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Sepsis is defined as a life-threatening dysfunction due to a dysregulated host

response to infection. It is a common and complex syndrome and is the leading

cause of death in intensive care units. The lungs are most vulnerable to the

challenge of sepsis, and the incidence of respiratory dysfunction has been

reported to be up to 70%, in which neutrophils play a major role. Neutrophils

are the first line of defense against infection, and they are regarded as the most

responsive cells in sepsis. Normally, neutrophils recognize chemokines including

the bacterial product N-formyl-methionyl-leucyl-phenylalanine (fMLP),

complement 5a (C5a), and lipid molecules Leukotriene B4 (LTB4) and C-X-C

motif chemokine ligand 8 (CXCL8), and enter the site of infection through

mobilization, rolling, adhesion, migration, and chemotaxis. However,

numerous studies have confirmed that despite the high levels of chemokines

in septic patients andmice at the site of infection, the neutrophils cannot migrate

to the proper target location, but instead they accumulate in the lungs, releasing

histones, DNA, and proteases that mediate tissue damage and induce acute

respiratory distress syndrome (ARDS). This is closely related to impaired

neutrophil migration in sepsis, but the mechanism involved is still unclear.

Many studies have shown that chemokine receptor dysregulation is an

important cause of impaired neutrophil migration, and the vast majority of

these chemokine receptors belong to the G protein-coupled receptors

(GPCRs). In this review, we summarize the signaling pathways by which

neutrophil GPCR regulates chemotaxis and the mechanisms by which

abnormal GPCR function in sepsis leads to impaired neutrophil chemotaxis,

which can further cause ARDS. Several potential targets for intervention are

proposed to improve neutrophil chemotaxis, and we hope that this review may

provide insights for clinical practitioners.
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Introduction

Sepsis is a severe life-threatening inflammatory response

syndrome secondary to an infection, which is often characterized

by multiple organ dysfunction (1, 2). The treatment of sepsis is still

dominated by antibiotic therapy, respiratory support, fluid therapy,

and organ function support since there are no approved specific

drugs for sepsis currently (3). This kind of non-specific treatment

prolongs the survival time of sepsis patients, and sepsis may develop

into a critical illness lasting several weeks or months, further

increasing the financial burden on patients’ families (4). Even

with the use of these extrinsic supports, sepsis survivors often

have other complications such as cognitive dysfunction, immune

dysfunction, and neuromuscular disorders (5). It remains the

leading cause of death in hospitalized patients, resulting in a

heavy economic burden of medical care. In 2016, a systematic

review and meta-analysis estimated that there are 31.5 million

sepsis cases worldwide each year, with potentially 5.3 million

deaths annually, based on data from seven high-income countries

on four continents over the past decade (6). Given the lack of

epidemiological studies on sepsis in low- and middle-income

countries (LMICs), the actual global cumulative incidence may be

higher. In 2020, based on data obtained in more LMICs from 1990

to 2017, an institute estimated that there are 48.9 million sepsis

cases worldwide each year, with 11 million sepsis-related deaths

annually, accounting for 19.7% of global deaths (7). According to

the same study, approximately 50 percent of sepsis cases occurred in

children and adolescents (7). Similarly, a recent international

multicenter prospective observational study found that neonatal

sepsis is the leading cause of neonatal death in LMICs (8).

Therefore, sepsis is not only a fatal global syndrome but also a

serious public health issue.

The third international consensus definition of Sepsis 3 defines

sepsis as a life-threatening organ dysfunction caused by the host’s

dysregulated response to infection, which distinguishes sepsis from

the infection itself (1). It lies not only in the existence of infections

caused by bacteria, fungi, viruses, or parasites but also in organ

dysfunction caused by the dysfunctional response of the host to

infections. In sepsis caused by secondary infection, the host

recognizes microbial-derived pathogen-related molecular patterns

(PAMPs) or endogenous damage-related molecular patterns

(DAMPs) through a series of pattern recognition receptors

(PRRs) at the cell membrane or in the cells, thereby activating

innate immune cells to produce cytokines that mediate downstream

signaling pathways (9–11). In the development of sepsis, the

immune system is over-activated initially, characterized by

overstimulated neutrophils and overload of the inflammatory

cascade, and followed by immunosuppression, as shown by

neutrophil dysfunction and increased apoptosis of lymphocytes

(11–13). The phenomenon of early immune overactivation and

late immune suppression in sepsis is called immune imbalance. As

the most abundant innate immune cells at the locus of infection,

neutrophils are the initial defense line of the host against infection

and play a crucial role in eliminating local infection and injury

healing (1). This cytokine storm is one of the important reasons

why sepsis is difficult to control and the mortality remains high.
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As a normal response to infection, neutrophils recognize

chemokines including the bacterial product N-formyl-methionyl-

leucyl-phenylalanine (fMLP), complement 5a (C5a), and lipid

molecules Leukotriene B4 (LTB4) and C-X-C motif chemokine

ligand 8 (CXCL8), and then enter the site of infection through

mobilization, rolling, adhesion, migration, and chemotaxis (14).

However, sepsis may induce dysfunction in neutrophil chemotaxis,

characterized as compromised migration of neutrophils targeting

infected organs (15), while a large number of neutrophils

accumulate in the lung. The inflammatory mediators released by

neutrophils will trigger an overwhelming cascade of inflammatory

responses, further exacerbating the activation of other innate

immune cells (16), leading to severe acute lung injury (ALI) and

even acute respiratory distress syndrome (ARDS) (4). In non-sepsis

conditions, neutrophils in the lung may even undergo reverse

migration, returning to the vasculature after local infiltration at

the site of inflammation (17). They will then return to the bone

marrow to undergo apoptosis via C-X-C motif chemokine receptor

4 (CXCR4) reacts to CXCL12 (stromal cell-derived factor-1, SDF-1)

(18). But in sepsis, neutrophils will be seized in the lungs and their

apoptosis processes are significantly inhibited (18). Experiments

using a murine model of abdominal infection showed that the

reversing migration of neutrophils in the blood circulation produces

excessive inducible Nitric Oxide Synthase (iNOS) and neutrophil

extracellular traps (NETs), and promotes tissue inflammation and

damage, which is positively correlated with the degree of lung injury

(19–21).

