaurosis 10 (LCA10) is a severe rare genetic eye disease caused

by mutations in the CEP290 gene, and SaCas9 was delivered in

conjunction with dual gRNAs into a human CEP290 IVS26 knock-

in mouse model by a single adeno-associated virus (AAV) to

remove the aberrant splice donor generated by the IVS26

mutation of the CEP290 gene (169). The genome editing

therapeutic EDIT-101 was initiated by Allergan and Editas

Medicine for the treatment of LCA10. By targeting misfolded

transthyretin (TTR), CRISPR/Cas9 has been used in the

treatment of transthyretin (ATTR) amyloidosis by targeting

mis fo lded t rans thyre t in (TTR) , and the sa fe ty and

pharmacodynamic effects of NTLA-2001 have been evaluated in

an ongoing clinical study (170). Splicing mutations responsible for

cystic fibrosis (CF) have been successfully repaired using CRISPR/

Cas-mediated sequence cleavage (171). CRISPR/Cas gene

disruption has also been applied in the treatment of inherited

liver diseases. Hereditary tyrosinemia type I (HTI) is a severe

inherited metabolic disorder caused by loss-of-function mutation

of FAH. Knocking out hydroxyphenylpyruvate dioxygenase (HPD,

an upstream enzyme of FAH) has been demonstrated to prevent

toxic metabolite accumulation and has been used to treat HTI

metabolic disease in Fah−/−mice (172). Disruption of GOF

mutations in alpha-1 antitrypsin (AAT) by CRISPR/Cas could

ameliorate the pathologic liver phenotype (173). Disruption of

proprotein convertase subtilisin/kexin type 9 (PCSK9) by

delivering CRISPR/Cas into the mouse liver resulted in significant

reductions in serum Pcsk9 and total cholesterol levels has been

observed (43, 174, 175). CRISPR/Cas-mediated frameshifts have

also been exploited to treat DMD, a progressive muscular dystrophy

caused by mutations in the dystrophin gene. Dystrophin expression

was rescued and the pathogenic phenotype was partially recovered

in DMD animals after local or systemic delivery of CRISPR/Cas

components (176–179). Transmembrane channel-like 1 (Tmc1)

mutation causes hearing loss, and cationic lipid-mediated in vivo
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delivery of Cas9:gRNA RNP complex in the humanized

transmembrane channel-like 1 (Tmc1) Beethoven (Bth) mouse

model ameliorated the pathogenic phenotype (64).

Replacement of a mutated sequence with the correct fragment

via the HDR pathway is an attractive strategy for gene therapy.

HDR-mediated gene replacement has been used to correct disease-

causing point mutations in the b-globin (HBB) gene in HSCs and

patient-derived HSPCs to treat b-thalassemia and sickle cell disease

(SCD) (63). Martyn et al. reported that the precise insertion of a

point mutation via CRISPR/Cas-mediated HDR creates a de novo

binding site for the transcriptional activator GATA1, which drives g-
globin expression and HbF production, thus providing a therapeutic

strategy for b-thalassemia (180). Successful modeling and correction

of human familial hypercholesterolemia, which causes point

mutations, through the CRISPR/Cas9-mediated HDR pathway

have been achieved (181). Using ssODNs as a homology donor,

gene correction was achieved in Cockayne syndrome (CS) or

amyotrophic lateral sclerosis (ALS) patient-derived induced

pluripotent stem cells (iPSCs) via the CRISPR/Cas9-mediated

HDR pathway (182, 183). Furthermore, HDR-mediated mutant

gene correction has also been reported in inherited liver diseases,

such as HTI and AATD (184–186). CRISPR/Cas HDR-mediated

corrections of pathogenic mutations in pre-implantation human

embryos have also been reported (187). However, the application

of HDR-mediated gene therapy is limited because this method is

confined to dividing cells and has a low editing rate and co-delivering

donor DNA with CRISPR/Cas components is difficult (188).

Compared with HDR, BE-mediated editing can be applied to

both dividing cells and terminally differentiated cell types in a

predictable manner. Researchers have delivered ABEs mRNA and

sgRNAs targeting Pcsk9 in vivo using lipid nanoparticles (LNPs) to

introduce PCSK9 loss-of-function mutations in living cynomolgus

monkeys, which resulted in significant reductions in the blood levels

of PCSK9 and LDL cholesterol (118, 189). Zeng et al. performed base

editing using purified A3A (N57Q)-BE3 protein with chemically

modified synthetic sgRNAs as RNP complexes targeting the

BCL11A erythroid enhancer for fetal hemoglobin (HbF) induction

in human CD34 HSPCs (190). By utilizing ABE8e-NRCH, Newby

et al. successfully converted an SCD-causing mutation into a

nonpathogenic variant in HSPCs derived from patients or

humanized SCD mice (120). Villiger et al. delivered SaKKH-BE3

through intravenous injection of dual-AAV plasmids into a PKU

mouse model to restore phenylalanine hydroxylase (PAH) enzyme

activity and revert the light fur phenotype in these animals (117).

Viral delivery of BE3 in utero resulted in long-term postnatal

persistence of edited cells and reduced plasma PCSK9 and

cholesterol levels (191). Song et al. delivered ABE into an adult

mouse model of HTI in a non-viral manner to correct a FAH point

mutation (192). Using a dual-AAV system, ABE was delivered to

muscle cells in a DMD mouse model to correct a nonsense mutation

in the dystrophin gene (116). Splice donor sites of the dystrophin gene

have been targeted using ABE in human iPSCs and transgenic mice,

and this process restores dystrophin expression (193). Efficient and

precise correction of pathogenic point mutations involving Marfan

syndrome, b-thalassemia, and lamellar ichthyosis has also been

performed in human embryos, thus demonstrating the feasibility of
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curing genetic diseases in human embryos by BEs (104, 119, 194).

Delivery of ABEs using a lentivirus to patient-derived fibroblasts or

administering AAV to a transgenic mice resulted in the substantial

direct correction of the pathogenic mutation underlying Hutchinson-

Gilford progeria syndrome (HGPS or progeria) (23). Delivery of BEs

into the mouse brain using dual AAVs successfully corrected a

mutation that causes Niemann-Pick disease type C, which slows

down neurodegeneration and increases lifespan (195). CRISPR DNA

BEs were designed to mediate irreversible base substitutions without

generating DSBs or requiring donor DNA; thus, in theory, they could

enable the manipulation of genomes in a safer and more precise

manner. However, BEs can only mediate limited types of editing,

while most known disease-associated genetic variants are specific

transversions, deletions, insertions, and others (37). Thus, genome

engineering tools that can install more types of genetic changes

are aspired.

