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Acute Myeloid Leukemia (AML) is a complex disease with rapid progression and

poor/unsatisfactory outcomes. In the past few years, the focus has been on

developing newer therapies for AML; however, relapse remains a significant

problem. Natural Killer cells have strong anti-tumor potential against AML. This

NK-mediated cytotoxicity is often restricted by cellular defects caused by

disease-associated mechanisms, which can lead to disease progression. A

stark feature of AML is the low/no expression of the cognate HLA ligands for

the activating KIR receptors, due to which these tumor cells evade NK-mediated

lysis. Recently, different Natural Killer cell therapies have been implicated in

treating AML, such as the adoptive NK cell transfer, Chimeric antigen receptor-

modified NK (CAR-NK) cell therapy, antibodies, cytokine, and drug treatment.

However, the data available is scarce, and the outcomes vary between different

transplant settings and different types of leukemia. Moreover, remission achieved

by some of these therapies is only for a short time. In this mini-review, we will

discuss the role of NK cell defects in AML progression, particularly the expression

of different cell surface markers, the available NK cell therapies, and the results

from various preclinical and clinical trials.
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1 Introduction

1.1 Acute myeloid leukemia

Acute Myeloid Leukemia (AML) is a type of blood cancer that affects the cells of the

myeloid lineage (1). It is the most common type of blood cancer with poor survival due to

the aggressiveness of the disease and high relapse rates (2, 3). To date, limited therapeutic

options are available to treat AML (1, 3). Chemotherapy is the primary treatment given to

AML patients. Depending on the risk of the disease, some patients may undergo

Hematopoietic Stem Cell Transplantation (HSCT) (2, 3).

In the past few years, novel treatment options have been explored to improve the

survival of patients suffering from AML. Targeted gene therapies, cytokine therapy,

immunotherapy, etc., are some of the upcoming novel therapeutic options. Of these,
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immunotherapy is a promising strategy that explores the use of the

patient’s immune system to kill leukemic cells (2–4).
1.2 NK cells and its receptors

Natural Killer cells play an essential role in innate immunity,

and their anti-leukemic properties have been explored in the past

few years (5). This anti-leukemic activity is driven by receptors on

their surface, which transduces either activating or inhibitory

signals. Most of these receptors belong to Killer Immunoglobulin-

like receptors (KIRs), natural cytotoxicity receptors (NCRs) or

NKG2 (Natural Killer Group 2) receptors. A balance between the

activating and inhibitory receptors drives NK cell cytotoxicity.

KIRs, NCRs and NKG2 can either activate NK cells by signaling

through their immune receptor tyrosine-based activating motifs

(ITAMs) or inhibit NK cells by signaling through their immune

receptor tyrosine-based inhibitory motifs (ITIMs). These receptors

need to recognize their cognate ligands to achieve their

cytotoxic potential.

The KIR genes are present on chromosome 19q13.4. 16 KIR

genes encode for the KIR receptors, namely KIR 2DL1, 2DL2, 2DL3,

2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3,

3DS1 and two pseudogenes 2DP1, 3DP1 (5, 6). Inhibitory KIRs

have a long cytoplasmic tail and hence are denoted as ‘L,’ whereas

activating receptors have a short cytoplasmic tail and are denoted as

‘S.’Two KIR haplotypes, A and B, are determined by an individual’s

KIR gene content. The A haplotype is inhibitory since it has more

inhibitory KIR genes (KIR3DL1, KIR3DL2, KIR3DL3, KIR2DL1,

KIR2DL3, KIR2DL4) and one activating KIR gene (KIR2DS4). On

the other hand, the B haplotype is said to be an activating haplotype

since it has more activating KIR genes (KIR2DS1, KIR2DS2,

KIR2DS3, KIR2DS5, KIR3DS1) in addition to the inhibitory KIR

genes (KIR3DL2, KIR3DL3, KIR2DL1, KIR2DL2, KIR2DL4,

KIR2DL5A, KIR2DL5B) (7). The B haplotype is associated with

lower relapse rates as it carries more activating KIR genes (8). KIR

gene can further be divided into centromeric (Cen) and telomeric

(Tel) regions to calculate the KIR B content score which can range

from 0-2 B-content motifs for each of the centromeric and

telomeric regions (i.e. AA, AB, or BB) (9). The haplogroup, which

does not carry any of the B-content motifs is designated as CenAA/

Tel-AA, whereas haplogroups that have scores ranging from 1 to 4,

are designated as combinations of the following haplotypes CenAB/

CenBB/TelAB/TelBB. The ligands for KIRs are the HLA Class I

molecules (Bw4, C1, and C2). The inhibitory KIR2DL1 and

activating KIR2DS1 recognize the C2 group alleles (possessing

Lysine at position 80), the inhibitory KIR2DL2/3 and activating

KIR2DS2/3 identify the C1 group alleles (having Asparagine at

position 80), KIR3DL1 recognizes the HLA B alleles (with

exceptions to B*13:01 and B*13:02) in the Bw4 group and

KIR3DL2 identifies the HLA A*03/A*11 alleles (10). In the event

of an inhibitory KIR receptor-ligand match, the NK cell activity is

inhibited, leading to self-tolerance, whereas, in the case of an

activating KIR receptor-ligand match, the NK cell activity is

enhanced, leading to an increase in graft versus leukemia effect in
Frontiers in Immunology 02
the event of a transplant. Downregulation of the HLA ligands is an

immune escape mechanism often used by tumor cells (11).

Among the NCRs, the activating NCRs are NKp30, NKp44, and

NKp46, the ligands for which include various viral hemagglutinins

(12–14), human CMV pp65 protein (15), and ligands such as B7-

H6 and BAG6 which are expressed on the tumor cell surface. The

NKP46 gene is very close to the Killer immunoglobulin-like

receptor family on the human chromosome 19 (19q13.42) (16,

17). NKp44 and NKp30, on the other hand, are located in the MHC

Class III region of Chromosome 6 (18, 19). NCRs such as NKp30

and NKp46, which were initially thought to be expressed only on

resting NK cells (19– 20), has more recently been reported to be

present on some T cells (Vd1 þ T cells for NKp30 and ab T cells and

dg T cells for NKp44) and NK like cells (21, 22) where they perform

similar functions as in NK cells. NKp44, on the other hand, is

expressed only in activated NK cells. NCRs bind to their

corresponding ligands, increasing cytotoxic activity and cytokine

release by NK cells (23).

There are 7 members in the NKG2 family namely NKG2A,

NKG2B, NKG2C, NKG2D, NKG2E, NKG2F and NKG2H. These

transmembrane glycoproteins are encoded by genes in the NK

complex present on chromosome 12. Of these 7 members, NKG2A,

NKG2B (mRNA splice variant of NKG2A), NKG2C, NKG2E and

NKG2H (mRNA splice variant of NKG2E) form heterodimers with

CD94. NKG2F is expressed intracellularly (24).

NKG2A is an inhibitory receptor (25) CD56bright NK cell

subsets show a higher expression of NKG2A than CD56dim NK

cells (26). CD94/NKG2A recognizes its ligand, HLA-E, a non-

classical HLA molecule and transmits inhibitory signals via

ITIMs present in the cytoplasmic tails thus inhibiting NK cell

activity (24–26). NKG2A is overexpressed on the NK cells of

AML patients which is associated with poor remission (26, 27).

NKG2C is an activating receptor that is expressed on NK cells

during the later stages of maturation (25). It binds to its ligand

HLA-E with lower affinity than NKG2A. NKG2C interacts

noncovalently to DAP12 containing ITAMs. NKG2D is an

activating receptor expressed as a homodimer on NK cells. It

binds to its ligand MICA/B and ULBP (also known as NKG2D-L)

(28). NKG2D interacts with 2 dimers of DAP10 which recruits

phosphatidylinositol-3 kinase (PI3 kinase) thus activating further

signaling and NKG2D associated cytotoxic response. Tumor cells

tend to shed NKG2D thus facilitating tumor escape (24, 25).

NKG2D is underexpressed on NK cells of AML patients (27).

NKG2D releases signals to activate the immune system by

binding to the NKG2D-L present on AML cells and lyses the

leukemic cells. However, in an event of downregulation of

NKG2D-L tumor cells evade surveillance facilitating tumor

progression (28). This NKG2D-NKG2DL axis is involved in

clearing tumor cells in the early phases of cancer development.

There are various mechanisms by which tumor cells escape NK-

mediated cytotoxicity (Figure 1). These could be due to numerical

defects in functional NK cells, defective expression of KIR and NCR

receptors on NK cells, and defective maturation of NK cells, among

others. This tumor evasion, if left unchecked, leads to the

progression of the disease.
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2 NK cell defects

2.1 Numerical defects

One factor that correlates with AML disease progression is the

anti-leukemic activity exhibited by the NK cells, which also depends

on the number of functionally active NK cells present. The number

of NK cells is lowest during active disease, i.e., at the time of

diagnosis and in the event of disease relapse. In contrast, it increases

when the patient is in remission (29, 30). Reconstitution of higher

NK cells post HSCT has been associated with better 2 year OS, lower

rates of CMV reactivation (31), lower 2 year relapse risk (32), lower

non relapse mortality, higher progression free survival (33).