In recent years, although some progress has been made in the

identification and management of sepsis in terms of microbial

pathogenicity and host reactivity, the physiological and

pathological mechanisms leading to sepsis-induced lung injury

are still not fully elucidated. Previous studies have shown that

neutrophil migration dysfunction is associated with sepsis

prognosis (22–24), providing a new insight that targeting the

disturbance in neutrophil chemotaxis might be promising in

reversing sepsis-induced organ dysfunction (25, 26), and the

receptors responsible for chemotaxis might be important

therapeutic targets in sepsis (27). It has been reported that 18 out

of 23 human chemokine receptors belong to G protein-coupled

receptors (GPCRs), whose expression and downstream signaling

pathways are precisely regulated (28). The typical function of these

chemokine receptors is to coordinate cell polarization and induce

the directed migration of leukocytes to their chemokine ligands (29,

30). Furthermore, neutrophils in higher vertebrates respond to

more than 30 GPCR signals corresponding to a range of

chemotactic agents that affect cell polarization and thus migration

in tissues (31). As the most abundant and diverse group of

eukaryotic cell surface receptors, with more than 800 forms of

human expression (32, 33), GPCRs expressed on various cell

surfaces mediate neutrophils to monitor the danger signals

generated by various external stimuli such as hormones,

pathogens, inflammatory factors, and control their chemotaxis to

infection foci to play an immune role (34). Approximately 34% of

drugs approved by the US Food and Drug Administration (FDA)

are GPCR-related (35), and these receptors are the largest family of

pharmaceutically available proteins in the human genome (36),
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demonstrating their importance as key therapeutic targets. The

purpose of this review is to elucidate the role of GPCRs in

neutrophil dysfunction during sepsis-induced acute respiratory

distress syndrome (ARDS) to provide therapeutic targets for the

corresponding clinical treatment.
The role of neutrophils in health

Neutrophils, as the main effector cells of innate immunity and

involved in the initiation, diffusion, and resolution of inflammation,

account for 50~70% of all circulating white blood cells (37). They

are generally regarded as the prototype of fast amoeboid-migrating

cells, which means they have plastic deformability that enables them

to take distinct migration strategies to move optimally in different

microenvironments (17, 38). Normally, neutrophils reside in three

different pools, known as the proliferative, circulating, and

marginating pools (39). The number of neutrophils in each pool

is affected by individual health state and the maturational

development of cells. The proliferative or mitotic pool is

composed of early neutrophil precursors such as myeloblasts,

promyelocytes, and young myelocytes, which are located in the

bone marrow and replenish the neutrophil population through

mitosis (40). An adult produces about 1011 neutrophils per day,

with an estimated 109 cells/kg of body weight leaving the bone

marrow (41–43). Granulocyte colony-stimulating factor (G-CSF)

and granulocyte-macrophage colony-stimulating factor (GM-CSF)

have the potential to promote motivation, maturation, and

activation of them (44), and to extend their lifespan (45). The

release of neutrophils from the bone marrow is positively regulated
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by CXCR2 signaling and negatively regulated by the CXCR4-

CXCL12 axis (Figure 1), keeping neutrophils in balance in the

circulating and marginating pools (46). To avoid altering the

activity of neutrophils in vitro, recent in vivo isotope or

nanotechnology labeling experiments have shown that

neutrophils are normally short-lived, with the mean half-life of

inactive neutrophils ranging from 7 to 12 hours (47–50).

Specifically, human neutrophils originate from granulocyte-

macrophage progenitor (GMP) cells, which produce neutrophil

promyelocytes that proliferate and differentiate into myelocytes

(51–54). Following the myelocyte stage, the neutrophil

progenitors lose their capacity to divide and take 4-6 days to

mature (49, 55). Under noninfectious conditions, mature

neutrophils are released into intravascular circulating pools

and finally enter the marginating pools of reticuloendothelial

organs such as the liver, spleen, and lung, or even return to

the bone marrow for apoptosis (56, 57). Apoptotic neutrophils

are phagocytosed by macrophages to limit inflammatory

responses (58).
The role of neutrophils in
general infection

During general infection, neutrophils in the circulating blood

must first adhere to the blood vessel walls before being recruited to

the infection site in response to the chemokine gradient. The

upregulation of endothelial adhesion molecules and the loosening

of vascular tight connections facilitate the migration of neutrophils

to the target tissue (11). Activated endothelial cells upregulated the
FIGURE 1

The role of neutrophils in health and the mechanism of sepsis-induced ARDS. (i) Normally, neutrophils originate from granulocyte-macrophage
progenitor (GMP) in the bone marrow. When neutrophils mature, CXCR2 promotes their release from the bone marrow. Then they enter the
systemic circulation via systemic retro capillary venules and into the pulmonary circulation via pulmonary capillaries. Finally, they enter the liver,
spleen and other reticuloendothelial organs, or even return to the bone marrow via CXCR4-CXCL12 axis for apoptosis. (ii) In sepsis-induced ARDS,
neutrophil apoptosis is delayed and migration is impaired, and a large number of neutrophils accumulate in the lungs Neutrophils promote self-
aggregation and platelet aggregation by releasing ROS, NETs, protease, and other substances, leading to pulmonary ischemia and hypoxia, tissue
edema, and micro thrombosis. Prolonged retention of late apoptotic neutrophils in pulmonary capillaries leads to the formation of a vascular dead
lumen. Intense inflammatory response, endothelial barrier breakdown, alveolar edema, neutrophil dysfunction, and microcirculation disturbance are
the main pathological changes of septic ARDS.
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prestored P-selectin (CD62P) from Weibel-Palade bodies within

minutes and the de novo synthesized E-selectin (CD62E) within 90

minutes (59, 60). These two selectins on endothelial cells bind to

glycosylated ligands such as CD44, E-selectin ligand 1 (ESL1), and

p-selectin glycoprotein ligand 1 (PSGL1) on neutrophils (61),

trapping endovascular free-flowing neutrophils to the surface of

endothelial cells, where they roll along the blood vessels toward the

bloodstream. Rolling neutrophils recognize CD34, PSGL1, and

glycosylation-dependent cell adhesion molecule (GlyCAM) on the

surface of endothelial cells via L-selectin (CD62L) to be captured by

endothelial cells again (62, 63). Bacterial components and pro-

inflammatory cytokines promote L-selectin shedding but increase

b2-integrins expression on neutrophils such as LFA-1 (lymphocyte

function-associated antigen 1, CD11a/CD18) and MAC1 (CD11b/

CD18) (64). These b2-integrins adhere to endothelial cells by

binding to intercellular adhesion molecule-1 (ICAM-1) and

vascular cell adhesion molecule-1 (VCAM-1) with high affinity

(65). Therefore, it has been suggested that the migration of

neutrophils depends more on integrins than selectin (63).

However, both selectin and integrin-mediated adhesion are brief

and weak, promoting neutrophils to roll along endothelial cells and

inducing their exosmosis to inflamed sites (66, 67).