In theory, PEs can correct up to 89% of pathogenic human

genetic variants reported in ClinVar (196). Schwank’s al. delivered

PE into a mouse model of phenylketonuria (PKU) to repair the

disease-causing Pahenu2 mutation via the human adenoviral vector

5 (AdV) (197). Utilizing a dual-AAV delivery system, Liu et al.

delivered a split-intein PE to enable the correction of AATD

pathogenic mutations in mouse liver (198). Zhi et al. developed a

dual-AAV delivery strategy that successfully delivered PEs into adult

mouse retina for Dnmt1 editing in vivo (199). Jang et al. reported

that PEs delivered by hydrodynamic injection and AAV enable

precise correction of disease-causing mutations and amelioration

of disease phenotypes in mouse models of HT1 and LCA without

detectable off-target edits (200). By introducing insertions, a PE-

mediated reframing strategy has been exploited to restore dystrophin

expression in human cardiomyocytes (193). PE-mediated correction

of pathogenic point mutations could also be performed in chemically

derived hepatic progenitors (CdHs) through a non-viral delivery

method to treat genetic liver disease (201). Schene et al.

demonstrated that PEs could functionally recover disease-causing

mutations in intestinal organoids from patients with DGAT1-

deficiency and liver organoids from a patient with Wilson disease

(ATP7B) (202). Using optimized PEs, Jiang et al. removed a 1.38-kb

pathogenic insertion within the Fah gene and precisely repaired the

deletion junction to restore FAH expression in the liver of a

tyrosinemia mouse model (146). PEs have also been utilized to

correct COL7A1 mutations in recessive dystrophic epidermolysis

bullosa (RDEB) patient-derived fibroblasts, and functional rescue

was observed (203). Correction of a disease-related mutation in a 1-

antitrypsin (A1AT)-deficient patient-derived induced pluripotent

stem cells (iPSCs) has been achieved, and guide RNA-independent

off-target mutations have not been detected in the genome (155).

Due to the large size of PEs, delivery efficiency as well as editing

efficiency may represent limitations that significantly impact the

therapeutic application of this technology.
3.2 CRISPR/Cas gene therapy of IEIs

As most IEIs are caused by loss-of-function mutations, a viral-

mediated gene addition strategy has been developed for T-cell
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therapies. A retroviral strategy was the first class used, and although

long-term immune reconstitution was achieved in patients

subjected to retroviral gene transfer, insertional mutagenesis and

oncogene transactivation associated with the use of retroviral

vectors were observed in gene therapy trials for X-SCID, CGD,

and WAS (204–207). To circumvent these adverse events, an

improved generation of gene delivery vectors, referred to as SIN

vectors, has been developed. Compared with gammaretroviral

vectors, which integrate primarily within transcriptional

regulatory elements, lentiviral vectors preferentially integrate into

active transcription units and, hence, have a better safety profile.

Furthermore, lentiviral vectors can be produced at much higher

titers and may enable effective transduction in a wide range of cell

types; thus, lentiviral vectors have become the most commonly used

vectors for the insertion of therapeutic genes into HSPCs in both

research and clinical trials (18, 28, 29). Lentiviral vector-mediated

gene transfer has been successfully applied in gene therapy for some

IEIs, including X-SCID, ADA-SCID, X-CGD, and WAS; moreover,

effective immune reconstitution has been observed and no adverse

events related to the vector have been reported in these clinical trials

(208–213). These positive results suggest that lentiviral-based gene

addition therapy provides sustained clinical benefits for patients

with IEIs. However, for genes involved in some IEIs caused by

dominant-negative mutations or those that require precise

regulation (e.g., forkhead box P3, FOXP3; Bruton tyrosine kinase,

BTK; CD40 ligand, CD40LG), gene augmentation therapy is not

appropriate; however, in situ correction of the endogenous defective

gene would allow for physiological regulation of gene transcription

and protein expression.

As a promising therapeutic approach for treating monogenic

hematological diseases, such as IEIs, CRISPR/Cas-mediated gene

disruption has been employed to generate animal models while

CRISPR/Cas-mediated gene replacement through HDR enables

precise correction of disease-causing genes. Targeted integration

of one correct copy of a gene of interest in its physiological

transcriptional regulation context is particularly important for the

treatment of disorders caused by mutations in tightly regulated

genes. The CRISPR/Cas-based gene therapy strategy has been

applied to the modeling and correction of many forms of IEIs,

including SCID, immune dysregulation, polyendocrinopathy,

enteropathy, X-linked (IPEX), X-linked MAGT1 deficiency with

increased susceptibility to EBV-infection and N-linked

glycosylation defect (XMEN), X-CGD, and WAS. Table 1 listed

known IEIs with CRISPR/Cas technology has been applied in

their studies.

SCID is the most profound IEI affecting cellular and humoral

immunity, and comprises a group of disorders caused by mutations

in genes involved in lymphocyte development. By employing Cas9-

mediated HDR strategy, Chang et al. achieved correction of JAK3

mutations in SCID patient-specific induced pluripotent stem cells

(iPSCs) and observed restoration of T cell development (214).

Recently, Iancu et al. reported a CRISPR-mediated multiplex

HDR strategy for disease modeling and correction in SCID

patient-derived HSPCs; biallelic knockout of genes was utilized to

generate a disease model while knockin/knockout strategy was used

for single-allelic gene correction (215). The most common form of
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SCID, X-SCID, is caused by mutations in the genes encoding

interleukin 2 receptor gamma (IL2RG). Integration of IL2RG

cDNA into the endogenous start site in human long-term

hematopoietic stem cells (LT-HSCs) using the CRISPR/Cas9-

mediated HDR strategy has led to the functional correction of

disease-causing mutations throughout the gene (216). In a

preclinical study, functional integration of IL2RG was achieved by

integrase-defective lentiviral vector (IDLVs)-mediated delivery of a

donor DNA template and sgRNA in SCID-X1–Cas9+/− HSPCs with

low cytotoxicity (217). In addition to treatment, CRISPR/Cas

technology has been used to generate SCID animal models,

including mice, rabbits, rats, pigs, and hamsters, for basic and

translational research (218–224).

IPEX syndrome is a monogenic immune disease caused by

mutations in FOXP3 that selectively affect the function of regulatory

T cells (Tregs). By combining the CRISPR/Cas9 system with a DNA

repair homology donor, Goodwin et al. enabled efficient and precise

insertion of the FOXP3 cDNA into the endogenous locus of patient

derived HSPCs, and the normal differentiation potential of edited

HSPCs was maintained both in vitro and in vivo in

immunodeficient mice (225).

XMEN is a recently described IEI caused by an X-linked

MAGT1 deficiency, and it is marked by defective T cells and

natural killer (NK) cells. Brault et al. reported an ex vivo targeted

gene therapy approach using an optimized CRISPR/Cas HDR

strategy to insert a therapeutic MAGT1 gene into the endogenous

locus, and it presented high genetic correction efficiency and

functional rescue in engrafted mice (226).