Conversely, low NK cell counts post 60 days of HSCT was

associated with higher relapse risk (34).
2.2 NK receptors expression in AML vs.
healthy controls

2.2.1 Natural cytotoxicity receptors (NCR)
The activating NCRs are germline-encoded receptors that are

immunoglobulin-like class I transmembrane molecules. They are

essential in NK cell cytotoxicity against virus-infected and tumor

cells. The brightness of immunofluorescence measures the density

of NCRs. Most healthy donors express high densities of NCR

exhibiting the NCRbright phenotype, whereas those that carry the

NCRdull phenotype express a low density of NCRs (35, 36). There is

a correlation between NCR expression and NK cell-mediated

cytotoxicity and hence a correlation of NCR expression with
Frontiers in Immunology 03
leukemia response. NCRbright NK cells display vigorous cytolytic

activity compared to the NCRdull NK cells that lack cytolytic activity

(36). Various studies have shown that in most AML patients, the

cell surface expression of NCRs is downregulated, thus exhibiting

the NCRdull phenotype, affecting the NK cell function and cytokine

production. Another mechanism by which leukemic blast cells

escape immune surveillance is lowering the expression of NCR

ligands on their cell surface, thus preventing the engagement of

NCRs with their respective ligands required to activate NK cell-

mediated target lysis (35–37).

Studies in AML patients suggest better outcomes and more

prolonged remission in patients with NK cells having higher

cytolytic activity (38–41). Fauriat et al. (34) studied NCR recovery

in AML patients who achieved complete remission (CR). They

compared the NCR expression on NK cells of these patients at

diagnosis and after treatment. They concluded that there was a

partial recovery of NKp30 and NKp46 in these patients suggesting a

direct correlation between NCRs and leukemic cells.

2.2.2 KIR expression
In the past few years, researchers have sought to investigate the

association of KIR and HLA genes with AML. These studies focus

on assessing the KIR genes in AML patients and their association

with post-transplant complications such as relapse, overall survival

(OS), transplant related mortality (TRM) (5, 42). Daniele K.S. et al.

(5) compared the KIR genes and haplotype frequency in patients

suffering from various hematological malignancies with healthy

individuals and observed that the frequency of the inhibitory genes -

KIR2DL2 and KIR2DL5 and activating genes - KIR2DS1, KIR2DS2,

and KIR2DS3 was more frequent in the controls than in the
FIGURE 1

Mechanisms of tumor cell escape in AML due to NK cell defects. AML cells can evade tumor surveillance due to various defects in the NK cell that
lead to reduced NK cell cytotoxicity: 1) Reduced density of natural cytotoxicity receptors (NCRs) on NK cell surface leading to a NCRdull phenotype
with lower cytolytic activity. 2) Overexpression of inhibitory Killer immunoglobulin like receptors resulting in higher inhibition of cytotoxicity. 3)
Defective maturation of NK cells with majority cells with hypomature profile expressing CD56bright/dim KIRs- CD57-. 4) Expression of checkpoint
inhibitors like PD-1 and TIGIT resulting in cells with reduced proliferative potential and lower cytotoxic and cytokine-producing capabilities. (Figure
created in BioRender).
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patients. Moreover, the frequency of KIR2DS3 was higher in AML

patients than in ALL patients. The haplotype analysis suggested that

haplotype A (more inhibitory) was more frequent in patients than

in the controls. Victoria PV et al. (43) also reported a higher

frequency of KIR2DL5A in the control group than in AML

patients. Another study exploring the association of different

AML risk groups with KIR and HLA genotypes observed that the

Cen-AB/Tel-AB combination (B content =2), activating gene

KIR2DS2 and the Bw4-80I and HLA-C2 allotype, was more

frequent in AML patients than in the controls (42). Although

these are a few individual studies, more extensive cohort studies

are needed to assess the exact role of NK receptor expression profile

in relation to AML disease progression.
2.3 Maturation of NK cells

There are two distinct Natural killer cell groups based on CD56

cell surface expression: 90% belong to the CD56dim CD16high group

and are cytotoxic, and 10% belong to the CD56bright CD16dim/neg

group and exhibit a more immunomodulatory role by releasing

different cytokines (44). The maturation process of NK cells starts

from CD34+ hematopoietic progenitor cells in the bone marrow,

wherein cytokines like IL-15 and c-kit ligand, and flt-3 ligand help

them reach their full potential from an NK cell progenitor (CD34dim/

CD117-/NKG2A-) to immature CD56+NK cells (CD34-/CD117+/

CD56+/-) precursor intermediate and finally a functional CD56bright

NK cell (CD34-/CD117+/-/CD94+). They attain full functional

maturity by expressing the NKG2A or KIRs (CD34-/CD117-/

CD94+/CD16+/KIR+) (45). Another marker of importance in the

identification of mature NK cells is CD57. Cells expressing CD57

have high cytotoxic potential with low proliferation capacity. NK cells

are the first immune cells to reconstitute post-transplant and are the

primary cells to keep leukemia in check immediately post-HSCT. The

normal maturation process is essential in conferring NK cells the

ability to recognize and eliminate cancer cells. Mundy-Bosse et al. (46)

demonstrated that the immature NK phenotype is upregulated in

murine AML models, whereas the intermediate phenotype is almost

absent. Chretien et al. (47) in their study divided the AML patients

into three groups based on their NK maturation profile: hypo-

maturation group with CD56bright/dim KIRs- CD57-; intermediate

group with CD56dim KIRs-/+ CD57-/+ and hyper-maturation group

with CD56dim KIRs+ CD57+ profile. Their study reported that the

patients with the hypo-maturation profile had inferior outcomes, such

as three-year OS and RFS. This study highlighted that the maturation

status of NK cells plays a vital role in predicting long-term outcomes.

Post-transplant infections such as cytomegalovirus (CMV) have also

been implicated in influencing the reconstitution of mature NK cells

post HSCT resulting in lower rate of relapse. Cichocki et al. reported

that mature NK cells (CD56dimCD57+NKG2C+) predominantly

expand in post HSCT recipients after CMV reactivation leading to

better DFS (48). Armin et al. (49) showed that recipients with CMV

reactivation had a higher frequency of KIR+NKG2A- NK cells than in

CMV seropositive recipients without reactivation and seronegative

recipients. Hassan et al. (50) observed a rapid and sustained increase in

NK cell numbers in patients with CMV reactivation, with an increase
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in the proportion of NKG2C expressing NK cells. Mundy-Bosse et al.

(46) further showed that AML patients with defective NK cell

maturation carrying lower levels of the transcription factors

required for terminal NK differentiation (TBET and EOMES) was

associated with elevated levels of miR-29b. These are important in

controlling final NK cell differentiation. Moreover, lower T-bet

expression leads to lower perforin in mature NK cells, which results

in NK cells with reduced cytotoxic potential.
2.4 Expression of checkpoint inhibitors

Immune checkpoint molecules are essential in maintaining the

immune response by protecting self-cells from lysis. Immune

checkpoints like PD-1, TIM-3, and TIGIT regulate NK cell

activity (51). PD-1 is expressed in mature NK cells when

stimulated by infected cells or tumor cells. NK cells expressing

PD-1 have reduced proliferative potential and lower cytotoxic and

cytokine-producing capabilities. Blocking the interaction of PD-1

with its ligand PDL-1 by using specific antibodies activates NK

cytolytic activity. PDL-1 expression in AML patients has been

reported with lower immune recognition (52). Goltz et al. (53)

showed that reduced PDL-1 expression in AML cells correlated

with better outcomes, such as a lower risk of relapse and prolonged

OS. Another checkpoint TIGIT is expressed on NK cells. The ligand

for TIGIT is CD112, CD113 and CD155 same as that for DNAM-1.

Sanchez-Correa et al. (54) showed low expression of DNAM-1 in

AML patients, which could favor the binding of TIGIT to its

ligands, sending inhibitory signals and leading to tumor evasion.

Blocking TIGIT promotes NK cell-mediated cytotoxicity, as shown

in cancer mouse models by Zhang et al. (55).

The above studies highlight the role of different NK cell defects

in AML disease susceptibility and progression (Figure 1). Many of

these studies formed the basis on which various targets for cell-

based therapies were devised for AML.
2.5 Unfavorable tumor microenvironment
and epigenetic modifications enabling
tumor evasion

The tumor microenvironment (TME) is diverse, made up of

stromal cells, immune cells, extracellular matrix and secreted factors

(56). Interaction of AML blasts with the TME can be responsible for

AML disease development, relapse, progression and resistance to

therapy. Mesenchymal stem cells (MSCs) modulate the development

and differentiation of hematopoietic stem cells, in the case of AML, the

bone marrowMSCs can contribute to tumor progression by providing

anti-apoptotic signals to AML blasts (57, 58). Regulatory T cell (Tregs)

subsets are responsible for maintaining the peripheral homeostasis and

central tolerance by suppressing T- helper (Th) cell proliferation. A few

studies have reported increased numbers of Tregs population in AML

patients (59, 60), and is associated with unfavorable treatment

outcomes (61). Depletion of these tumor associated Tregs results in

better cytotoxic T (Tc) cell therapy (62). At the time of diagnosis NK

cells in the AML patient are defective due to factors such as
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downregulation of activating receptors, upregulation of inhibitory

receptors and lower cytotoxic and higher immature NK subsets (40,

47, 63). Paczulla et al. (64) showed that downregulation of the ligand

for the NKG2D receptor (NKG2DL) via the PARP1 enables tumor

evasion in AML blasts (64). Moreover, susceptibility of AML cells to

NK cells is affected by the direct interactions between AML cells and

mesenchymal stomal cells in the tumor microenvironment (65). Most

common reasons for inhibition of NK activity in the TME are hypoxia,

low glucose concentrations, cytokines, tumor cell derives factors

such as IL6, IL10, TGF-Beta, prostaglandin E2 (PGE2). Myeloid

derived suppressor cells (MDSCs) have an immunosuppressive

role and expansion of MDSCs in AML patients leads to an

immunosuppressive TME with a possible role in tumor progression

(66–68). The expansion of MDSCs can take place through

different pathways such as MUC1 oncogene expression through

c-myc expression. Another group of cells in the TME is the

Tumor associated macrophages (TAMs) which promote tumor

progression. Al-Mataray et al. (2016) showed that AML promotes

infiltration of TAMs (69). Further, AML blasts also secrete various

immunosuppressive cytokine and chemokines such as IL-10, TGF B,

IL-35 into the tumor microenvironment giving it an immune-

inhibiting property (70–72).