Subsequently, neutrophils respond to bacterial toxins such as

lipopolysaccharide (LPS) carried by the infectious agent, bacterial

products such as fMLP, and chemokines produced by immune

system activation such as C5a, LTB4, platelet activator (PAF), and

interleukin (IL) -8 (CXCL8), all of which are effective activators of

neutrophils (68–70). They are usually positively charged molecules

that bind to negatively charged heparan sulfates and thus anchor to

endothelial cells to form a certain intravascular chemotactic

gradient (71). The rolling of neutrophils helps them to contact

chemokine-decorate endothelial cells, thereby inducing

neutrophilic activation. These chemo-attractants also induce the

re-localization of integrins such as MAC1 stored intracellularly to

the surface of neutrophils (72). The cytoskeletal protein talin1 binds

to the b subunit of the activated integrin cytoplasmic tail to induce

the extension of LFA1, thereby reducing the affinity of neutrophils

to endothelial cells through conformational changes and promoting

the slow rolling of neutrophils on endothelial cells (14). Another

protein containing the FERM domain, kindlin 3 (also known as

fermitin family homologue 3), binds to the same site on integrin

and induces LFA1 to adopt a high-affinity conformation that

promotes neutrophil stasis on endothelial cells (73). Due to fluid

shear stress, endothelial cell structures are more elongated in the

direction of blood flow, and neutrophils tend to crawl vertically at

the endothelium-cell junctions (74). Neutrophils preferentially

select endothelial tricellular corners with fewer junctional proteins

and less orderly arrangement for paracellular migration (between

endothelial cells) (75) over less efficient transcellular migration

(through endothelial cells) (76).

When they finally migrate to the source of infection or damaged

tissue, neutrophils emit pseudopods through membrane

invaginations that envelop cytotoxic proteins, peptides, and

enzymes in the phagosomes (40). The formation of the

phagosomes attracts neutrophilic granulocyte particles to bind to

them and degranulate themselves (77). At the same time, NADPH
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oxidases located on the phagosome membrane are activated to

produce superoxide anion (O2
-) and metabolize into hydrogen

peroxide (H2O2) and other reactive oxygen species (ROS) (27).

ROS, in turn, induce NETs release from activated neutrophils,

which trap and kill pathogenic microorganisms to prevent their

spread. They are a network of chromatin fibers that consist of DNA,

citrullinated histone 3 (Cit-H3), myeloperoxidase (MPO),

neutrophil elastase (NE), cathepsin G (CatG), proteinase-3 (PR-

3), and other granular proteins (78). When the NETs formation is

associated with cell death, neutrophils undergo suicidal dissolution

of NETosis, a process that may release inflammatory mediators

(79). Specifically, NETosis is a programmed neutrophil death

distinct from apoptosis or necroptosis that facilitates host defense

against pathogens and is characterized by nuclear delobulation,

histone citrullination, chromatin decondensation, membrane

permeabilization, and NETs release (80, 81). It was first described

in 2004, where NET release and cell death were observed in

response to high doses of phorbol-12-myristate-13-acetate

(PMA) (82).

To date, three forms of NETosis are known, including suicidal,

noncanonical, and vital NETosis (83). Suicidal NETosis mediated

ROS production, MPO activation, and cytoplasmic release of NE by

NADPH oxidase (83). In the presence of H2O2, MPO catalyzes the

oxidation of chloride to hydrochloric acid and induces neutrophils

to release NE, which together mediate chromatin decondensation

during NETosis (84). In the cytoplasm, NE binds to the actin

skeleton and disintegrates actin by degrading F-actin, thereby

inhibiting neutrophil movement (85). In the nucleus, NE cleaves

and inactivates histones, resulting in chromatin relaxation and

DNA decondensation (84). In addition, peptidyl arginine

deiminase 4 (PAD4), activated by high intracellular calcium

concentrations induced by ionic carriers or bacterial products,

mediates chromatin decondensation by histones citrullination (86,

87). Gasdermin D (GSDMD) is an executor of suicidal and

noncanonical NETosis (81, 88). During suicidal NETosis,

GSDMD is cleaved by NE and GSDMD-p30 pores are formed in

the nuclear, granular, and plasma membranes (81). In turn, the

breakdown of granules further promotes the release of NE in the

cytoplasm, thus further cleaving GSDMD (88). Decondensated

chromatin is released extracellularly through GSDMD-p30 pores

or GSDMD-driven membrane rupture, ultimately resulting in

neutrophil death (82, 88). Noncanonical NETosis is a novel

suicidal NETosis pathway, which relies on the induction of non-

classical inflammasomes to gram-negative bacterial LPS and

activates mouse caspase-11 and human caspase-4/5 to cleave

GSDMD to produce GSDMD-p30 pores, ultimately resulting in

NETs release and cell death (81, 89). At this point, the release of

NETs is dependent on Toll-like receptor 4 (TLR4) expression on

plate lets and P-se lect in-mediated plate let-neutrophi l

interactions (90).

Suicidal and noncanonical NETosis release NETs relatively

slowly, taking about 3 hours, while vital NETosis releases NETs

only half an hour, and neutrophils that produce vital NETosis do

not die immediately but remain phagocytic, migratory, and

bactericidal (91). Vital NETosis is stimulated by bacteria, bacterial

products, activated platelets, or complement proteins to induce the
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rapid release of NETs, and does not necessarily rely on NADPH

oxidase to induce NE cleavage (87, 92). Moreover, the key features

of vital NETosis are rapid histone citrullination, nuclear blebbing,

and the vesicular transport of nuclear blebs to the plasma

membrane, in which the nuclear membrane is swollen but not

ruptured (83). An electron microscopy study showed that these

vesicles of Vital NETosis exocytosis on the plasma membrane after

budding from the outer nuclear membrane (ONM), thus ensuring

the integrity of the nuclear and plasma membrane during NETs

release (93). Studies have shown that neutrophil activation is

involved in the initiation of NETosis through bacterial toxins or

surface receptors. GPCRs (94), tumor necrosis factor (TNF) (95), Fc

receptors (94), and TLR4 (96) on neutrophils have been reported to

bind to ligands that trigger the release of calcium stored in the

endoplasmic reticulum and induce NETosis by activating PAD4 to

make histones citrullinated (97, 98). Among several chemokine

receptors, CXCR1, CXCR2, and CXCR4 are involved in the

formation of NETs (99). On the one hand, CXCR2 induces NETs

formation by cooperating with PSGL1 (100). On the other hand,

CXCR2 is also involved in neutrophil circadian rhythm regulation,

altering the ability of NETs formation by disarming processes

involving the neutrophil proteome (101). This circadian pattern is

characterized by functional and phenotypic changes from

neutrophil release to clearance, and this process is described as

neutrophil aging (102). CXCR4 acts by releasing macrophage

migration inhibitory factor (MIF), which in turn leads to NETs

formation (103).
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Additionally, the migration of activated neutrophils also

depends on cytoskeletal dynamics mediated by molecular motor

(myosin, kinesin, and dynein) drives (104, 105). Myosin is mainly

involved in vesicle transport on actin filaments, while kinesin and

dynein contribute to transport along microtubules. Kinesin moves

intracellular cargo toward the plus-ends of the microtubules, while

dynein moves toward the minus-ends of them (106). Inflammatory

chemokines can act on intracellular signaling pathways through

corresponding receptors (mostly GPCRs) to induce neutrophils to

migrate by a polymeric contractile balance between anterior branch

actin and posterior myosin II-dependent actin (107–110). Studies of

zebrafish larvae have presented cytoskeletal requirements for

neutrophil redirection (111, 112) Firstly, actin-related protein 2/3

(Arp 2/3)-mediated dendritic actin networks determine the

extensive search phase of neutrophils, followed by rapid actin

flow that accelerates cell migration to the source of infection.