X-CGD is an immunodeficiency caused by mutations in the

CYBB gene, which encodes the gp91phox protein. CRISPR/Cas9-

mediated HDR was employed for CYBB gene correction in HSPCs

and functional restoration was achieved (227–229). Sweeney et al.

reported that targeted insertion of CYBB exon 2-13 by CRISPR/Cas

HDR at the endogenous CYBB exon 2 site in patient HSPCs fully

restored gp91phox expression and transient inhibition of the NHEJ

pathway increased the gene correction rate (228). De Ravin et al.

repaired a frequent mutation of the CYBB gene in HSPCs from X-

CGD patients through CRISPR/Cas9-mediated HDR with an

ssODN donor and achieved functional restoration up to 5

months after transplantation of the corrected HSPCs into NSG

immunodeficient mice (227). Gene replacement of CYBB exon 5

mutations using CRISPR/Cas HDR has also been administered

administrated in patient-derived iPSCs (229). To enable in vivo

assessments of gene and cell therapy strategies for treating CGD, a

mouse model of X-CGD was established using the CRISPR/Cas

system by targeting CYBB exon 1 or exon 3 (230).

Wiskott–Aldrich syndrome (WAS) is an X-linked recessive

immunodeficiency disease caused by mutations in the WAS gene

encoding WAS protein (WASp). Rai et el. inserted a therapeutic

WAS cDNA in-frame with its endogenous translation start codon

in patient-derived HSPCs via CRISPR/Cas9-mediated HDR, and

full rescue of WASp expression and correction of functional defects

were observed (231). Microinjection of Cas9 mRNA and a pair of

sgRNAs targeting exons 2 and 7 of WAS into rabbit embryos was

performed to generate a model exhibiting symptoms similar to

those of WAS patients for preclinical studies (232). In a proof-of-
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concept study, the WAS gene was disrupted in human primary T

cells using the CRISPR/Cas9 system through an advanced delivery

method (233).

X-linked hyper-immunoglobulin M (hyper-IgM) syndrome

(XHIGM) is an IEI caused by mutations in CD40 ligand (CD40L)
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that affect immunoglobulin class-switch recombination and somatic

hypermutation. Utilizing either the TALEN or CRISPR/Cas9

platforms, Kuo et al. integrated a normal copy of the CD40L

cDNA with the endogenous CD40L promoter to maintain the

physiological expression of CD40L in primary human HSCs and
TABLE 1 List of the known IEIs with CRISPR-Cas technology has been applied in their studies.

IEIs Genes Editing Strategy Target Cells Delivery Refs

XHIGM CD40LG CRISPR/Cas9 mediated integration of a normal copy of the CD40L
cDNA

HSCs, patient-
derived T cells

AAV6 (234)

XHIGM CD40LG CRISPR/Cas9 mediated insertion of a 5’‐truncated CD40LG cDNA
within the first intron of the endogenous gene

HSCs, patient-
derived T cells

AAV6 (235)

XLA BTK CRISPR/Cas9 mediated integration of a codon optimized BTK cDNA
into its endogenous locus

HSPCs, Jurkat, K562,
Ramos cells,

Electroporation, AAV6 (236)

XLP SH2D1A CRISPR/Cas9 or CRISPR/Cas12a drive insertion of SAP cDNA at the
first exon of the SH2D1A locus

PrimaryT cells Nucleofection, AAV6 (237)

SCID JAK3 CRISPR/Cas9 nuclease or CRISPR/Cas9 D10A nickase mediated HDR iPSCs Nucleofection (214)

SCID RAG2 CRISPR/Cas9 mediated multiplex HDR HSPCs AAV6 (215)

X-SCID IL2RG CRISPR/Cas9 mediated integration of a cDNA into the endogenous
locus

LT-HSCs AAV6 (216)

X-SCID IL2RG CRISPR/Cas9 mediated knock-in of a corrective IL2RG cDNA into the
affected locus

HSPC AAV6 (217)

X-SCID IL2RG CRISPR/Cas9 mediated disruption of IL2Rg Rabbit embryos Microinjection of gRNA and Cas9
mRNA

(218)

SCID IL2RG,
RAG2

CRISPR/Cas9 mediated gene knockout Rat zygotes Electroporation of gRNA and Cas9
mRNA

(219)

SCID IL2RG,
RAG2

CRISPR/Cas9 mediated double knockout Mice zygotes Microinjection of gRNA and Cas9
mRNA

(220)

SCID IL2RG CRISPR/Cas9 mediated gene knockout pig embryos Microinjection of gRNA and Cas9
mRNA, nucleofection

(221–
223)

SCID IL2RG CRISPR/Cas9 mediated gene knockout Hamster embryos pronuclear injection of gRNA and
Cas9 mRNA

(224)

IPEX FOXP3 CRISPR/Cas9 mediated integration of FOXP3 cDNA into the
endogenous locus

Patient derived
HSPCs

AAV6 (225)

XMEN MAGT1 CRISPR/Cas9 mediated HDR to insert a correct MAGT1 cDNA into
the endogenous locus

HSPCs AAV6 (226)

X-CGD CYBB CRISPR/Cas9 mediated HDR for gene repair using ssODN Patient derived
HSPCs

Electroporation (227)

X-CGD CYBB CRISPR/Cas9 mediated insertion of CYBB cDNA at endogenous locus Patient derived
HSPCs

AAV6 (228)

X-CGD CYBB CRISPR/Cas9 mediated gene replacement and insertion Patient-specific iPSCs nucleofection (229)

X-CGD CYBB CRISPR/Cas9 mediated gene knockout Mouse zygotes microinjection of gRNA and Cas9
mRNA

(230)

WAS WAS CRISPR/Cas9 mediated HDR for integrating a full-length cDNA into
endogenous locus

Patient derived
HSPCs, LT-HSCs

AAV6, electroporation (231)

WAS WAS CRISPR/Cas9 mediated gene knockout Rabbit embryos microinjection of Cas9 mRNA and
a pair of sgRNAs

(232)

WAS WAS CRISPR/Cas9 mediated gene knockout primary T cells Vapor nanobubble (VNB)
photoporation

(233)
frontie
XHIGM, X-linked hyper-IgM syndrome; XLA, X-linked agammaglobulinemia; XLP, X-Linked Lymphoproliferative Disease; SCID, Severe combined immunodeficiency; X- SCID, X-linked
severe combined immunodeficiency; IPEX, Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome; XMEN, X-linked immunodeficiency with magnesium defect, EBV
infection, and neoplasia; X-CGD, X-linked chronic granulomatous disease; WAS: Wiskott-Aldrich syndrome; HSCs, Hematopoietic stem cell; HSPCs, hematopoietic stem and progenitor cells;
LT-HSCs, long-term hematopoietic stem cells; iPSCs, induced pluripotent stem cells; MSCs, mesenchymal stem cells.
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XHIM-patient-derived T cells (234). In a preclinical study,

Vavassori et al. developed a universal CRISPR/Cas editing

strategy for effective integration of a corrective CD40L cDNA

within its endogenous locus and achieved effective T cell

correction and selection by optimizing the editing strategy. The

therapeutic potential of T-cell and HSPC therapies was further

investigated in the HIGM1 mouse model (235).