Epigenetic modifications such as DNA methylation, histone

modifications, Chromatin remodeling, control normal gene

expression. Such epigenetic changes can also influence NK cell

development, differentiation and functionality. DNA methylation

involves transfer of a methyl group to 5’ position of cytosine

molecule in CpG sites leading to normal gene expression. DNA

methyltransferases (DNMTs) control these DNA methylation

patterns. Nucleoside analogues of cytosine are integrated into the

DNA and help in covalent bond formation with the DNMT, leading to

DNA degradation and inhibition of DNA methylation (73, 74).

Hypermethylation of the CpG islands can result in gene silencing.

In case of tumor suppressor genes, hypermethylation promotes

tumorigenesis (75, 76). Hypomethylating agents (HMAs) such as

DNMT inhibitors and 5-aza-2’deoxycytidine (decitabine) have been

used for at least a decade to treat high risk AML patients (77). Post

translational modifications (PTMs) at the histone N-terminal tails,

such as acetylation, methylation, phosphorylation, deamination etc.

weakens the packed chromatin structure favoring the binding of

transcription factors and normal genetic regulation. However,

enzymes such as histone deacetylases (HDACs), demethylases,

dephosphorylase reverse this function by removing the acetyl group

from the histone tails leading to more compact packing of the DNA

around the histones resulting in poor or no binding of transcriptional

factors and hence affecting the gene transcription (78, 79). Such

modifications of these epigenetic processes favor malignancy and

tumor progression.
3 Therapeutic options for AML

3.1 Conventional therapies

Treatment for AML varies based on the stage of the disease and

the type of mutation involved. Stem cell transplantation remains the
Frontiers in Immunology 05
most suitable treatment for AML patients to reduce the risk of

relapse and mortality. However, the risk of relapse depends on

several other factors, such as the blast clearance status in bone

marrow, the presence of FLT3 mutations and cytogenetics, and

molecular mutations, among others (80, 81).

Conventional treatment strategies for AML include chemotherapy,

targeted therapy, and radiation treatment, with hematopoietic stem cell

transplantation (HSCT) as the final treatment option. The most

common chemotherapy regimens include standard protocol of 7

days of cytarabine and three days of anthracycline (82), fludarabine–

Ara-C–granulocyte colony-stimulating factor–idarubicin (FLAG-IDA)

for relapsed childhood AML (83), or similar kind of induction,

followed by consolidation chemotherapy and hematopoietic stem

cell transplantation in patients who are at a high risk of relapse.

Although, these methods have resulted in complete remission in 60-

80% of elderly patients the downside to this approach is induction-

related mortality due to poor tolerance to these drugs (82, 84, 85).

HiDAC consolidation doses on days 1, 3, and 5 for younger

patients not undergoing HSCT is a standard norm (86–88).

Consolidation along with an added targeted drug results in more

prolonged relapse-free survival (RFS) (89). Most AML patients

achieve complete remission (CR) with intensive chemotherapy

alone. However, many of those patients would relapse. In such a

situation, hematopoietic stem cell transplantation (HSCT) becomes

the treatment of choice.
3.2 Therapies targeting the tumor
microenvironment and epigenetic
modifications

In AML, the leukemic cells interact with the bone marrow

microenvironment and secrete a cytokine called KIT ligand, which

favors tumor progression by interfering with normal hematopoeisis

(90–92). There have been studies to investigate the role of CXCR4/

CXCL12 inhibitors, TGF-Beta neutralizing antibodies and use of

monoclonal antibodies to block IL-6 (93–96). Hypoxia is another

feature of the TME which favors the growth and proliferation of AML

cells. Hypoxia downregulates the NK cell ligands like NKp30, NKp44,

NKp46, NKG2D, perforin and granzymes. The NKG2D can be

restored by administration of IL-2 (97). Hypoxia-activated prodrugs

such as Evofosfamide and PR-104 have been shown to inhibit hypoxia

associated resistance to therapy in AML (98–101). Glucose is a pre-

requisite for generating ATP and NADPH in order for NK cells to

function correctly, however, the TME is glucose deprived which

impairs NK cell glycolytic activity. Some metabolic regulators like

GLUTS have also been shown to regulate glucose influx (102).

Recombinant cytokines such as Il2, Il-12, Il-18, IL-15, IL-21,

IFN-gamma, GM-CSF have been shown to promote, mediate and

enhance NK cell expansion and cytolytic potential (103–106).

Although this therapeutic option of targeting different metabolites in

the TME is fascinating, in AML the microenvironment is so complex

that targeting a single metabolite to get the desired outcomes is

a challenge.

Epigenetics is regulated by molecules such as DNA and histone

methyltransferases (HMAs) and histone deacetylases (HDACs)
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(107). DNMT inhibitors dectabine and 5-aza-2’deoxycytidine

(DAC) are known HMAs that have been approved for clinical

treatment of AML and MDS. DAC is phosphorylated to decitabine

triphosphate which then incorporates into the DNA and inhibits

DNA synthesis causing a cytotoxic effect, whereas, 5-AZA gets

integrated into the RNA structure and interferes with protein

formation (108–110). There have been a few clinical trials

investigating HMAs for treatment of AML. Issa et al. (111) have

reported good efficacy and tolerance with lower doses of these

drugs. In the first trials doses of 1500 to 2500 mg/m2 were used to

stop DNA synthesis and cause cytotoxicity (112). Cashen et al.

(113) in their Phase II clinical trial of decitabine treatment in elderly

AML patients showed complete remission (CR) in 24% and overall

response rate (ORR) in 25% with a median survival of 14 months.

Lubbert et al. (114) treated their AML patients with decitabine +

ATRA and observed ORR in 26%, with CR in 13.2% and PR in

12.8% with a median survival time of 5.5 months and 1 year OS of

28%. HDACs regulate cell apoptosis and proliferation by

deacetylating lysine residues on proteins. HDAC inhibitors on the

other hand inhibit this deacetylation process and help in controlling

tumor progression. Some of the HDAC agents currently used are

Valproic acid, Vorinostat and Entinostat among others. Vorinostat

has a hydroxamic acid component which when binds to the zinc

pocket of HDAC 1,2,3 and 6 results in reversible inhibition of

HDACs and apoptosis of cancer cells (115).Valproic acid targets the

AML1/ETO complex and induces apoptosis of AML cells (116).

Entinostat helps in promoting loss of leukemia and longtime

survival s proven in animal models (117, 118). Although by

themselves HMA and HDAC inhibitors have shown moderate

results combination therapies involving these molecules with

other therapies may be promising.
3.3 Targeting the NKG2D-NKG2DL

Factors such as viral infections, oxidative damage, DNA damage

increase the expression of metalloproteinases on tumor cells.

Metalloproteinases have been suggested to be involved in the

cleavage of NKG2D-L in AML (119–124). Raneros et al. (125)

showed that azacitidine a DNA methyltransferase (DNMT)

inhibitor reduces the release of soluble NKG2D-L in AML cells.

Poly ADP ribose polymerase 1 (PARP1) inhibits the expression of

NKG2D-L proteins in leukemic stem cells (LSCs) helping them

evade surveillance (64). In case of DNA damage, the ATM/ATR

pathway activates the PARP1 (126, 127), which in turn upregulates

the expression of NKG2D-L on the surface of leukemic stem cells in

AML (64). Nanbaksh et al. (128) reported that lower expression of

c-Myc results in decreased expression of NKG2D-L in AML.

Moreover, HDAC inhibitors and demethylating agents can also

induce NKG2D-L in tumor cells making them susceptible to NK

cells lysis (129–132). A few ongoing clinical trials are focused on

targeting the NKG2D/NKG2DL axis in AML. CAR-NKG2D’s have

been manufactured by introducing NKG2D into a CAR-T that will

target the NKG2D-L in relapsed/refractory (r/r) AML patients

(133–138). Baumeister SH et al. (134) confirmed the safety of

such a CAR-T in a recent phase 1 clinical trial. These studies
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provide a new option for the treatment of AML through NK cells by

targeting the NKG2D-NKG2D-L axis.
3.4 Hematopoietic stem cell
transplantation

HSCT has been designated as the penultimate therapy for adult

AML patients in CR1. It can reduce the risk of relapse by more than

60% compared to intensive chemotherapy alone by virtue of its

potent graft-versus leukemia (GvL) effect (139). The advance of

strategies, such as the use of post-transplant cyclophosphamide, has

led to an increase in the number of suitable haplomatched donors

for patients who do not find a fully matched HLA donor (140).