Formyl peptide receptors (FPRs) are G-protein-coupled receptors

that are expressed on the surface of neutrophils that recognize

peptides containing N-formylated methionine, such as fMLP. FPRs

transmit chemotactic signals that mediate host defense and

inflammatory responses such as cell adhesion, directed migration,

particle release, and superoxide production. The human FPR family

consists of three members, in which FPR3 is expressed in

monocytes but only FPR1 and FPR2 are expressed in neutrophils

(Table 1) (113). Notably, a variety of non-GPCRS receptors are

expressed on the surface of neutrophils, including cytokine

receptors, integrins, Fc-receptors, and other innate immune
TABLE 1 Common receptors and their corresponding chemo-attractants and GRKs.

Receptor Function Chemoattractant GRK

Chemokine receptors

CXCR1 Neutrophil recruitment CXCL1-8 GRK2,6

CXCR2 Neutrophil activation and recruitment CXCL1-8 GRK2, 5, 6

CXCR4 Bone marrow homing CXCL12 GRK2, 3, 6

CCR7 Neutrophil recruitment CCL19, CCL21 GRK3, 6

CCR9 Neutrophil recruitment CCL25 GRK2

Chemoattractant receptors

C3aR Inhibition of neutrophil mobilization C3a

C5aR, C5L2 Neutrophil recruitment C5a GRK2

BLT1 Neutrophil swarming and recruitment LTB4 GRK6

FPR1, FPR2 Neutrophil activation, adhesion, and recruitment Bacterial and mitochondrial formylated peptides, e.g., fMLP

Atypical chemokine receptors

ACKR1 Chemokine aggregation CC chemokines

ACKR2 Chemokine scavenger receptor CC chemokines

ACKR3 Opioid receptor Opioid peptide GRK2, 5

ACKR4 Chemokine scavenger receptor CC chemokines GRK3
fro
CXCRs, C-X-C chemokine receptors; CXCLs, C-X-C chemokine ligands; CCRs, C-C receptors; C3aR, complement factor 3a receptors; C3a, complement factor 3a; C5aR, complement factor 5a
receptors; C5L2, complement factor 5a receptors 2; C5a, complement factor 5a; BLT1, leukotriene B4 receptors; LTB4, leukotriene B4; FPRs, formyl-peptide receptors; fLMP, formyl-methionyl-
leucyl-phenylalanine; ACKRs, atypical chemokine receptors; GRKs, G-protein-coupled receptor kinases.
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receptors (Table 1), which are also critical for the differentiation,

adhesion, recruitment, and phagocytosis of neutrophils (114).
The contribution of neutrophils and
GPCRs in sepsis

It is well-accepted that neutrophil dysfunction occurs in sepsis

and has been considered the main cause of organ failure (27, 115–

117). Neutrophil degranulation and endothelial dysfunction are

shown to be the core events of the pathophysiology of sepsis (77,

118). In the early stage of sepsis, mature neutrophils in the bone

marrow are rapidly released, increasing 10-fold in circulation within

hours, and largely accumulate in the lungs, according to autopsy

reports (119). Bacterial products and over-release of pro-

inflammatory cytokines such as TNF-a, IL-1b, IL-6, and IL-17

increase G-CSF expression and indirectly mobilize neutrophils by

altering the balance between CXCR4 and CXCR2 ligands in bone

marrow, affecting their release, activation, and migration (120, 121).

During sepsis, the spontaneous apoptosis of neutrophils is delayed,

but other types of death such as necrosis, necroptosis, pyroptosis,

NETosis, and autophagy may happen (10, 116, 122). It is well

established that the proportion of neutrophil NETosis (123) and

autophagy (124) increases in sepsis with reduced apoptosis (125),

but the other three types of neutrophil death remain poorly

understood (Figure 1). A study showed that 50% of neutrophils

were apoptotic after 24 hours of in vitro culture, compared with

only 5-10% in sepsis (125). In models of ALI caused by cecal

ligation puncture (CLP) or endotoxemia, the proportion of lung

neutrophils undergoing apoptosis within 24 hours was significantly

reduced (126). Moreover, septic animals and patients showed a

reduction in neutrophil migration (127, 128). Due to migration

dysfunction, neutrophils with delayed apoptosis cannot effectively

reach the site of infection to eliminate pathogenic bacteria and their

phagocytic activity is decreased. Instead, most of them are detained

in the lung, liver, and other organs, mediating nonspecific organ

damage through the release of ROS, NETs, protease, and other

cytotoxic substances (129–131).

In sepsis, the complement system is activated, releasing small

fragments such as C3a and C5a, which have potent pro-

inflammatory effects (132). C5a binds to its receptors (C5aR and

C5L2) on the surface of activated neutrophils to promote the release

of NETs, in which DNA fibers and histone (H3 and H4) networks

provide scaffolds for the aggregation, relocation, and activation of

platelets, neutrophils, and red blood cells (133). TLR4-mediated

platelet activation increases endothelial cell adhesion at the site of

inflammation (66) and promotes neutrophil activation, exosmosis,

and aggregation by expressing higher levels of P-selectin (Figure 1)

(134). Platelet-derived chemokine heterodimers (of CXCL4 and

CXCL5) are also important for neutrophil recruitment (135), and

endothelial presentation of CXCL5 depends on platelets (136).

Activated platelets interact with neutrophils through b2-integrin
LFA-1, thereby enhancing neutrophilic activation and lowering the

threshold for NETs release (137, 138). Interactions between

activated endothelial cells further promote the release of NETs
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(Figure 1) (139–141). Many components of NETs, such as DNA,

histones, and granular proteins, all have procoagulant activity (142).

DNA initiates the intrinsic clotting cascade and nucleic acid

enhances serine protease thrombin activity (143). Histones

promote thrombin production by inhibiting anticoagulants such

as antithrombin (AT) and activating protein C (APC) (144).