X-linked agammaglobulinemia (XLA) is a monogenic IEI

caused by a loss-of-function mutation in Bruton’s tyrosine kinase

(BTK) gene, and it is characterized by reduced mature B

lymphocytes. Gray and colleagues reported that precise

integration of a corrective, codon-optimized cDNA along with a

truncated terminal intron of the BTK gene into its endogenous

locus by CRISPR/Cas-mediated HDR substantially elevated BTK

expression to potentially therapeutic levels in cell lines and human

HSPCs (236).

X-Linked Lymphoproliferative Disease (XLP) is a rare IEI that

is caused by a mutation in the signaling lymphocyte activation

molecule (SLAM)-associated protein (SAP) protein-coding gene

SH2D1A. Targeted insertion of SAP cDNA at the first exon of the

SH2D1A locus was efficiently achieved using TALEN, CRISPR/
Frontiers in Immunology 11
Cas9, or CRISPR/Cas12a, and SAP protein expression and SAP-

dependent immune function were restored in patient-derived T

cells (237).

Compared with the inefficient HDR-mediated site-specific

integration of target genes, NHEJ-based homology-independent

targeted integration (HITI) with improved integration frequencies

has been utilized to achieve robust site-specific transgene integration

at a clinically relevant genetic locus in human mobilized peripheral

blood HSPCs (238). This strategy provides an alternative to HDR-

based gene integration in human HSPCs. Together, these studies

demonstrated that CRISPR/Cas gene editing in HSCs is highly

promising for correcting disease-causingmutations in IEIs. (Figure 3).

BEs enable single-base substitutions without producing DSBs,

while PEs enable precise base conversions, insertions, deletions, and

even combinations without inducing DSBs, and both of these

editors are promising in genetic disease modeling and correction.

Compared with BEs, PEs induce more accurate and precise on-

target editing, and more importantly, PEs enable multiple types of

editing. Gene therapy studies based on BEs or PEs for IEI treatment

have not been reported yet. Thus, to identify potential targets for

BE- and/or PE-mediated gene correction, disease-causing genes
FIGURE 3

Work flow of CRISPR/Cas gene editing in gene therapy of IEIs. Autologous HSCs collected from patients undergo ex vivo culture and CRISPR/Cas
editing, after screening and expansion, therapeutic edited cells are transfusion into conditioned patients for immune system reconstruction. CRISPR/
Cas gene editing agents could be delivered into HSCs in forms of RNP, “all RNA”, or AAV vector to enable efficient pathogenic gene correction.
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need to be carefully sequenced and sgRNAs and pegRNAs should be

designed appropriately to enable efficient editing.
3.3 Delivery of CRISPR/Cas gene editing
reagents into HSCs

The targeted and efficient delivery of editing reagents plays an

important role in gene therapy. Mainstream methods for delivering

editing components into HSCs are based on electroporation, viral

vectors, or nanoparticles (239). Electroporation is an effective

method for delivering editing reagents into a large number of

HSCs; however, voltage-induced cell toxicity should be considered

(240). Lentiviruses and AAVs are mainly used to deliver editing

elements into HSCs, with lentiviruses integrating DNA fragments

into genome and AAV presenting a limited cargo capacity for

CRISPR/Cas system packaging (239). Developing non-integrating

viral vectors and compact CRISPR/Cas systems could provide

alternatives to overcome these challenges. Nanoparticles are a

class of materials that can encapsulate therapeutic nucleic acids

for targeted delivery, and lipid nanoparticles (LNPs) are the most

common and have been investigated for their ability to deliver

CRISPR/Cas systems for therapeutic purposes (241). A protein-

based nanoparticle system (Selective Endogenous eNcapsidation for

cellular Delivery, SEND) has been developed to enable efficient

delivery of CRISPR/Cas editing reagents into mammalian cells

(242). The recently developed delivery strategy named SORT

(selective ORgan targeting (SORT) allows lipid nanoparticles to

encapsulate gene therapy reagents to be accurately delivered in an

organ-specific manner (243). Compared with electroporation,

delivery strategies based on viral vectors and nanoparticles can be

utilized in both ex vivo and in vivo gene therapy.

CRISPR/Cas components are usually delivered into HSCs in

two major forms: the RNP complex of purified Cas protein

precomplexed with sgRNAs and “all RNA” delivery with Cas

mRNA with or without chemically modified sgRNAs. Hendel

et al. reported that chemically modified sgRNAs could enhance

genome editing in both human primary T cells and HSPCs; use of

RNA- or RNP-based delivery method further improved editing

(244). Protection of both sgRNA termini with chemically modified

nucleotides increases the stability of sgRNA and renders the ‘all

RNA’-based CRISPR/Cas9 system highly effective in primary

HSPCs and T cells (245). By optimizing and comparing several

delivery strategies, Lattanzi et al. demonstrated that the RNP-based

delivery of CRISPR/Cas editing reagents exhibited a good balance

between cytotoxicity and genomic rearrangement efficiency (246).

The donor template for HDR-mediated gene correction can be

delivered to HSCs with AAV6-based vectors or ssODNs. Co-

delivery of an AAV6 donor in combination with CRISPR/Cas

RNP enabled the precise correction of WAS mutations in up to

60% of human HSPCs (231). A recent study reported that FOXP3

cDNA was delivered by AAV6 with the high-fidelity Cas9 variant

HiFi-Cas9:sgRNA RNP into HSPCs to correct pathogenic

mutations with high specificity (225). AAV6 donor templates can

mediate transgene integration at up to ~4 kb in size, thus
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encompassing an expression cassette for a reporter gene, which is

important for the enrichment of HSCs with precisely targeted

integration (245). In comparison to AAV6, ssODNs are usually

~50–200 bp in total size and can be useful donor templates for

single point mutation correction. Phosphorothioate-modified

ssODNs of the CYBB gene fragment have been delivered with the

CRISPR/Cas RNP complex to patient-derived HSPCs to repair a

mutation causing X-CGD. Transplanting gene-repaired X-CGD

HSPCs into NSG mice resulted in efficient engraftment and

production of functional mature human myeloid and lymphoid

cells for up to five months (227).
3.4 Safety concerns of CRISPR/Cas gene
therapy of IEIs