However, even with changes in conditioning regimens

(myeloablative to reduced intensity) and use of graft versus host

disease (GvHD) prophylaxis such as cyclosporine, tacrolimus,

mycophenolate mofetil, the success of HSCT is marred by post-

transplant complications such as relapse, GvHD, and TRM. Hence,

newer treatment options with fewer complications are sought. In

recent years the role of KIR receptor-HLA ligand mismatch

between the patient and donor favoring HSCT outcomes has

gained much attention. Table 1 highlights some of the published

data on patient-donor KIR genotype, KIR ligand match/mismatch

and KIR receptor ligand match on transplant outcomes. Most of

these studies show the role of KIR B genotype in reduced risk of

leukemia relapse and improved disease-free survival, lower GvHD,

lower risk of CMV reactivation (9, 141–143). On the other hand,

Bultitude et al. (144) showed higher non relapse mortality (NRM) in

AML patients undergoing T cell depleted HLA-matched, unrelated

donor HSCT where the donor carried the centromeric KIR B

haplotype. Bao et al. (145) reported a higher rate of relapse in

patients transplanted with graft from KIR A/A donors, whereas

Mansouri et al. (146) reported similar results when the patient had a

KIR A/A haplotype. Some reports suggest no role of KIR mismatch

on transplant outcomes (147–149), whereas higher TRM, reduced

OS and DFS has been reported by Kroger et al. (150), DeSantis et al.

(151), in the presence of KIR mismatch transplants. On the other

hand, favorable outcomes such as lower aGvHD (152, 153), lower

risk of relapse (154–157) and better OS and DFS (158) has been

reported by other studies. These contradictory results across studies

could be due to the difference in study designs such as heterogenous

population, HLA match/mismatch, donor being related/unrelated

to the patient and the conditioning regimen used. These studies

suggested some insights into the role of KIR and NK cells as the

basis for immunotherapies.
3.5 CAR-T therapies

Recently the focus has shifted to more and more adoptive cell

therapies for treating leukemias. Chimeric Antigen receptor (CAR)-

T cell therapy was the first cell therapy to receive FDA approval

after showing success in patients with aggressive B cell

malignancies. The idea that T cells could be used to target specific

antigens was brought forward by Eshar et al. in 1989 (169). The use
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TABLE 1 KIR genotype and HSCT in AML patients.

Variable Study Design Patients Results Reference

Donor with KIR B/X genotype HLA matched and
mismatched T cell replete
transplants

448 AML patients Better 3-year OS, lower risk of relapse, higher
incidence of cGvHD

Cooley et al.
(9)

Donor KIR B haplotype and patient expressing
C1 epitope for HLA-C

RIC, unrelated donor
transplantation

Prospective cohort
n=243 Retrospective
cohort n=2419

Reduced risk of leukemia relapse and
improved disease-free survival

Weisdorf
et al. (141)

Donor KIR B haplotype (KIR2DL2 or KIR2DS2
gene present)

HLA-identical adult
sibling HSCT

134 AML patients Longer relapse free survival Impola et al.
(8)

Donor KIR Centromeric B haplotype HLA mismatched 65 patients with
different
hematological
malignancies

Higher overall survival and relapse free
survival and lower GvHD

Gautam
et al. (142)

Donor with KIR B/x haplotype and 2DS1
activating receptor

HLA matched sibling/
unrelated donor
transplantation

288 AML patients Lower risks of CMV reactivation Nakamura
et al. (143)

Donor centromeric KIR B T cell depleted HLA-
matched, unrelated donor
HSCT, with MAC regime

119 AML patients Higher Non relapse mortality (NRM) Bultitude
et al. (144)

Donors with KIR A/A haplotype and 2DS4*001
allele

T cell depleted unrelated
donor transplants

75 patients with
various
hematological
malignancies

Higher risk of aGvHD Bao et al.
(145)

Patients with KIR AA genotype and C2/Cx, Bw4
+ (or A-Bw4+) or HLA-A3−/A11− genotypes
who received HSCT from KIR Bx donors

HLA-matched siblings
transplants

100 AML patients Increased risk of aGvHD Mansouri
et al. (146)

KIR mismatch T cell depleted
mismatched unrelated
donor transplants

24 patients with
various advanced
myeloid
malignancies

No difference in aGvHD, cGvHD, relapse Weisdorf
et al. (147)

KIR mismatch Unrelated HSCT 186 patients with
various
hematological
malignancies

No difference in aGvHD, cGvHD, relapse Sivula et al.
(148)

KIR ligand mismatch T cell replete/depleted
haploidentical unrelated
donor transplant

1571 patients with
various
hematological
malignancies

No difference in TRM, aGvHD, cGvHD,
relapse and DFS

Farag et al.
(149)

KIR ligand mismatch, Donors with KIR AA
haplotype

T cell depleted unrelated
donor transplants

142 patients with
various
hematological
malignancies

Higher TRM, reduced OS and DFS.
Transplants with donors carrying KIR AA
haplotype resulted in reduced risk of relapse

Kroger et al.
(150)

KIR ligand mismatch HLA Mismatched
unrelated Donor
transplant

104 patients with
various
hematological
malignancies

Higher TRM and lower DFS and higher risk
of graft rejection. In GvH direction led to
higher prevalence of Grade III-IV aGvHD

De Santis
et al. (151)

KIR ligand mismatch and KIR receptor ligand
mismatch

Haploidentical HSCT
with MAC regimen

79 AML patients Decreased risk in aGvHD and relapse rate
and better overall survival.

Zhang et al.
(152)

KIR mismatch between patient and donor HLA matched unrelated
donor transplantation

90 high risk AML
patients

Lower aGvHD Davies et al.
(153)

Patient missing KIR ligand Unrelated HSCT 116 patients with
various
hematological
malignancies

Decreased risk of relapse Wu et al.
(154)

Mismatched HLA C ligand Haploidentical HSCT 74 patients with
various

Better disease free survival Duan et al.
(155)

(Continued)
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of CAR-T by engineering the patient’s self-cells to target CD19

which is an important target in ALL has been evaluated in various

studies (170–172). CAR T cells secrete anti-tumor cytokines,

perforin, and granzymes into the tumor microenvironment

(TME) (173, 174). Generation of CAR-T involves high costs and

takes a long time from generation to implementation as the

patient’s self-cells are engineered. Various studies have evaluated

the role of CAR-Ts targeted towards different AML antigens.
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3.6 Monoclonal antibody targeted therapies

The cell surface expression of proteins differs on cancer cells

compared to healthy cells. Cancer cells may over-express or under-

express a surface protein and cause aberrant expression of proteins

(175). CD33, CD45, CD123, and CD244, are some of the surface

proteins ubiquitously expressed on AML blast cells (176). These

molecules are promising targets for immunotherapy, and currently,
TABLE 1 Continued

Variable Study Design Patients Results Reference

hematological
malignancies

KIR3DL-ligand mismatch Cord blood transplants 2840 patients with
AML, ALL and
CML

CMV reactivation up to 100 days post CBT
lead to lower risk of relapse

Yokoyama
et al. (156)

Higher inhibitory KIR receptor-ligand match
between patient and donor

HLA matched unrelated
donor transplantation

2359 AML patients Lower risk of relapse Krieger et al.
(157)

KIR ligand mismatch T cell depleted
haploidentical unrelated
donor transplant

130 patients with
various
hematological
malignancies

Better OS and DFS Giebel et al.
(158)

Donor Centromeric AA genotype T-replete Haploidentical
HSCT with PtCy

81 adult patients
with different
hematological
malignancies

Lower incidence of relapse Dubreuil
et al. (159)

KIR ligand mismatch T cell replete post Cy
haploidentical HSCT

144 patients with
various
hematological
malignancies

Lower risk of relapse, better disease free
survival

Wanquet
et al. (160)

KIR ligand mismatching T cell replete
haploidentical post Cy

444 patients with
Acute lymphoid/
myeloid leukemia

Worse overall survival Shimoni
et al. (161)

Donors with full-length KIR2DS4 Matched or 1 mismatch
unrelated HSCT

75 patients with
different
hematological
malignancies

Higher incidence of aGvHD An et al.
(162)

Donor KIR2DS1and patient with HLA C2 HLA mismatched sibling/
unrelated donor
transplants with MAC
regimen

314 patients with
mixed hematological
malignancies

Improved overall survival and decreased risk
of transplant related mortality

Tordai et al.
(163)

Donor activating killer cell immunoglobulin-like
receptors genes (KIR2DS1, KIR2DS3 or
KIR3DS1)

Haploidentical HSCT 300 patients with
mixed hematological
malignancies

Increased EBV reactivation Wang et al.
(164)

Donor KIR2DS1 HLA haplo/mismatched T
cell replete HSCT

91 Improved Overall survival in patients who
were in complete remission at time of
transplant

Ido et al.
(165)

Patients with HLA C homozygosity (C1C1/
C2C2)

HLA matched related/
unrelated transplants

406 AML and MDS
patients

Lower risk of relapse if early CMV
reactivation occurred. Increased NRM and
grade III-IV aGvHD

Nikoloudis
et al. (166)

Patients homozygous for HLA B and HLA C
epitopes

T cell replete HSCT, HLA
matched/mismatched
unrelated donors

1770 patients with
various
hematological
malignancies

Lower relapse in HLA mismatched cohort Hsu et al.
(167)

Patients homozygous for HLA C epitopes
(C1C1/C2C2)

HLA matched sibling
donor transplant

52 patients with
various
hematological
malignancies

Lower incidence of cGvHD. Higher OS and
DFS

Wang et al.
(168)
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there are many ongoing trials focused on developing monoclonal

antibodies (mAbs) against these molecules to achieve better outcomes

in AML patients. mAbs can be either naked antibodies that function

through NK mediated ADCC, such as lintuzumab (anti-CD33) or

mAbs conjugated to toxins (e.g., gemtuzumab ozogamicin – anti-

CD33), or conjugated to radioactive particles (176).
3.7 NK cell-directed therapies for AML

Natural Killer (NK) cell immunotherapy is a novel

immunotherapeutic treatment option. In AML patients, the NK

cell function is suppressed, thus enabling the cancer cells’ to evade

immune surveillance. NK cell immunotherapy prevents the

suppression of NK cells so that they can carry out target lysis.