Granular proteins, especially neutrophil elastase, promote

thrombosis by inhibiting tissue factor pathway inhibitors (TFPI)

and anticoagulants (145). At the same time, coagulation factors,

thrombin, plasmin, and APC in the blood induce downstream

signaling pathway transduction by activating protease-activating

receptors (PARs, a small family of GPCRs) expressed on platelets,

endothelial cells, and vascular smooth muscle cells (VSMC) (118),

further aggravating tissue and organ damage. There are currently

four types of PARs in the human genome, among which platelet

expresses PAR1 and PAR4 (146), endothelial cells express PAR1,

PAR2, and PAR4 (147), VSMC expresses PAR1 and PAR2 (148,

149), and PAR3 is mainly expressed in bone marrow (150). Of the

four major Ga subfamilies, PAR1 and PAR2 mediate signaling via

Gq, Gi, and G12/13, PAR3 via Gq-mediated signaling, and PAR4

via Gq and G12/13 (151). In sepsis, these reactions lead to increased

vascular permeability, endothelial barrier breakdown, abnormal

accumulation of neutrophils, and excessive inflammatory

responses, which further aggravate ischemia, hypoxia, tissue

hypoperfusion, and microcirculation disorders, eventually leading

to organ failure, shock, and even death (152, 153).
The contribution of neutrophils and
GPCRs in sepsis-induced ARDS

Among all the damaged organs, the lung is the first and most

frequent organ to be compromised, and ARDS is one of the key

prognostic factors for the mortality of septic patients (154). In

systemic circulation, neutrophils enter the tissue through systemic

retro capillary venules, but in pulmonary circulation, neutrophils

migrate through pulmonary capillaries (Figure 1) (155, 156).

Neutrophils must undergo deformation to pass through the

pulmonary capillaries because of their larger diameter, a time-

consuming process called neutrophil sequestration, which was

first described in 1993 and has been observed using macroscopic

radiolabeling imaging devices (157, 158). In contrast to the

doughnut-shaped nuclei of mice, human neutrophils are leafy,

increasing the flexibility of mature neutrophils to navigate tissue

space (159, 160). Nevertheless, the physiological and pathological

mechanism of how neutrophil sequestration in sepsis causes ARDS

is still poorly understood (161, 162). An uncontrolled immune

inflammatory response caused by sepsis eventually leads to multiple

organ dysfunction syndromes (MODS) of the heart, brain, liver,

lung, kidney, etc (63, 153). Autopsy of these patients with MODS in

sepsis revealed abundant neutrophils in the kidneys and lungs

(163). It has been found that the functional capillary ratio of the

pulmonary microcirculation is decreased in sepsis-induced ALI

(164), which represents the occurrence of abnormal tissue

perfusion, and organ dysfunction may be caused solely by
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neutrophils sequestered in the microvascular system (165). In the

early stage of sepsis, neutrophils are activated and migrate in the

pulmonary capillaries. In the late stage, neutrophils with delayed

apoptosis are trapped in the pulmonary capillaries for a long time,

resulting in the formation of a vascular dead lumen (Figure 1),

which further triggers the aggregation of neutrophils and leads to

microcirculation disturbance, exacerbating the hypoxia caused by

sepsis-induces ARDS (164). This suggests that neutrophil

sequestration may be a critical stage in the initiation of multiple

organ failure (166) and that damage in one organ by a large

accumulation of neutrophils may trigger the same aggregation

effect in other organs (167).

In addition, the severity of septic ARDS is positively correlated

with the degree of neutrophil infiltration and the intensity of its

derived proteolytic enzymes in bronchoalveolar lavage fluid (168).

Results from the bronchoalveolar lavage tests showed that IL-2

concentrations were associated with delayed apoptosis of

neutrophils (169), and IL-8 (170), and IL-18 concentrations were

associated with poor outcomes in patients (171). IL-8 binds to

CXCR1 and CXCR2, which are the high-affinity receptors of CXCL.

But only CXCR2 rather than CXCR1 is reduced on neutrophils in

patients with sepsis, and the interleukin-8 mediated chemotaxis is

impaired (172). Xu et al. had shown that an increase in C5a during

sepsis inhibits neutrophil IL-8 secretion, resulting in neutrophil

migration dysfunction through downstream signaling pathways

mediated by C5aR and C5L2 (173). It is concluded that GPCR-

mediated aggregation, activation, and apoptosis of the accumulated

neutrophils in the lung of septic patients are important causes of

ARDS and are related to the release of tissue-destructive immune

mediators (174, 175).

GPCR-mediated positive and
negative feedback regulates
neutrophil aggregation

During sepsis, the first neutrophils detecting the local tissue

infection rapidly release LTB4 within minutes. Other activators

such as C5a, LPS, and fMLP, also promote LTB4 release, with a

cascade of amplification reactions mediating neutrophils

aggregation (176, 177). Neutrophils can sense and monitor the

relevant danger signals released by tissues through GPCRs, which

promote the release of attractants for communication between cells.

The GPCR-mediated positive feedback is the basis of neutrophil

aggregation, and its downstream molecular pathways are major

triggers of neutrophil polar movement (38).

When GPCR is activated, the Ga subunit of the G protein binds

to GTP and dissociates from the Gbg dimer. The activated Ga
induces the generation of a second messenger such as cAMP (178),

while the dissociated Gbg dimer binds to downstream signaling

molecules and activates downstream signaling pathways such as

phospholipase C b2/3 (PLCb2/3) and phosphatidylinositol 3-kinase
(PI3K) (179, 180). Activation of PLCb in neutrophils can promote

the release of Ca2+ from Ca2+ pools in the endoplasmic reticulum,

leading to an increase in Ca2+ concentration and providing power

for the secretion of intracellular vesicles or granulosa proteins (40).
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The human genome encodes four distinct Ga subunits, including

Gas, Gai, Gaq, and Ga12/13 (181). Gas activates adenylate cyclase
(AC) to catalyze the conversion of ATP to cyclic adenosine

monophosphates (cAMP) (182), which is the second messenger

that regulates many downstream signaling pathways of GPCRs,

while Gai inversely regulates cAMP concentration by inhibiting AC

activity or activating phosphodiesterase (PDE). Gaq activates PLC

to hydrolyze phosphatidylinositol 4, 5-diphosphate (PIP2) to

inositol triphosphate (IP3) and diacylglycerol (DAG), which acts

as a protein kinase C (PKC) activator, while Ga12/13 regulates

small GTPases that affect the cytoskeleton of actin and tubulin

(183). Despite their differences in function, both the Gas and Gai
subunits activate the GTPase activity of tubulin to disrupt the

stability of microtubules (183). In neutrophils, different Gai play
different roles in GPCR signal transduction, and Gai does not

internalize in response to activation compared to Gas (184). Gai2 is
responsible for vascular Ca2+ flux and neutrophil stasis, while Gai3
is responsible for neutrophil migration and activation of the PI3K/

Akt pathway (185, 186). The helical H5 structure in Ga has been

shown to play a key role in mediating the allosteric regulation of

GPCRs (187).