In terms of safety, CRISPR/Cas gene therapy avoids the need for

semi-random integration of viral vectors, thereby minimizing the

risk of integration-activated oncogenesis. One of the major

concerns associated with CRISPR/Cas gene therapy is the

potential off-target effects; many efforts have been made for off-

target prediction, characterization, and reduction in both cell lines

and human HSPCs (247, 248). Off-target prediction by in silico

predictive algorithms is powerful and useful for potential genome-

wide off-target prediction, and cell-based and cell-free detection

methods have been developed to determine the distribution and

frequency of off-target events. Protein engineering, gRNA

modification, and delivery methods have been exploited to limit

the off-target effect (247). CRISPR/Cas systems introduce DSBs in

the DNA and thus induce HDR, and indels induced by DSBs at the

target site can be minimized by inhibiting the NHEJ pathway to

enhance HDR (72, 73). BEs and PEs are DSB-independent editing

strategies, and Cas-independent genomic and transcriptomic off-

targets of BEs have been reported (104–106). Rational nucleotide

deaminase engineering could circumvent this and provide BEs with

reduced off-target editing activity, while maintaining robust on-

target editing efficiency (77, 89). Additionally, delivering BEs, such

as RNPs, could also greatly decrease off-target editing while

maintaining comparable on-target editing (115). PEs were

demonstrated to have high specificity since neither off-target

DNA nor off-target RNA was detected in mammalian cells or

zygotes (155–157).
3.5 CRISPR/Cas based clinical trails

CRISPR/Cas gene therapy has been considered a promising

strategy to treat many incurable genetic and nongenetic disorders,

including hereditary blood diseases, ocular diseases, neuromuscular

disorders, metabolic disorders, cancers, and acquired

immunodeficiency syndrome. Currently initiated clinical trials

based on CRISPR/Cas technology are both ex vivo and in vivo. Ex

vivo gene therapy infuses cultured cells into patients after editing by

CRISPR/Cas, and in vivo gene therapy delivers CRISPR/Cas gene

editing reagents into patients to facilitate gene modification at
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pathogenic sequences. The current active CRISPR/Cas-based

clinical trials are listed in Table 2.

The first in-human CRISPR/Cas clinical trial was performed at

Sichuan University’s West China Hospital to treat advanced non-
Frontiers in Immunology 13
small cell lung cancer by targeting the PD-1 gene using CRISPR/Cas9

(ClinicalTrials.gov NCT02793856). According to the reported results,

the safety and feasibility were proven, and they demonstrated that a

more advanced gene editing strategy to improve efficacy is required in
TABLE 2 Currently active clinical trials based on CRISPR/Cas technology.

NCT
Number

Title Status Conditions Interventions Phase Enrollment Sponsor/Col-
laborators

NCT04774536 Transplantation of
Clustered
Regularly Interspaced
Short
Palindromic Repeats
Modified Hematopoietic
Progenitor Stem Cells
(CRISPR_SCD001) in
Patients With Severe Sickle
Cell Disease

Not yet
Recruiting

Sickle Cell Disease CRISPR_SCD001 I/II 9 Mark Walters,
MD;
University of
California, Los
Angeles;
University
of California,
Berkeley;
University
of California, San
Francisco

NCT03057912 A Safety and Efficacy
Study
of TALEN and
CRISPR/Cas9 in the
Treatment of HPV-related
Cervical Intraepithelial
Neoplasia#

Unknown
Status

Human Papillomavirus-
Related Malignant

Neoplasm

CRISPR/Cas9 I 60 First Affiliated
Hospital, Sun
Yat-
Sen University;
Jingchu
University of
Technology

NCT04426669 A Study of Metastatic
Gastrointestinal Cancers
Treated With Tumor
Infiltrating Lymphocytes in
Which the Gene Encoding
the Intracellular Immune
Checkpoint CISH Is
Inhibited Using CRISPR
Genetic Engineering

Recruiting Gastrointestinal Epithelial
Cancer; Gastrointestinal
Neoplasms; Cancer of
Gastrointestinal Tract;
Gastrointestinal Cancer;
Colo-rectal Cancer;

Pancreatic Cancer; Gall
Bladder Cancer; Colon
Cancer; Esophageal

Cancer;
Stomach Cancer

Tumor-Infiltrating
Lymphocytes (TIL)

I/II 20 Intima
Bioscience,
Inc.; Masonic
Cancer
Center,
University of
Minnesota

NCT03164135 Safety of Transplantation
of
CRISPR CCR5 Modified
CD34+ Cells in
HIVinfected
Subjects With
Hematological
Malignances

Unknown
Status

HIV-1-infection CCR5 gene modification N/A 5 Affiliated
Hospital to
Academy of
Military
Medical Sciences;
Peking
University;
Capital Medical
University

NCT04560790 Safety and Efficacy of
CRISPR/Cas9 mRNA
Instantaneous Gene
Editing
Therapy to Treat
Refractory
Viral Keratitis

Completed Viral Keratitis; Blindness
Eye; Herpes Simplex

Virus
Infection; Cornea

BD111 Adult single
group
Dose

N/A 3 Shanghai BDgene
Co., Ltd.; Eye &
ENT Hospital of
Fudan University

NCT04990557 CRISPR/Cas9-modified
Human T Cell ( PD-1and
ACE2 Knockout
Engineered
T Cells ) for Inducing
Longterm
Immunity in COVID-19
Patients

Not yet
Recruiting

COVID-19 Respiratory
Infection

PD-1 and ACE2
Knockout T

Cells

I/II 16 Mahmoud
Ramadan
mohamed
Elkazzaz;
Kafrelsheikh
University
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TABLE 2 Continued

NCT
Number

Title Status Conditions Interventions Phase Enrollment Sponsor/Col-
laborators

NCT03545815 Study of CRISPR-Cas9
Mediated PD-1 and TCR
Gene-knocked Out
Mesothelin-directed CAR-
T
Cells in Patients With
Mesothelin Positive
Multiple
Solid Tumors.

Unknown
Status

Solid Tumor, Adult anti-mesothelin CAR-T
cells

I 10 Chinese PLA
General Hospital

NCT04037566 CRISPR (HPK1) Edited
CD19-specific CAR-T
Cells
(XYF19 CAR-T Cells) for
CD19+ Leukemia or
Lymphoma.

Recruiting Leukemia Lymphocytic
Acute (ALL) in Relapse;
Leukemia Lymphocytic
Acute (All) Refractory

XYF19 CAR-T cell I 40 Xijing Hospital;
Xi'An Yufan
Biotechnology
Co.,Ltd

NCT05566223 Phase 1/2 Study of CISH
Inactivated TILs in the
Treatment of NSCLC

Not yet
Recruiting

Carcinoma, Non-Small-
Cell

Lung; Metastatic Non
Small

Cell Lung Cancer; Stage
IV

Non-small Cell Lung
Cancer;

Squamous Cell Lung
Cancer;

Adenocarcinoma of Lung;
Large Cell Lung Cancer

CISH Inactivated TIL I/II 70 Intima
Bioscience,
Inc.