Many clinical trials for various NK cell-based immunotherapies like

adoptive NK cell transfer, chimeric antigen receptor (CAR) NK

cells, cytokine-induced memory-like (CIML) NK cells, etc., are

currently being carried out (2, 4).

NK cells lyse their target firstly by forming an immunological

synapse with them, followed by the release of cytolytic granules and

cytokines. The second mode of lysis is antibody-mediated cell

cytotoxicity (ADCC), wherein NK cells recognize antigen-coated

target cells by their FCgammaIIIA (CD16) receptor and trigger

ADCC and cytokine production (177, 178). In 2012, Romee et al.

(179) demonstrated memory like function of NK cells by showing

that if NK cells are preactivated with IL12, IL15, and IL18 followed

by 1-3 weeks’ rest, they were able to generate enhanced IFN-gamma

production when exposed to cytokines or K562 leukemia cell line.

These hypotheses led to the investigation of different cell sources

that could be used to generate NK cells in adoptive cellular

therapies. Some of the cell sources are cord blood, peripheral

blood mononuclear cells (PBMC), cell lines such as NK-92,

hematopoietic stem and progenitor cells, and induced pluripotent

stem cells (179–188). There are advantages and disadvantages

associated with every NK cell source used. Generation of NK cells

from donor PBMCs is the safest and most favorable option as they

carry various NK cell activating markers such as CD16, NKG2D,

NKp44, and NKp46 which strongly recognize and kill non-self or

tumor cells; however, the percentage of NK cells in peripheral blood

is too low, and expansion of NK cells derived from PBMCs is costly

and time-consuming (189–191). NK cells expanded from NK-92

cell lines, which are an immortalized NK lymphoma cell line, raises

safety concerns and irradiation of products derived from these cell

lines requires irradiation before infusion. NK-92 cell lines also lack

various activating KIRs and Cd16 (FCRIII), which may limit their

killing potential even through ADCC. The advantages of using NK-

92 cell line-derived NK cells are the speed at which they multiply

without the need for feeder cells and their ability to secrete higher

amounts of perforin granzymes and cytolytic cytokines (192–195).

Induced pluripotent stem cells are a good source for NK cells as they

have a higher expansion rate; however, these, too, express lower

CD16 levels, which could reduce their cytotoxic capacity, although

this could be rectified by genetic engineering (196). Not only

various sources of NK cells but also different NK cell-based
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immunotherapies such as adoptive transfer, CAR-NKs, bi-specific

and tri-specific killer engagers (BiKEs and TriKEs) are recently

being investigated in clinical trials to understand their role as a

curative option for AML (Figure 2). Table 2 lists the various

completed clinical trials of NK cells in AML.

3.7.1 Adoptive NK cell therapy
Adoptive NK cell therapy is the transfer of NK cells to a patient.

The NK cells are isolated from a healthy donor (allogenic) or patient

(autologous) using PB, bone marrow, or umbilical cord as the

source. These NK cells are then either expanded or activated ex vivo

using cytokines such as IL-2, IL-12, IL-15, IL-18, and IL-21 (197,

198). NK cells isolated from haploidentical donors show

alloreactivity against leukemic cells due to KIR-KIR Ligand (KIR-

KIRL) mismatch leading to the GvL effect (197). Currently, many

ongoing clinical trials are investigating the efficacy of NK cell

therapy in combination with various cytokines. Rubnitz et al.

demonstrated the feasibility of donor-recipient inhibitory KIR-

HLA mismatched NK cell transfer and the administration of IL-2

after an immunosuppressive regimen in 10 AML patients. Transient

engraftment was observed in all patients, all patients were in

remission at 2 years and the 2 year event free survival (EFS) was

100% (199).

Inpyo Choi et al. carried out a clinical trial to determine optimal

dose of donor NK cell infusion (DNKI) to be administered in

patients suffering from various hematological malignancies post

HSCT (NCT00823524) (200). On receiving high doses of DNKI, no

acute toxicity was observed in the patients, and a significant

reduction was observed in post-transplant leukemia progression.

Dolstra et al. (182) showed that an increased dose of NK cells

generated from umbilical cord blood hematopoietic stem and

progenitor cells (HSPC) was well tolerated in AML patients in CR

and did not result in toxicity or GVHD.

Many studies involve the use of IL-2 along with NK cell infusion

as IL-2 aids in stimulation of the infused NK cells (197). IL-2 is also

responsible for the increased expression of the activating receptor

NKG2D (190). Miller et al. (201) conducted a study to check the

safety and efficacy of haploidentical donor NK cell infusion in AML

patients who received either low-intensity or high-intensity

immunosuppressive regimens. These patients were given a

subcutaneous injection of IL-2 after NK cell infusions. Successful

in vivo expansion of donor NK cells was observed in these patients

with 60% patients achieving CR. At low doses, IL-2 can stimulate

NK cells as well as the Treg of the host, which can affect the NK cell

function, whereas high doses can cause toxicity. As an alternative

treatment, the use of IL-15 has been considered (202). In a first-in-

human trial, recombinant human IL-15 (rhIL-15) was administered

intravenously (NCT01385423) or subcutaneously (NCT02395822)

to R/R AML patients after haploidentical NK cell transfer.

Compared to previous studies using IL-2, it was observed that in

vivoNK cell expansion was better when rhIL-15 was used. However,

cytokine release syndrome (CRS) was seen in patients who received

rhIL-15 subcutaneously (203). In the phase I/II trial, high doses of

membrane-bound IL-21 (mb-IL21) ex vivo expanded donor-

derived NK cells (NCT01904136) resulted in lower 2-year relapse
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rate with better disease-free survival (DFS) in patients suffering

from various myeloid malignancies (204).

Recently, the use of memory NK cells for the treatment of

leukemia has been gaining importance. It has been observed that

NK cells activated in response to interleukins like IL-12, IL-15, and

IL-18 exhibit memory cell-like characteristics. These cytokine-

induced memory-like NK cells (CIML NK), also called memory-

like NK cells (ML NK cells), display better effector function (103,

205). Many clinical trials are being carried out to explore CIML NK

as an effective immunotherapy against AML (206). Shapiro et al.

(207) reported that CIML NK cells expanded in vivo within 30 days

of infusion in patients who have relapsed after haploidentical HSCT

(NCT040247761). The leukocyte and granulocyte chimerism were

high post-CIML NK infusion. Bednarski et al. (208) showed that the

adoptive transfer of ML NK cells has no significant toxicity. These

ML NK cells display potent cytotoxicity against leukemic cells and

demonstrate long-term in vivo persistence.

3.7.2 Monoclonal antibody therapy
Recently, a few clinical trials have been designed to explore the

efficiency of killing by NK cells through ADCC using monoclonal

antibodies (Table 3).

3.7.3 CARs
There are four generations of CARs that are currently being

investigated: first generation-CARs comprising of the basic

structure and one signaling region, second generation-CARs with

an extra co-stimulatory domain, third generation –CARs with
Frontiers in Immunology 10
multiple co-stimulatory domains, and fourth generation-CARs

with multiple co-stimulatory domains and cytokine signals (209–

214). A CAR construct comprises a synthetic extracellular receptor

that will recognize the specific antigen, a hinge region, and a

transmembrane domain and may carry one (first generation)

(209) or multiple (2nd, 3rd generation) (210–213) intracellular co-

stimulatory domains. CARs are fusion proteins expressed on

immune cells so that these cells recognize specific targets.

Initially, the CARs used for CAR-T therapy comprising CD3 z
and the T co-stimulatory molecule were used for generating CAR-

NK cells and evaluating their efficacy against tumors (215).

Although there have been promising results, CAR-T therapy has

been associated with side effects such as cytokine release syndrome

(216–218), whereby an increased production of IL6, IFN-gamma,

GM-CSF, and TNF-alpha result in severe neurological conditions,

myalgia, hypoxia, hypotension, and vascular leakage (219). On-

target/Off-tumor is another complication associated with CAR-T

therapy (217, 220–222). The manufacturing process for CAR-T cells

takes about 2-3 weeks post-patient cell accrual. Due to these

limitations, researchers have started evaluating other immune

cells for adoptive cell therapies. NK cells bind only to their

cognate human leukocyte antigen (HLA) ligands on leukemic

cells hence taking care of the toxicities that could occur due to

nonspecific recognition of healthy cells. This power of

distinguishing between self and non-self cells is conferred by the

various activating and inhibitory receptors present on the NK cell

surface (223, 224). NK cells also do not cause GvHD. These

properties of NK cells have made them the cells of choice for
FIGURE 2

NK cell based immunotherapies. 1) Adoptive NK cell therapy. Infusion of cytokine stimulated ex vivo expanded donor derived NK cells 2) Infusion of
CAR-NK construct that comprises an extracellular receptor recognizing a specific antigen, a hinge region, and a transmembrane domain and
intracellular co-stimulatory domains. 3) NK cell engagers consisting of bi-specific killer engagers (BiKEs) and tri-specific killer engagers (TriKEs),
comprised of a single variable antibody portion (VH and VL) that links to either one (BiKE) or two (TriKE) variable portions on other antibodies. 4)
Immune checkpoint proteins when bound to their ligands suppress NK cell activity facilitating tumor evasion. Blocking these checkpoint proteins
with inhibitors prevents NK suppression (Figure created in BioRender).
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TABLE 2 NK-mediated clinical trials in AML.