Studies have shown that GPCR desensitization is an intrinsic

negative feedback mechanism for neutrophils and plays a key role in

preventing excessive aggregation of neutrophils to maintain a

balance between tissue destruction and host protection (176, 188,

189). Hidalgo and col. showed that neutrophils acquire different

phenotypes and functional properties in normal tissues, and

they enter these tissues under the action of chemokines, such

as CXCR4 signaling to chemotactic neutrophils into the lung

in response to CXCL12 stimulation (190, 191). Kinase

omics analysis of septic neutrophils revealed impaired activity,

indicating an immunosuppressed neutrophilic phenotype (192).

C5a down-regulates CXCR4 expression on neutrophils and

promotes protease release, which degrades matrix proteins and

inhibits the homing effect of CXCL12, ultimately leading to

neutrophil phenotype changes (193). At the same time, high

levels of C5a may lead to reduced targeted migration of

neutrophils (194). However, C5a receptor expression on

neutrophils peaks at the first 24 hours after sepsis initiation and

gradually declines thereafter (195). PI3K can control the

aggregation effect of C5a-mediated neutrophils by regulating the

oxidative burst and phagocytosis activity of neutrophils. Inhibition

of PI3K in vitro up-regulates TLR4-mediated pro-inflammatory

cytokine expression in neutrophils (196) and activated TLR4

enhances neutrophils’ chemokine reactivity by down-regulating

the expression of G-protein-coupled receptor kinases (GRKs)

involved in GPCRs desensitization (197). Therefore, C5a and

PI3K interact with TLR during sepsis to upregulate GRKs

expression, thereby internalizing and desensitizing GPCRs to

reduce neutrophil chemotaxis and negatively regulate neutrophil

aggregation. In PI3Kc-/- mice with sepsis, the expression of GRK2

was decreased while that of CXCR2 was increased, and the survival

rate was higher, which was consistent with the above conclusion

(198). Besides, TLR4-deficient mice did not develop neutrophil

migration dysfunction, suggesting that the phenomenon is

TLR4-dependent.
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The bias of GPCR expression: G
protein or GRK-arrestin pathway

After GPCR is stimulated by extracellular signals, activated

GPCR can induce structural rearrangement of its cytoplasmic

region (199) and induce intracellular signal transduction through

classical G protein or GRK-arrestin pathway (Figure 2) (200, 201),

and this signal transduction can be biased in three ways. System bias

refers to the differential expression of signaling pathways of the

same receptor or ligand in a different time, space, and cell type.

Receptor bias refers to the selective action of the same agonist on

different receptors to mediate their downstream pathways. Ligand

bias refers to the agonist recognized by a single receptor that prefers

a certain downstream pathway, which is generally thought to be

related to the conformation of the GPCR-arrestin complex (114,

202, 203). Residues near the GPCR binding site are much less

conserved than critical residues on the intracellular membrane of

the cells, resulting in complexes that have both “clingy” and

“hanging” conformations, with the former critical for

desensitization of G protein signaling and the latter promoting G

protein activation or G protein independent signaling (204, 205). In

most cases, G protein signaling is the cause of adverse drug

reactions, and ligand bias can be used to reduce such adverse

reactions, leading to the development of more promising and

safer drugs (206, 207). How these ligands reconfigure cytoplasmic

regions of the GPCR to selectively promote G protein, GRK, or

arrestin binding is not yet known.

There are more than 286 GPCR structures that can combine

with G proteins (208), but only five of them can bind to arrestin and

activate GPCR, including two neurotensin receptor 1 (NTSR1)

(209), one M2 muscarinic receptor (M2R) (210), one b1
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adrenergic receptor (b1AR) (211), and one V2 vasopressin

receptor (V2R) (212). Angiotensin II (Ang II), as a biomarker of

sepsis severity, is associated with the progression of septic ARDS

(213, 214). Modified angiotensin II type 1 receptor (AT1R) can

preferentially stimulate the G-protein-mediated or arrestin-

mediated signaling pathway after binding to Ang II, and this

model system is often used to study the biased signaling of GPCR

(215, 216). The GPCR-arrestin interaction has a shorter duration on

receptors such as b1AR, but a longer duration on V2R and AT1R

(217). GRK and arrestin are important for regulating the duration

and amplitude of GPCR signaling (218). Two of the four arrestin

subtypes, b-arrestin 1 and b-arrestin 2, are expressed in almost all

cells of vertebrates and interact with different GPCRs on the cell

surface to induce their downstream non-classical signaling

pathways (219).

The continuous activation of GPCR during inflammation leads

to the activation of GRK, which in turn negatively regulates the

phosphorylation of C-terminal clusters of GPCR, and then the

recruitment of inhibitory protein b-arrestin to bind to these clusters

(220). The increased b-arrestin also sometimes binds to the

activated transmembrane (TM) core of GPCR, allosterically

modulates its proline regions (PRs) (221), causing specific

conformational changes, and impeding the interaction between

GPCR and G proteins in space, further attenuating GPCR

signaling (Figure 2). Furthermore, b-arrestins that bind to GPCRs

influence the activity of regulatory ubiquitin E3 ligase and a stress-

related JNK3 kinase (222–224), but they remained in this active

conformation after dissociation from the receptor (225–228). b-
arrestin conjugated GPCR to SH3-domain proteins (SH3-CPs) via

three proline domains (P1, P2, P3), each with different affinity to the

receptors and downstream effectors (Figure 2). Specifically,
FIGURE 2

GPCR activation, internalization, and desensitization. (i) When GPCR is activated by an agonist, the Ga subunit of the G protein binds to GTP and
dissociates from the Gbg dimer. Gas activates adenylate cyclase to catalyze the conversion of ATP to cAMP, while Gai inversely regulates cAMP
concentration. The dissociated Gbg dimer activates the PLC and PI3K downstream pathways. (ii) GPCR is subsequently phosphorylated by different
protein kinases (PKs) like GRK. Then b-arrestin binds to the GPCR-activated transmembrane (TM) core, allosterically modulates its three proline
regions (PRs) to induce conformational changes, and spatially impedes the interaction between GPCR and G proteins. b-arrestin induces the
aggregation of clathrin and adaptor protein 2 (AP-2) by increasing the activity of c-Src kinases, and targets the receptor on clathrin-coated pits
(CCP). (iii) The local membrane invagination promotes the formation of endocytic vesicles. The endocytic vesicles target the Golgi apparatus or
lysosomes under the action of Rab proteins and cytoskeleton. (iiii) In addition, activated PI3K promotes GRK activity by down-regulating TLRs
expression, thus mediating GPCR desensitization. C5a interacts with PI3K to regulate neutrophil aggregation by down-regulating the expression of
CXCR4 in neutrophils and inhibiting the homing effect of SDF-1 (CXCL12).
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phosphoric acid sites 5 on GPCRs were coupled to P1 and P2,

phosphoric acid sites 2-3 were coupled to P3, and phosphoric acid

binding sites 5 induced conformational changes in regions P1 and

P2 through the propagation paths of V40!P114!F87 and

P36!V34!F123, respectively (221). The different GPCRs

phosphorylation sites regulated by different GRKs lead to

different b-arrestin conformations and thus different signal

transduction functions, which is known as the “phosphorylation

barcode hypothesis” (229–231).
GPCRs internalization/desensitization:
A key factor for neutrophil
migration dysfunction