NCT04244656 A Safety and Efficacy
Study
Evaluating CTX120 in
Subjects With Relapsed or
Refractory Multiple
Myeloma

Active,
not

Recruiting

Multiple Myeloma CTX120 I 26 CRISPR
Therapeutics AG;
CRISPR
Therapeutics

NCT03655678 A Safety and Efficacy
Study
Evaluating CTX001 in
Subjects With
Transfusion-
Dependent b-Thalassemia

Active,
not

Recruiting

Beta-Thalassemia CTX001 II/III 45 Vertex
Pharmaceuticals
Incorporated;
CRISPR
Therapeutics

NCT05477563 Evaluation of Efficacy and
Safety of a Single Dose of
CTX001 in Participants
With
Transfusion-Dependent #-
Thalassemia and Severe
Sickle Cell Disease

Recruiting Beta-Thalassemia;
Thalassemia; Sickle Cell

Disease

CTX001 III 12 Vertex
Pharmaceuticals
Incorporated;
CRISPR
Therapeutics

NCT04438083 A Safety and Efficacy
Study
Evaluating CTX130 in
Subjects With Relapsed or
Refractory Renal Cell
Carcinoma (COBALT-
RCC)

Recruiting Renal Cell Carcinoma CTX130 I 107 CRISPR
Therapeutics AG;
CRISPR
Therapeutics

NCT04502446 A Safety and Efficacy
Study
Evaluating CTX130 in
Subjects With Relapsed or
Refractory T or B Cell
Malignancies
(COBALTLYM)

Recruiting T Cell Lymphoma CTX130 I 45 CRISPR
Therapeutics AG;
CRISPR
Therapeutics
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TABLE 2 Continued

NCT
Number

Title Status Conditions Interventions Phase Enrollment Sponsor/Col-
laborators

NCT04035434 A Safety and Efficacy
Study
Evaluating CTX110 in
Subjects With Relapsed or
Refractory B-Cell
Malignancies (CARBON)

Recruiting B-cell Malignancy; Non-
Hodgkin Lymphoma; B-

cell
Lymphoma; Adult B Cell

ALL

CTX110 I 143 CRISPR
Therapeutics AG;
CRISPR
Therapeutics

NCT04637763 CRISPR-Edited Allogeneic
Anti-CD19 CAR-T Cell
Therapy for Relapsed/
Refractory B Cell Non-
Hodgkin Lymphoma

Recruiting Lymphoma, Non-
Hodgkin;

Relapsed Non Hodgkin
Lymphoma; Refractory B-

Cell Non-Hodgkin
Lymphoma;

CB-010 I 50 Caribou
Biosciences,
Inc.

NCT03745287 A Safety and Efficacy
Study
Evaluating CTX001 in
Subjects With Severe Sickle
Cell Disease

Active,
not

Recruiting

Sickle Cell Disease;
Hematological Diseases;
Hemoglobinopathies

CTX001 II/III 45 Vertex
Pharmaceuticals
Incorporated;
CRISPR
Therapeutics

NCT03728322 iHSCs With the Gene
Correction of HBB
Intervent
Subjests With b-
thalassemia
Mutations

Unknown
Status

Thalassemia iHSCs treatment early I 12 Allife Medical
Science and
Technology Co.,
Ltd.

NCT04925206 A Safety and Efficacy
Study
Evaluating ET-01 in
Subjects
With Transfusion
Dependent
b-Thalassaemia

Active,
not

Recruiting

Transfusion Dependent
Beta-

Thalassaemia

ET-01 I 8 EdiGene
(GuangZhou)
Inc.

NCT04557436 TT52CAR19 Therapy for
Bcell
Acute Lymphoblastic
Leukaemia (B-ALL)

Recruiting B Acute Lymphoblastic
Leukemia

PBLTT52CAR19 I 10 Great Ormond
Street
Hospital for
Children
NHS Foundation
Trust; University
College, London

NCT03747965 Study of PD-1 Gene-
knocked
Out Mesothelin-directed
CAR-T Cells With the
Conditioning of PC in
Mesothelin Positive
Multiple
Solid Tumors

Unknown
Status

Solid Tumor, Adult Mesothelin- directed
CAR-T
Cells

I 10 Chinese PLA
General Hospital

NCT05565248 An Open-Label, FIH Study
Evaluating the Safety,
Tolerability, and Efficacy
of
VCTX211 Combination
Product in Subjects With
T1D

Not yet
Recruiting

Diabetes Mellitus, Type 1;
Metabolic Disease;

Glucose
Metabolism Disorders;
Endocrine System

Diseases;
Autoimmune Diseases;
Immune System Diseases

VCTX211 I/II 40 CRISPR
Therapeutics AG;
ViaCyte; CRISPR
Therapeutics

NCT03166878 A Study Evaluating
UCART019 in Patients
With
Relapsed or Refractory
CD19+ Leukemia and
Lymphoma

Unknown
Status

B Cell Leukemia; B Cell
Lymphoma

UCART019 I/II 80 Chinese PLA
General Hospital
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TABLE 2 Continued

NCT
Number

Title Status Conditions Interventions Phase Enrollment Sponsor/Col-
laborators

NCT05210530 An Open-Label, FIH Study
Evaluating the Safety and
Tolerability of VCTX210A
Combination Product in
Subjects With T1D

Recruiting Diabetes Mellitus, Type 1;
Metabolic Disease;

Glucose
Metabolism Disorders;
Endocrine System

Diseases;
Autoimmune Diseases;
Immune System Diseases

VCTX210A unit I 10 CRISPR
Therapeutics AG;
ViaCyte; CRISPR
Therapeutics

NCT05356195 Evaluation of Safety and
Efficacy of CTX001 in
Pediatric Participants with
Transfusion-Dependent #-
Thalassemia (TDT)

Recruiting Beta-Thalassemia;
Thalassemia; Sickle Cell

Disease

CTX001 III 12 Vertex
Pharmaceuticals
Incorporated;
CRISPR
Therapeutics

NCT05329649 Evaluation of Safety and
Efficacy of CTX001 in
Pediatric Participants With
Severe Sickle Cell Disease
(SCD)

Recruiting Sickle Cell Disease;
Hydroxyurea Failure;
Hemoglobinopathies;
Hematological Diseases

CTX001 III 12 Vertex
Pharmaceuticals
Incorporated;
CRISPR

NCT03081715 PD-1 Knockout
Engineered
T Cells for Advanced
Esophageal Cancer

Completed Esophageal Cancer PD-1 Knockout T Cells N/A 16 Hangzhou
Cancer
Hospital; Anhui
Kedgene
Biotechnology
Co.,Ltd

NCT05144386 Study of EBT-101 in
Aviremic HIV-1 Infected
Adults on Stable ART

Recruiting HIV-1-infection EBT-101 I 9 Excision
BioTherapeutics

NCT03398967 A Feasibility and Safety
Study of Universal Dual
Specificity CD19 and
CD20
or CD22 CAR-T Cell
Immunotherapy for
Relapsed
or Refractory Leukemia
and
Lymphoma

Unknown
Status

B Cell Leukemia; B Cell
Lymphoma

Universal Dual Specificity
CD19 and CD20 or

CD22
CAR-T Cells

I/II 80 Chinese PLA
General Hospital

NCT04601051 Study to Evaluate Safety,
Tolerability,
Pharmacokinetics, and
Pharmacodynamics of
NTLA-2001 in Patients
With
Hereditary Transthyretin
Amyloidosis With
Polyneuropathy (ATTRv-
PN) and Patients With
Transthyretin
Amyloidosis-
Related Cardiomyopathy
(ATTR-CM)

Recruiting Transthyretin-Related
(ATTR) Familial

Amyloid
Polyneuropathy;

Transthyretin-Related
(ATTR) Familial

Amyloid
Cardiomyopathy; Wild-

Type
Transthyretin Cardiac

Amyloidosis

NTLA-2001 I 74 Intellia
Therapeutics

NCT04819841 Gene Correction in
Autologous CD34+
Hematopoietic Stem Cells
(HbS to HbA) to Treat
Severe Sickle Cell Disease

Recruiting Sickle Cell Disease GPH101 I/II 15 Graphite Bio,
Inc.