Sr
No.

Trial
Number

Intervention Number
of

Patients

1 NCT02395822a A phase II trial of CD3/CD19 depleted, IL-15 activated, donor natural killer (NK) cells 17

2

NCT01385423b

A single-center, dose-escalation study designed to determine the maximum tolerated, minimum efficacious dose (MTD/MED)
of IL-15 (Intravenous Recombinant Human IL-15) and incidence of donor natural killer (NK) cell expansion by day +14 when
given after haploidentical donor NK cells in patients with relapsed or refractory acute myelogenous leukemia (AML). 26

3 NCT00187096c Donor-recipient inhibitory KIR-HLA mismatched NK infusion post-multi-agent chemotherapeutic conditioning regimen
(Cyclophosphamide, Fludarabine, Clofarabine, Etoposide, Interleukin-2) before the infusion

49

4 NCT00274846d

&
NCT01106950e

Donor PBSC-derived natural killer (NK) cells (at a dose of 1.5-8 x 10^7/kg.) and IL-2 infusion post lymphodepletion with
cyclophosphamide, fludarabine

21

5 NCT01947322f Interventional Phase I/II AllogenicIL2 ex-vivo activated NK cells in 10 AML patients 10

6 NCT02316964g
A pilot trial involving decitabine, donor natural killer cells, and aldesleukin in treating patients with R/R acute myeloid
leukemia 8

7 NCT01787474h This phase I/II trial studies the side effects and best dose of donor natural killer cells in R/R AML 30

8 NCT00703820i A Phase II Study Of Natural Killer Cell Transplantation In Patients With Newly Diagnosed Acute Myeloid Leukemia 324

9 NCT00303667j
Reduced Intensity Haploidentical Hematopoietic Stem Cell Transplantation (HSCT) Supplemented With Donor Natural Killer
(NK) Cell Infusions in patients with high-risk myeloid malignancies 50

10 NCT03081780k Open Label Dose Escalation Trial of an Adaptive Natural Killer (NK) Cell Infusion (FATE-NK100) With Subcutaneous IL-2 6

11 NCT00402558l Alloreactive NK Cells With Busulfan, Fludarabine, and Thymoglobulin 15

12 NCT02763475m Phase 2 Natural Killer (NK) cells as consolidation therapy 7

13 NCT02395822n A phase II trial of CD3/CD19 depleted, IL-15 activated, donor natural killer (NK) cells in adults and subcutaneous IL-15 17

14 NCT03050216°
phase II trial of CD3/CD19 depleted, ALT-803 activated, haploidentical donor NK cells and subcutaneous ALT-803 given after
lymphodepleting chemotherapy (CY/FLU) 8

15 NCT00900809p Phase I trial of NK-92 as adoptive immunotherapy 7

16 NCT01795378q Phase I/II trial of HLA-Haploidentical Hematopoietic Cell Transplantation and Subsequent Donor Natural Killer Cell Infusion 56

17 NCT00394381r Phase I/II trial of Autologous Cytokine-induced Killer Cell Adoptive Immunotherapy 17

18 NCT01370213s

Phase II trial involving reduced intensity conditioning using Fludara, Cytoxan, and irradiation, followed by infusion of donor
NK (natural killer) cells, interleukin-2 (IL-2) to promote NK expansion, ATG for additional immunosuppression to promote
engraftment, and infusion of a TCR a/b-depleted same donor graft 25

19 NCT01904136t Phase I/II trial to study the side effects and best dose of natural killer cells before and after donor stem cell transplant 90

20 NCT01823198u Phase I/II trial studying the side effects and best dose of donor natural killer cells 63

21 NCT00460694v Phase I/II trial infusion of allogeneic CIK cells 24
F
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rhttps://clinicaltrials.gov/ct2/show/NCT00394381
shttps://clinicaltrials.gov/ct2/show/NCT01370213
thttps://clinicaltrials.gov/ct2/show/NCT01904136
uhttps://clinicaltrials.gov/ct2/show/NCT01823198
vhttps://clinicaltrials.gov/ct2/show/NCT00460694
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adoptive therapies as they overcome most of the problems

associated with CAR-T cell therapy.

Although, transfusion of unmodified NK cells has shown some

efficacy in AML patients, such NK cells have a short lifespan leading

to lower success rates, hence, the focus has shifted to CAR-NK cells,

and their efficacy is being tested in various clinical trials. The success

received from earlier studies then led to the generation of 2nd and

3rd generation CAR-NKs which utilizes the unique properties of NK

cell stimulatory receptors such as DAP12, DAP10, and 2B4 (225–

227). DAP10 and DAP12 are intracellular signaling domains and

activated molecules such as NKp44, activating KIRs, and NKG2C

(226, 228). DAP12 has ITAMs like KIRs, which, once

phosphorylated, initiate the release of proinflammatory cytokines

such as TNF-alpha and IFN-gamma (226). DAP10, on the other

hand, does not carry an ITAM motif but induces potent NK

cytotoxicity by signaling through the NKG2D-DAP10 axis (225).

Both DAP10, along with the CD3 z CAR NK constructs and 2B4

with anti-CD5 CAR NK constructs, have shown promising results

in B-ALL and T-ALL, respectively (228, 229). This was then

expanded to include multi-specific target strategies (4th

generation), such as NKG2D CAR-NK cells which target tumors

expressing ligands for NKG2D. The first success of CAR-NK cells in

AML was reported by Tang et al. in 2018 (230). In their first-in-man

clinical trial (NCT02944162), they tested the safety and efficacy of

third generation CD33 directed CAR NK construct with CD28 and

4-1BB co-stimulatory domains using NK cells derived from NK-92

cell lines in 3 relapsed/refractory AML patients. The dosage used

was 5x 109 cells. None of the participants had adverse effects;

however, there was no durable remission. The main limitation of

this study was the short lifespan of the irradiated NK92 cell lines,

with the number of CAR-NKs depleting to below measurable levels

in 1-week post-infusion. Since there were no unfavorable effects, it

was established that functional CAR-NK92 cells could be produced
Frontiers in Immunology 12
at a much lower cost than the CAR-T cells; however, low numbers

post-infusion would still remain a problem. In preclinical studies,

Christodoulou et al., 2021 (231) generated CARs with 2B4.z or 4-

1BB.z signaling domains. These CAR NKs were tested for their

cytotoxic activity in vitro and xenograft mouse models. It was

observed that these CAR NKs show higher anti-AML cytotoxic

activity in vitro; this activity could be enhanced by transient

expression of secretory IL-15; however, only the 2B4.z Chimeric

Antigen Receptor (CAR)-NK cells exhibited transient anti-AML

activity in mice models. Further, in the in vivo 2B4.z/sIL-15 CAR-

NK cells experiments, one set showed potent anti-AML activity,

whereas the other set showed lethal toxicity. Morgan et al., 2021

(232) used alpha-retroviral vectors to modify NK92 cells and

designed a third-generation CAR NK to target CD123, which is

strongly expressed on the surface of AML cells. The vector also

carried a transgene cassette to allow constitutive expression of

human IL15, which ensures enhanced NK persistence in vivo.

Salman et al. (233) developed a third-generation CAR construct

(CD28-4-1BB- CD3 z) with CD4 as a target and tested them against

AML in a cell line-derived xenograft mice model. Their study

showed specific elimination of primary CD4 positive AML blasts

and suppression of disease progression. Quite recently, Mezger’s

group from Germany transduced NK-92 cells with CD276 CAR.

Simultaneously using CRISPR technology, they introduced gene

knock-out of the NK inhibitory checkpoints: CBLB, NKG2A,

TIGIT) to enhance NK cytotoxicity. They tested the cytotoxic

capacity of these cells against various leukemic cell lines. When

they compared the cytotoxic potential between the two groups,

there was a significantly higher cytotoxic potential CRISPR-Cas9

knock-out compared to the parental NK-92 cells. It was also

observed that the triple knock-out CD276-CAR-NK-92 cells, as

well as single CBLB or TIGIT knock-out NK-92 cells, showed

significantly superior cytotoxicity against U-937 or U-937 CD19/
TABLE 3 Various ongoing clinical trials using monoclonal antibodies against different surface antigens.