It has been shown that GPCRs desensitization, internalization,

and signal transduction are mediated by GRKs and the inhibitory

protein b-arrestins (Figure 2) (232). There are two forms of GPCRs

desensitization, including homologous and heterologous

desensitization. Heterologous desensitization means that one

GPCR signal can act as desensitizing signal of multiple other

GPCR types, causing immune cells to develop resistance to

several chemotactic stimuli (38). However, in vitro studies have

shown that human neutrophils experience homologous

desensitization initiated by GRKs, as shown by no response to

continuous or repeated stimuli (233, 234). GRKs are key serine/

threonine protein kinases in which GRK2-3 and GRK5-6 are

commonly expressed in cells and tissues, while GRK1 and GRK7

are localized in the retina and GRK4 is localized mainly in the testis

(235). There are four GRKs expressed on neutrophils (GRK2,

GRK3, GRK5, GRK6), with different target GPCRs. According to

the references, GRK2 binds to CXCR1 (236) and CXCR2 (197, 237,

238), GRK5 to CXCR2 (197), and GRK6 to LTB4R1 (239) and

CXCR2 (236). Phosphorylation of GRKs at serine (Ser) or threonine

(Thr) residues facilitates the high-affinity binding of GPCR-b-
arrestin, which partly explains the desensitization of G protein

signal transduction (233). After CXCR4 agonist stimulation, GRK2/

3 phosphorylates the distal Ser/Thr locus on the C-tail, while GRK6

phosphorylates more at the proximal Ser/Thr locus (240). In

addition, GRK2 also promotes the formation of the GRK2-tubulin

complex and tubulin phosphorylation, which may be involved in

receptor transport (241). GRK2 also phosphorylates ezrin, a protein

involved in cortical actin cross-linking with the plasma membrane

(242), which may mediate GPCRs internalization and actin

cytoskeletal recombination (243). This difference in the

phosphorylation site of GRKs may mediate different signaling

pathways, which partly explains the different pharmacodynamics

of agonists.

b-arrestin recruited by phosphorylated GPCRs through

Clathrin-mediated endocytosis is the main pathway for the

internalization of GPCRs, which is important for both receptor

recycling and intracellular signal transduction (244). Src are a kind

of kinases that contain the SH3 domain and recognize the specific

PRs conformation in b-arrestin without recognizing the C-terminal

shift of GPCRs (221). The binding of b-arrestin to GPCR can also
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induce clathrin and adaptor protein 2 (AP-2) aggregation by

increasing c-Src kinase activity (245–247). Thus, receptors can be

targeted at clathrin-coated pits (CCPs) to make GPCRs locally

invaginate to promote ingestion in vivo (248). Although AP-2 is not

the key to forming the CCPs (249), it can recruit transmembrane

cargo and auxiliary proteins via a specific motif of clathrin

(Figure 2) (250). These cargo proteins need to contain specific

motifs, such as YXXF motifs to be recognized by AP-2 (251). S-

nitrosylation of b-arrestin by receptor activation or direct

modification promotes GPCRs desensitization and concave

endogenization, while b-arrestin lacking such post-translational

modification prolongs the signaling time of cAMP, extracellular

signal-regulated kinase (ERK), and nitric oxide (NO) (252). In this

regard, some scholars believe that the desensitization of GPCRs is

not signal shutdown, but signal switching, that is, from G protein

signal transduction to G protein independent signal transduction,

and this G protein independent signal transduction may be mainly

mediated by b-arrestin (253, 254). In addition to mediating the

internalization of GPCRs, another key role of b-arrestin is to

stimulate mitogen-activated protein kinase (MAPK) cascades. As

reported, p38 and ERK induce GRK2 phosphorylation at Ser670

and inhibit GRK2 translocation and the following GPCRs

internalization (255), except that p38 promotes monocyte

migration while ERK inhibits monocyte migration. The anaplastic

lymphoma kinase inhibi tor LDK378 inhibi t s Ser670

phosphorylation on GRK2 by inhibiting p38 activation, resulting

in enhanced GRK2 translocation and CXCR2 internalization, thus

inhibiting the recruitment of myeloid suppressor cells (MDSCs) to

the spleen (11).

Subcellular localization is one of the mechanisms regulating

GRKs’ activity and GPCRs’ desensitization (256). Furthermore, the

movement of GPCRs in different cellular compartments during

internalization occurs in vesicles and is regulated by synergistic

interaction with cytoskeletal elements (217). Normally, GPCRs are

synthesized in the rough endoplasmic reticulum (ER) and move

from the Golgi apparatus to the plasma membrane in the form of

vesicles, which is a down-direction transport, while the vesicles

formed after the internalization of GPCRs are directed to the

lysosome or proteasome, which is a reverse transport (217).

Biased agonists stimulate GPCRs in the plasma membrane with a

sustained and strong effect, but not in the intracellular

compartment, suggesting that the production of second

messengers such as Ca2+, cAMP, IP3, and DAG is essential for

subcellular localization (257). The production of free vesicles is

dependent on dynamin, which exists in three subtypes in mammals

and binds to acidic phospholipids on the cytoplasmic side of the

plasma membrane via the pleckstrin homology (PH) domain

(Figure 2). During the internalization of GPCRs, the dynamin is

located at the neck of the budding vesicles and relies on the

hydrolysis of GTP to form a helical polymer conformation that

promotes the fission of the underlying tubular membrane section,

resulting in the generation of endocytic vesicles. This dynamin is

also present in the actin reticulum associated with the Arp 2/3

complex (258, 259). Some desensitized neutrophil GPCRs can be

reactivated by cytoskeletal destruction (114). Rab proteins are a

kind of monomer GTP proteases, which are expressed differently on
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different membranes and can regulate vesicle docking and fusion.