NCT05066165 Study Investigating NTLA-
5001 in Subjects with
Acute
Myeloid Leukemia

Active,
not

Recruiting

Acute Myeloid Leukemia NTLA-5001 I/II 54 Intellia
Therapeutics
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TABLE 2 Continued

NCT
Number

Title Status Conditions Interventions Phase Enrollment Sponsor/Col-
laborators

NCT04976218 TGF#R-KO CAR-EGFR T
Cells in Previously Treated
Advanced EGFR- positive
Solid Tumors

Recruiting Solid Tumor, Adult;
EGFR

Overexpression

Biological: TGFbR-KO
CAREGFR
T Cells

I 30 Chinese PLA
General Hospital

NCT02793856 PD-1 Knockout
Engineered
T Cells for Metastatic
Nonsmall
Cell Lung Cancer

Completed Metastatic Non-small
Cell

Lung Cancer

PD-1 Knockout T Cells I 12 Sichuan
University;
Chengdu
MedGenCell,
Co.,
Ltd.

NCT04767308 Safety and Efficacy of
CT125A Cells for
Treatment
of Relapsed/Refractory
CD5+ Hematopoietic
Malignancies

Not yet
Recruiting

CD5+ Relapsed/
Refractory

Hematopoietic
Malignancies;

Chronic Lymphocytic
Leukemia (CLL); Mantle
Cell Lymphoma (MCL);
Diffuse Large B-cell
Lymphoma (DLBCL);
Follicular Lymphoma

(FL);
Peripheral T-cell
Lymphomas
(PTCL)

CT125A cells early I 18 Huazhong
University
of Science and
Technology;
Shanghai IASO
Biotechnology
Co.,
Ltd

NCT04417764 TACE Combined With
PD-1
Knockout Engineered T
Cell
in Advanced
Hepatocellular
Carcinoma.

Unknown
Status

Advanced Hepatocellular
Carcinoma

PD-1 knockout
engineered T

Cells

I 10 Central South
University

NCT05397184 Study of Base Edited
CAR7
T Cells to Treat T Cell
Malignancies (TvT CAR7)

Recruiting Relapsed/Refractory T-
cell

Acute Lymphoid
Leukaemia

Cryopreserved BE CAR7
T cells

(BE752TBCCLCAR7PBL)

I 10 Great Ormond
Street
Hospital for
Children
NHS Foundation
Trust; UCL
Great
Ormond Street
Institute of Child
Health; Medical
Research Council

NCT05143307 Long-Term Follow-Up
Study
of HIV-1 Infected Adults
Who Received EBT-101

Enrolling
by

invitation

HIV-1-infection EBT-101 I 9 Excision
BioTherapeutics

NCT05120830 NTLA-2002 in Adults
With
Hereditary Angioedema
(HAE)

Recruiting Hereditary Angioedema NTLA-2002 I/II 55 Intellia
Therapeutics

NCT05514249 Treatment of a Single
Patient
With CRD- TMH-001

Active,
not

Recruiting

Duchenne Muscular
Dystrophy

CRD-TMH-001 I 1 Cure Rare
Disease,
Inc; University of
Massachusetts,
Worcester

NCT03044743 PD-1 Knockout EBV-CTLs
for Advanced Stage
Epstein-
Barr Virus (EBV)

Unknown
Status

Stage IV Gastric
Carcinoma;

Stage IV Nasopharyngeal
Carcinoma; T-Cell

Lymphoma Stage IV; T-

Fludarabine;
Cyclophosphamide;

Interleukin-2

I/II 20 Yang Yang; The
Affiliated
Nanjing
Drum Tower
Hospital of
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future trials (249). Several phase I/II clinical trials to treat carcinoma

by targeting PD-1 with CRISPR/Cas have been initiated

(ClinicalTrials.gov NCT02793856, NCT03747965, NCT04417764,

and NCT03545815). CRISPR/Cas has also been used to generate

chimeric antigen receptor (CAR) T-cells, and clinical trials have been

initiated for the immunotherapy of hematologic malignancies and

solid tumors (ClinicalTrials.gov NCT03166878, NCT03747965).

CRISPR/Cas-mediated gene disruption can be used to alter virus

host receptor expression, and clinical trials for antiviral therapeutics

against infectious diseases AIDs and COVID-19 have also been

registered by targeting CCR5 and ACE2, respectively

(ClinicalTrials.gov NCT03164135, NCT04990557).

CRISPR/Cas-based clinical trials have been initiated for the

treatment of genetic diseases. The first Cas9-mediated in vivo gene

therapy trial was initiated by Editas Medicine and Allergan to treat

genetic ocular disease LCA10 by eliminating the disease-causing

CEP290 mutant (ClinicalTrials.gov NCT03872479). In another

CRISPR/Cas-based in vivo clinical trial (ClinicalTrials.gov

NCT04601051), NTLA-2001 comprised LNP-encapsulated

CRISPR/Cas9 elements targeting TTR to treat ATTR amyloidosis

by reducing the concentration of TTR in serum. The safety and

pharmacodynamic effects of single escalating doses of NTLA-2001

were evaluated in six patients with hereditary ATTR amyloidosis,

and the results demonstrated mild adverse events and dose-

dependent pharmacodynamics, and a significant reduction in

serum TTR protein was observed (170). In addition, a phase I

clinical study was initiated by curing rare diseases to assess the

safety and efficacy of a CRISPR-based therapy for the treatment of

DMD (ClinicalTrials.gov NCT05514249). CRISPR/Cas-based
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clinical trial for another genetic disease Hereditary Angioedema

have also been initiated (ClinicalTrials.gov NCT05120830). Clinical

trials to treat metabolic disorder Diabetes Mellitus, Type 1 (T1D)

using CRISPR/Cas edited allogeneic pancreatic endoderm cells have

been registered (ClinicalTrials.gov NCT05210530, NCT05565248).