Trial No. Antibody No. of
participants Intervention/Treatment Phase Status

NCT03441048a
Lintuzumab-Ac225 (anti-
CD33)

26 CLAG-M chemotherapy with Lintuzumab-Ac225 1
Active, not
recruiting

NCT05077423s
CD33*CD3, a bispecific
antibody (BsAb)

36 Subcutaneous administration of CD33*CD3 BsAb up to 12 cycles 1 Recruiting

NCT04714372c
Daratumumab (anti-
CD38)

50
Daratumumab given subcutaneously along with FT538, an off the shelf
allogeneic NK cell immunotherapy

1 Recruiting

NCT05266274d CD47 mAb 69 CD47 monoclonal antibody combined with azacitidine – Recruiting

NCT03248479e Magrolimab (anti-CD47) 258 Magrolimab + Azacitidine 1
Active, not
recruiting

NCT04227847f SEA-CD70 (anti-CD70) 140 SEA-CD70 with and without azacitidine 1 Recruiting

NCT02730312g XmAb14045 (Anti-CD123) 120
Intravenous administration of XmAb14045 weekly for up to 8 weeks,
with or without step-up dosing

1 Completed
ahttps://clinicaltrials.gov/ct2/show/NCT03441048
bhttps://clinicaltrials.gov/ct2/show/NCT05077423
chttps://clinicaltrials.gov/ct2/show/NCT04714372
dhttps://clinicaltrials.gov/ct2/show/NCT05266274
ehttps://clinicaltrials.gov/ct2/show/NCT03248479
fhttps://clinicaltrials.gov/ct2/show/NCT04227847
ghttps://clinicaltrials.gov/ct2/show/NCT02730312
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tag AML cell lines. These results conclude that knock-out cells

could be used as promising off-the-shelf therapeutic options for

treating AML (234). Another target for NK CAR is NKG2D which

interacts with various stress ligands expressed on abnormal cells. In

vivo experiments with such NKG2D-directed NK, CARS have

shown promising anti-leukemic response (235) and have now

moved on to phase I clinical trials in R/R AML patients

(NCT04623944). Such off-the-shelf therapeutics can reduce the

cost and time required for NK cell therapies. Garrison et al. (236)

used a data-driven bioinformatics approach to devise logic-gated

CD33-OR-FLT3-NOT-EMCN CAR NK cells. The novel idea

behind this approach is that such constructs will specifically

target AML blasts and leukemia-initiating cells as they carry both

CD33 and FLT3 markers; however, normal hematopoietic stem

cells will be unharmed as they carry the endomucin (EMCN)

marker. This hypothesis was proven successful in co-cultures.

Over the past few years, researchers have constantly been working

on developing safer and more effective CAR-NK therapy for AML

by using different targets, different sources of NK cells, and different

types of CAR constructs. Table 4 shows the clinical trials currently

in recruiting stage, where different CAR-NK cells are being tested

against AML.

Even with all the advantages of using NK CAR therapies, this

technology carries a few disadvantages. The first drawback is the

low numbers and short lifespan of NK cells, approximately 1-4

weeks. However, incorporating cytokines such as IL2 and IL15

during the construction of CAR-NKs can improve the expansion

and persistence of NK cells post-infusion (237). Newer ex-vivo

expansion strategies have been used to generate more functional

NK cells that could be used in CAR-NK therapy. These expansion

methods involve culturing NK cells with cytokines such as IL15 and

IL2, which aid in promoting NK expansion post-infusion and

maintaining homeostasis. Large-scale expansion protocols use

feeder cells such as Jurkat cell lines and the Epstein Barr virus-

transformed lymphoblastic cell lines (EBV-LCL). However, it is yet

to be seen which expansion methods can result in GMP-grade NK

cells with high expansion potential and sustained numbers post-

infusion, along with enhanced cytotoxic activity (238).

Another drawback is that most tumor cells have antigen loss or

downregulation of these antigens, evading immune surveillance by

CAR-NKs. Researchers have come up with various strategies to

combat this issue. One strategy is to target two antigens so that the

tumor cell will be detected. This can be done by generating a

construct that can encode two different CARs, each with specificity

for one antigen or a single CAR with two different recognition

domains (239). Further, NK CARs are difficult to engineer due to

their higher chances of apoptosis and low gene expression. Gene

manipulation in NK cells is currently performed using

electroporation which results in rapid transient expression, or by

using viral vectors. However, these methods are still under

development and need to be optimized for the widespread use of

CAR-NK therapies in specific cancers (240, 241). Yet another

limitation to CAR-NK-based therapies is that these can detect

antigens only when they are expressed on the surface of the cells.

Intracellular antigens are presented by MHC molecules and

detected by TCRs. Taking advantage of this fact, Dr. Walchli and
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Dr. Inderberg edited the NK cell to display anti-cancer TCRs on

their cell surface. They successfully created a functional NK-CAR

expressing a TCR, which could kill cancer cells (242). Although

these modified products hold a promising future as therapeutics,

they are still in the validation phase, and their potential is yet to

be proven.

3.7.4 BiKEs and TriKEs
Although CAR-NKs have been showing promising results in

preclinical and early clinical studies, these are expensive, time-

consuming, and difficult to expand on a large scale. Hence, newer

molecules known as NK cell engagers have recently gained interest

as NK-based therapeutics. These molecules consist of bi-specific

killer engagers (BiKEs) and tri-specific killer engagers (TriKEs),

which are small molecules comprised of a single variable antibody

portion (VH and VL) that links to either one (BiKE) or two (TriKE)

variable portions on other antibodies. In the case of BiKEs, one of

the variable antibody domains recognizes CD16 and the other a

targeted tumor antigen (242), whereas, TriKEs, in addition to these

two domains, have an interleukin 15 (IL15) element that connects

the two different antibody domains. This IL15 moiety enhances

proliferation, persistence, cytokine production, and NK cytolytic

potential, as proven in in-vitro assays with AML blast cells (243).

Additionally, these molecules may also have a tetra-specific

design which can bind to multiple antigens on tumor cells or cross-

link with cytokine units to favor NK expansion (243–247).

CD16A on NK cells is a receptor for Fc fragment of IgG

antibodies. BiKEs engage CD16 activating receptors present on

the NK cells by one of their variable fragments and a target antigen

on the tumor cell by the other variable fragment. CD16A carries an

ITAM which is phosphorylated upon binding of the CD16A to the

antigen bound IgG. This phosphorylation results in inducing a

kinase dependent signaling cascade leading to release of cytokines

and cytolysis. Such molecules take care of the major difficulties

faced with CAR molecules, such as there is no need to engineer

these molecules and no requirement for gene transfer, which makes

the production and expansion of these molecules much cheaper.

Moreover, introduction of IL15 in TriKEs has been shown to

improve in-vivo NK cell expansion and tumor control in mice

models, taking care of the limitation of low NK cell numbers in the

patient (243).

For AML, bi-specific reagents involve a construct of CD33,

whereas tri-specific reagents involve a construct of CD33 and

CD123 on AML (248–250). Wiernek et al. (251) created a BiKE

against AML. This construct comprised a domain-specific for CD16

on NK cells and CD33 on AML cells. This was known as the 1633

BiKE. They, along with Gleason et al. (252), tested the potential of

this construct in vitro. The results indicated that such a BiKE could

overcome the inhibitory KIR signaling and stimulate NK cells to kill

AML blasts, and stimulation of NK cells with such BiKEs in vitro

restore the inhibited NK cell function in MDS patients. Valera et al.

in 2016 (243) built the first TriKE by improvising the already

existing BiKE 1633. They added IL15 to the BiKE and called it

161533, wherein the TriKE facilitates the formation of a synapse

between the NK cell (CD16) and the tumor cell (CD33), binding to

the CD16 on the NK cells to trigger ADCC and the IL15 will
frontiersin.org
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promote NK cell activation and expansion. Wiernek et al. (251)

improvised on these TriKEs by co-administering ADAM17

inhibitors, which could help sustain CD16 expression on NK

cells. Arvindham et al. (247) recently created a TriKE targeting

CLEC12A on AML cells with anti-CD16 single-domain antibody

and IL-15. Their results showed a potent NK cell-mediated response

against primary patient-derived AML blasts. Another TriKE
Frontiers in Immunology 14
molecule developed against R/R AML is the GTB-3550 molecule

currently in Phase 1/2 trial (NCT03214666). The interim data is

promising, with a significant reduction in leukemic blasts in AML

patients without adverse side effects such as cytokine release

syndrome (253, 254).

There are issues faced with BiKEs and TriKEs, too, as these

molecules are still in the early development phase. The use of IL15
TABLE 4 Various ongoing studies investigating various engineered CAR-NKs in AML.

Trial
Number

Intervention/Treat-
ment

Number of
participants

Details Phase Status

NCT05215015a Biological: Anti-CD33/
CLL1 CAR-NK cells

18 Administration of CAR-NK on day one and day3 of each cycle with the first
dosage of 2.0×10^9 cells. Second administration dose in the first cycle
3.0×10^9 cells, and each dose in the second cycle 3.0×10^9 cells.

Early
Phase I

Recruiting

NCT05574608b Biological: CD123-CAR-
NK cells

12 CD123-CAR-NK cells
CD123-CAR-NK is an allogenic CD123-Targeted chimeric antigen receptor
NK-cell (CAR-NK) therapy.

Early
Phase 1

Recruiting

NCT02944162c Biological: anti-CD33
CAR-NK cells
Construct: CAR33-
CD28-4-1BB- CD3 z

10 The allogeneic NK cells (NK-92 cell line for clinical use) are engineered to
contain anti-CD33 attached to TCRzeta, CD28, and 4-1BB signaling
domains. Enrolled patients will receive CAR-NK cells immunotherapy with a
novel specific chimeric antigen receptor targeting CD33 antigen by infusion.

Phase
1Phase
2

Recruiting

NCT04623944d Biological: NKX101 -
CAR NK cell therapy
Construct CAR.NKG2D-
OX40- CD3 z (NKX101)

90 NKX101 - CAR NK cell therapy
NKX101 is an investigational allogeneic CAR NK product targeting NKG2D
ligands on cancer cells.

Phase 1 Recruiting

NCT05247957e Biological: CAR-NK cells 9 NKG2DL-specific CAR-NK cells, two infusions on Day 0 and Day 7. After
preconditioning with chemotherapy, NKG2DL-specific CAR-NK cells will be
evaluated.

Phase 1 Recruiting

NCT05008575f Biological: anti-CD33
CAR NK cells Drug:
Fludarabine Drug:
Cytoxan

27 anti-CD33 CAR NK cells
6×10^8, 12×10^8, 18×10^8/KG Treatment following lymphodepletion

Phase 1 Recruiting

NCT05601466g Drug: QN-023aDrug:
Cyclophosphamid Drug:
FludarabineDrug:
Cytarabine

18 Drug: QN-023a
NK cell therapy

Phase 1 Recruiting

NCT05092451h Drug:
CyclophosphamideDrug:
CAR.70/IL15-transduced
CB-NK cellsDrug:
Fludarabine phosphate

94 Cord blood source of stem cells. Construct CAR.CD70-IL15 Phase
1Phase
2

Recruiting

NCT02742727i Biological: anti-CD7
CAR-pNK cells

10 CAR-pNK Cell immunotherapy
Enrolled patients will receive CAR-pNK cell immunotherapy with a novel
specific chimeric antigen receptor targeting CD7 antigen by infusion.

Phase
1Phase
2

Recruiting

NCT04023071j hnCD16 CAR-NK
against target CD20
(CD16a+ Rituximab)

NK cells from the iPSC source are used to generate these constructs against
R/R AML and B-NHL.

Recruiting

NCT04614636k CD38/SLAMF7 (CD16a+
Daratumumab/
Elotuzumab)

NK cells from the iPSC source are used to generate these constructs against
R/R AML, Multiple Myeloma.

Recruiting
fro
ahttps://clinicaltrials.gov/ct2/show/NCT05215015
bhttps://clinicaltrials.gov/ct2/show/NCT05574608
chttps://clinicaltrials.gov/ct2/show/NCT02944162
dhttps://clinicaltrials.gov/ct2/show/NCT04623944
ehttps://clinicaltrials.gov/ct2/show/NCT05247957
fhttps://clinicaltrials.gov/ct2/show/NCT05008575
ghttps://clinicaltrials.gov/ct2/show/NCT05601466
hhttps://clinicaltrials.gov/ct2/show/NCT05092451
ihttps://clinicaltrials.gov/ct2/show/NCT02742727
jhttps://clinicaltrials.gov/ct2/show/NCT04023071
khttps://clinicaltrials.gov/ct2/show/NCT04614636
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in generating TriKEs may also pose a risk for stimulation of T cells

resulting in cytokine release syndrome. Another issue similar to

CAR-NKs is that TriKEs can kill healthy cells, too, as some of the

tumor target antigens can be present on healthy cells too. Further,

the effectiveness of such therapies is based on the binding of CD16

of the NK cell with the Fc portion of the antibody. However,

mechanisms such as clipping of CD16 by matrix metalloproteins

such as ADAM-17 can lead to diminished ADCC. Wernick et al.

(251) provided a solution to this problem in their in vitro studies

which showed that introducing ADAM-17 inhibitors with such

therapies enhances cytolysis by BiKE against myeloid target cells.

Another solution could be to target receptors other than CD16 on

NK cells, such as NKG2D and 2B4, which have been proven to show

similar activation as that compared to CD16 activation alone (255).

It is too early to comment on the long-term survival, expansion,

cytolytic activity, and safety of using these molecules for NK-

mediated immunotherapies, and in-human trial data is warranted.

3.7.5 Immune Checkpoint inhibitor blockade
therapy

Newer strategies for NK immunotherapy target immune

checkpoints, inhibition of which leads to tumor evasion. In relation

to AML, the NK cell receptors such as KIRs and molecules such as

TIM-3, CD200R, and others are currently being investigated for their

potential in NK-mediated checkpoint inhibitor therapy. Two IgG4

monoclonal antibodies, IPH2101 and IPH2102 (lirilumab), that

target KIR2DL1/2/3 NK inhibitory receptors are presently being

investigated for single drug/combination therapy (256, 257).

Romagne et al. (258), in their in vivo experiments, showed

preclinical efficacy of blocking IPH2101 in AML cells. This efficacy

was further proven in clinical trials by Vey et al. (257), where

comparatively better clinical efficacy was evident in AML patients

[NCT01256073, NCT01222286]. In a Phase II efficacy study,

administration of Lirilumab did not show a significant difference

when compared to placebo [NCT01687387] (259); however, when

used in a combination therapy along with azacytidine, it was well

tolerated in high-risk R/R AML patients (260).

TIM-3 is a co-inhibitory receptor that recognizes galectin-9 as a

ligand. Binding TIM-3 to its ligand induces immune tolerance due

to NK cell exhaustion, making it a negative regulator of NK cell

immunity. Blocking TIM-3 has been shown to reverse NK cell

dysfunction in various diseased conditions (261–265). Recently, an

ongoing randomized phase I clinical trial investigating the efficacy

of MBG453, an anti-TIM3 antibody alone or in combination with

decitabine/spartalizumab/MBG453+decitabine+spartalizumab is

underway [NCT03066648]. Another inhibitory receptor expressed

on NK cells is CD200R which binds to its ligand CD200 expressed

on various tumor tissues. Atfy et al. showed that overexpression of

CD200 led to suppressed NK cell anti-tumor activity in AML

patients resulting in an increased risk of relapse (266). Coles et al.

(267) showed that blocking CD200 restored the NK activity to

normal levels. A few other clinical trials investigating blockage of

checkpoint inhibitors in AML, such as NCT03248479 [Magrolimab

alone or in combination with azaticidine] and NCT03922477

[Magrolimab plus atezolizumab], are still in recruiting phase, and

the results are yet to be seen.
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4 Future directions

Over the years our understanding of NK biology and its role in

designing anti-leukemic therapies has drastically improved. It is a

known fact that leukemic patients most often carry NK cells that are

dysfunctional/defective/low in numbers. Adoptive NK cell infusions

have proven useful in restoring these functions albeit transiently.

Recently, the focus has shifted from CAR-T and antibody therapies

to NK cell-based immunotherapy due to the higher manufacturing

cost and lower safety of T cell-directed therapies. CAR-NKs also

exhibit fewer neurological toxicities and cytokine storm than CAR-

T cell therapies.

Researchers are investigating cytokine-stimulated NK cell

transfer, TriKEs, and BiKEs that boost NK functions and lead to

longer proliferation of NK cells post infusion and hence longer

periods of remission. Further, antibodies targeting immune

checkpoints such as TIGIT, PD-1, and TIM-3 have theoretical

potential, as blocking these checkpoints with specific antibodies

helps in reversing the diminished NK cytolytic activity in AML

patients. A few clinical trials are exploring the potential of

combination therapies focusing on the infusion of the NK cell

product and conventional treatments. NK cell therapies have

proven their dominance over other cellular therapies due to their

non MHC restricted recognition of tumor cells, potential to cure

wider population, cost-effective manufacturing off the shelf that can

be easily expanded in vivo and personalized for every patient.

However, most of these studies are still in the preclinical and

clinical stages, and as such, more extensive studies with

reproducible results on methods of expansion, cryopreservation,

infusion protocols, and safety are required to validate these

therapies and make them a reality.
Author contributions

The authors confirm contribution to the paper as follows:

Concept: MS and SD’S. Draft manuscript preparation: SD’S and

AP. Approving and Finalizing manuscript: SD’S and MS. All authors

contributed to the article and approved the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1112059
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


D’Silva et al. 10.3389/fimmu.2023.1112059
References
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Glossary

ADCC antibody-mediated cell cytotoxicity

AML Acute Myeloid Leukemia

BiKEs bi-specific killer engagers

CAR Chimeric antigen receptor

CIML cytokine-induced memory-like

CMV Cytomegalovirus

CR complete remission

DFS disease-free survival

DNKI donor NK cell infusion

DNMT
DNA

methyltransferase

EBV-LCL Epstein Barr virus-transformed lymphoblastic cell lines

EMCN endomucin

FLAG-IDA
fludarabine–Ara-C–granulocyte colony-stimulating factor–
idarubicin

GvHD graft versus host disease

GvL graft-versus-leukemia

HDAC histone deacetylases

HLA Human leukocyte antigen

HMAs Hypomethylating agents

HMT histone methyltransferases

HSCT Hematopoietic Stem Cell Transplantation

HSPC hematopoietic stem and progenitor cells

ITAM immune receptor tyrosine-based activating motifs

ITIM immune receptor tyrosine-based inhibitory motifs

KIR Killer immunoglobulin-like receptors

mAbs monoclonal antibodies

mb-IL21 membrane-bound IL-21

MDSCs Myeloid derived suppressor cells

ML NK memory-like NK

MSC Mesenchymal stem cell

NCR natural cytotoxicity receptor

NK Natural Killer

NKG2D-L Ligand for the NKG2D receptor

OS overall survival

PARP1 Poly ADP ribose polymerase 1

PBMC Peripheral blood mononuclear cells

PGE2 Prostaglandin E2

PTMs Post translational modifications

TAMs Tumor associated macrophages

(Continued)
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Tc, cytotoxic T cell

Th T-helper

TME Tumor microenvironment

Tregs Regulatory T cell
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