Several CRISPR/Cas gene therapy companies like Editas Medicine,

CRISPR Therapeutics, EdiGene, and Allife Medical Science and

Technology have initiated clinical trials to treat transfusion

dependent b -Tha lassemia (TDT) (Cl in ica lTr ia l s .gov

NCT05444894, NCT05356195, NCT04925206, NCT03655678,

NCT05477563, NCT03728322), and some of these clinical trials

have entered phase III. Similar to TDT, CRISPR/Cas gene therapy

drugs to treat another severe hematological disease sickle cell

disease (SCD) have also been used in cl inical tr ia ls

(ClinicalTrials.gov NCT04774536, NCT05477563, NCT03745287,

NCT05329649, NCT04819841) CRISPR/Cas-based gene therapy

for IEIs has not yet reached clinical trials and preclinical studies

involving CRISPR/Cas-edited human HSCs engrafted into mice to

correct mutations of IEIs indicated safety and efficacy. With the

development of safer and more advanced gene editing tools, as well

as versatile delivery methods, an increasing number of CRISPR/

Cas-based clinical trials will be initiated for incurable disorders.
4 Conclusions and perspectives

The positive results of clinical trials of viral-based gene addition

therapy suggest that autologous HSC gene therapy could provide

sustained clinical benefits in patients with IEIs. However, gene
TABLE 2 Continued

NCT
Number

Title Status Conditions Interventions Phase Enrollment Sponsor/Col-
laborators

Associated
Malignancies

Cell
Lymphoma Stage IV;

Stage
IV Diffuse Large B- Cell

Lymphoma

Nanjing
University
Medical
School

NCT05444894 EDIT-301 for Autologous
Hematopoietic Stem Cell
Transplant (HSCT) in
Participants With
Transfusion-Dependent
Beta
Thalassemia (TDT)

Recruiting Transfusion Dependent
Beta

Thalassemia;
Hemoglobinopathies;
Thalassemia Major;

Thalassemia Intermedia

EDIT-301 I/II 6 Editas Medicine,
Inc.

NCT03872479 Single Ascending Dose
Study in Participants With
LCA10

Recruiting Leber Congenital
Amaurosis

10; Inherited Retinal
Dystrophies; Eye

Diseases,
Hereditary; Retinal

Disease;
Retinal Degeneration;

Retinal
Degeneration; Eye

Disorders
Congenital

EDIT-101 I/II 34 Editas Medicine,
Inc.
N/A, Not Applicable.
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addition approaches are not amenable for cases where the

physiological regulation of genes is required to avoid transgene-

related toxicity and genes with large sizes are difficult to deliver. The

CRISPR/Cas gene editing system enables permanent, precise, and

flexible gene editing without the drawbacks of semi-random

genomic insertion, thus emerging as an important new tool for

genetic manipulation of HSCs (28). Advances in CRISPR/Cas

gene-editing technology have led to new therapeutic options for a

wide range of genetic and nongenetic diseases. CRISPR/Cas-

mediated HDR has been applied in the gene correction of some

IEIs, including X-SCID, IPEX, X-CGD, and WAS (216, 225,

229, 231).

Although clinical trials of CRISPR/Cas gene therapy are in

progress, their application for IEIs is still in its infancy, and many

issues still need to be addressed to enable safe and effective clinical

application. A critical limitation of the gene therapy approach for

IEIs is the broad spectrum of disease categories as well as the

varying mutations, which require the development of personalized

medicine approaches depending on the specific mutation a patient

carries (250). To ensure successful clinical outcomes for gene

therapy of IEIs, a sufficient number of gene-corrected HSCs with

engraftment capabilities following CRISPR/Cas9 gene editing is of

paramount importance (251). HDR occurs most efficiently in

dividing cells, and the low efficiency of HDR in HSCs can be

improved by manipulating critical factors of DNA repair

mechanisms to inhibit the NHEJ pathway (72, 73). Optimizing

CRISPR/Cas genome editing tools to maximize editing efficiency

while minimizing off-target effects presents directions for advancing

genome editing agents (247). The engraftment capability and self-

renewal ability of gene-corrected HSCs are critical factors that

should be taken into account because manipulating and

expanding gene-corrected cells in vitro increases the risk of losing

the multilineage potential of HSCs (251). Exposure to nucleases and

the toxic effects caused by condition agents largely affect the self-

renew ability of gene corrected HSCs, implementation of “hit-and-

run” strategy to reduce nucleases exposure time and development of

advanced conditioning regimens could ameliorate these

harmfulness to enhance HSC self-renewal ability (14, 251).
Frontiers in Immunology 19
The advent and evolution of BE and PE variants with efficient

and precise editing holds tremendous promise for the development

of novel gene therapies for IEIs. Moreover, the implementation of

decentralized manufacturing will enable the translation of gene-

modified cell therapies from basic research to hospital-based

clinical trials.
Author contributions

XL, GL, XH designed the manuscript , XL drafted

the manuscript, XL, YL prepared figures for the manuscript,

FZ, GL, KL, and XH reviewed and revised the manuscript.

All authors contributed to the article and approved the

submitted version.
Funding

This work is supported by grants from National Key R&D

Program of China (2021YFF100604) and National Natural Science

Foundation of China (32202647).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni
A, et al. Human inborn errors of immunity: 2019 update on the classification from the
international union of immunological societies expert committee. J Clin Immunol
(2020) 40(1):24–64. doi: 10.1007/s10875-019-00737-x

2. Meyts I, Bosch B, Bolze A, Boisson B, Itan Y, Belkadi A, et al. Exome and genome
sequencing for inborn errors of immunity. J Allergy Clin Immunol (2016) 138(4):957–
69. doi: 10.1016/j.jaci.2016.08.003

3. Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T, et al. Human
inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J Clin
Immunol (2020) 40(1):66–81. doi: 10.1007/s10875-020-00758-x

4. Booth C, Romano R, Roncarolo MG, Thrasher AJ. Gene therapy for primary
immunodeficiency. Hum Mol Genet (2019) 28(R1):R15–23. doi: 10.1093/hmg/ddz170

5. Notarangelo LD. Primary immunodeficiencies. J Allergy Clin Immunol (2010) 125
(2 Suppl 2):S182–94. doi: 10.1016/j.jaci.2009.07.053

6. Weinacht KG, Charbonnier LM, Alroqi F, Plant A, Qiao Q, Wu H, et al.
Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity
caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-
function mutation. J Allergy Clin Immunol (2017) 139(5):1629–1640.e2. doi: 10.1016/
j.jaci.2016.11.022

7. Higgins E, Al Shehri T, McAleer MA, Conlon N, Feighery C, Lilic D, et al. Use of
ruxolitinib to successfully treat chronic mucocutaneous candidiasis caused by gain-of-
function signal transducer and activator of transcription 1 (STAT1) mutation. J Allergy
Clin Immunol (2015) 135(2):551–3. doi: 10.1016/j.jaci.2014.12.1867

8. Wiesik-Szewczyk E, Sołdacki D, Paczek L, Jahnz-Różyk K. Facilitated
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