Their activities are partly regulated by the concentration of PI3K

(260). A few studies have demonstrated the interaction between

GPCRs internalization and various Rab proteins in different

vesicular compartments. Among them, Rab5a mainly binds to the

last 10 amino acids of AT1AR and participates in the receptor cycle

of reverse transport (261), while Rab11 is associated with the

circulation of receptors that are transported downstream and is

located in the trans-Golgi network (TGN), post-Golgi vesicles, and

recycling endosomes (262, 263). This suggests that GPCRs can

regulate the activity of intracellular transport components through

vesicle cargo proteins to control the targeting of receptors to specific

cellular compartments after internalization (264, 265).
CXCR2 is essential for
GPCRs internalization and
neutrophil migration

Currently, 46 human chemokines are known to activate 20

chemokine receptors (266, 267) and another four atypical

chemokine receptors (ACKRs) (268) (Table 1). CXCR2 is a

receptor for eight CXC chemokines (CXCL1-8) (269, 270), which

can drive innate immune cells to infiltrate remote organs in sepsis

(127, 271, 272) and seems to have a synergistic effect with lipid

signaling. It can make neutrophils move from randommovement to

directed migration, thus forming local cell clusters (176, 188). Non-

survivors of sepsis showed higher CXCR2 expression on

neutrophils and more neutrophil migration dysfunction than

survivors (273). CXCR2 is internalized faster than CXCR1 but

takes longer to be recycled (274). Studies have shown that

reverse-migrating neutrophils have reduced CXCR1 expression

(275). CXCR1 desensitization in zebrafish is associated with

neutrophil diffusion to sites far from the wound, and this

transition involves CXCR2 signaling (189). GRK2 controls the

internalization of CXCR2 while desensitized LTB4R1 remains in

the plasma membrane (38), suggesting that CXCR2 but not LTB4R1

is involved in receptor internalization.

In addition, CXCR2 sometimes dimerizes chemokine receptors,

forming homologous dimers through the Ala106-Lys163 region

even in the absence of ligands (276). When neutrophils express both

CXCR1 and CXCR2, they may also form heterodimers (277). As a

ligand of the two receptors, CXCL8 can deactivate the source dimer

and stabilize the homologous dimer to promote the internalization

of the receptor (278). It can be seen that the activation of different

ligands leads to the selective expression of GPCRs dimerization,

thus regulating receptor desensitization, which may be one of the

ways to fine-regulate neutrophil chemotaxis, but the specific

mechanism is still unclear.

The C-terminal of CXCR2 contains a leucine-rich domain (325-

329aa), the LLKIL motif (279). CXCR2 binds to a variety of proteins

through this LLKIL motif, including LIM and SH3 protein 1 (LASP-

1), Hsc70 interacting protein (Hip), and AP-2 (279, 280). The

pathway involved in the regulation of LASP-1 affects cytoskeletal

rearrangement and thus neutrophil migration (281). The Hsc70
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complex formed by the binding of CXCR2 to the Hip is related to

the internalization of CXCR2 (282). By binding to membrane

phosphatidylinositol (PI), AP-2 is docked in the plasma

membrane and causes microtubule acetylation, which is essential

for the targeted movement of neutrophils (283). GRK2-

phosphorylated CXCR2 can also internalize the receptor by

binding b-arrestin independently of clathrin and AP-2, but this is

dependent on Lys327 ubiquitination on CXCR2 (284).

CXCR2 is induced on the surface of neutrophils in a TLR2 or

TLR4-dependent manner in patients with sepsis and mediates

neutrophil infiltration into important organs such as the lungs,

hearts, and kidneys (127). TLRs, a homolog of the Drosophila

protein Toll, are a kind of PRRs that control innate immunity and

contribute to the inflammatory response of DAMPs. TLRs currently

have 11 forms, among which TLR4 is the signal transduction

receptor of LPS (285). High mobility group box 1 (HMGB1) acts

as a DAMP that interacts with TLR9 to regulate the neutrophil NET

formation, thereby mediating inflammatory tissue damage (286).

The activation of TLRs or PI3K on activated neutrophils can induce

the expression of TNF-a and iNOS. During sepsis, iNOS inhibited

the expression of selectin, integrin, and cell adhesion factor -1 and

promoted the production of NO, which can not only dilate

pulmonary vessels and increase vascular permeability to aggravate

pulmonary vascular injury but also reduce heme oxygenase-1 to

inhibit neutrophil rolling and adhesion (287–290). TLRs, TNF-a,
and NO can all lead to the up-regulation of GRK2, which can be

used as a negative feedback mechanism to induce CXCR2

desensitization (272, 291–293). IL-33 inhibits TLR-mediated up-

regulation of GRK2 expression and CXCR2 internalization by

binding to its heterodimer receptor complex signal transducer 2

(ST2), thereby reducing neutrophil migration dysfunction and

enhancing their recruitment to the infection sites (140, 237, 294).

However, experiments showed that CXCR2 desensitization

controlled by GRK2 could not prevent the migration of

neutrophils to the aggregation site after GRK2 depletion, despite

the desensitization resistance, and its bacterial clearance ability was

impaired, indicating that the internalization of CXCR2 was not the

only factor leading to the excessive migration of neutrophils (176).

In addition, miRNA may also affect CXCR2 activity. MiR-K12-3, a

miRNA-125 from Kaposi sarcoma-associated herpes virus (KSHV)

(295), can desensitize and internalize CXCR2 by directly reducing

GRK2 expression and phosphorylating GPCRs (237). A fungus

containing miRNA-1321 and miRNA-3188 expressed in vitro even

directly reduced the microRNA expressed by CXCR2 (296).
Potential therapeutic targets for
septic ARDS

The lungs are the most common source of sepsis, accounting for

64%, which easily leads to the occurrence of ARDS (297). There are

currently no specific drugs for sepsis, and the only drug approved

for severe sepsis, recombinant Human (rh) APC, has been shown

not significantly reduced sepsis mortality (298, 299). Similarly,

many pharmacological therapies have been used to treat ARDS,
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including aspirin, b-2 agonists, statins, and corticosteroids, but

none of them have a significant effect (300). Mechanistically,

NETs are involved in the progression of ARDS induced by sepsis,

and inhibition of neutrophil NETs formation may be a potential

target to prevent ARDS. Aspirin inhibits neutrophil migration and

thromboxane-dependent NETs formation by inhibiting platelet-

neutrophil interactions (301). High-dose intravenous vitamin C

(HDIVC) improves ARDS by reducing the occurrence of NETosis

and the shedding of the vascular endothelial glycocalyx by down-

regulating the expression of cell-free DNA in neutrophils and

proteoglycan syndecan-1 in vascular endothelial cells (302). a1-
antitrypsin (AAT), as a protease inhibitor, especially a NE inhibitor,

inhibits neutrophil migration and NETs formation by binding to

IL-8 to inhibit CXCR1/CXCL8 signaling axis (303). Sivelestat

(ONO-5046), another selective NE inhibitor, also improved

neutrophil-mediated vascular endothelial injury and increased

vascular permeability (304). Moreover, zinc-dependent histone

deacetylases (HDAC) mediate the deacetylation of histone H3,

which is a necessary step to allow histone citrullination and NETs

formation (305). Ricolinostat (ACY-1215), an HDAC6 inhibitor

currently in Phase II clinical trials, can improve lung function by

inhibiting NETosis (305). In addition, glycyrrhizin, the active

component of traditional Chinese medicine, reduces neutrophil

NETs formation in sepsis by inhibiting the activation of the

HMGB1/TLR9/MyD88 (myeloid differentiation primary response

88) pathway (286). Inhibitors of protein tyrosine phosphatase-1B

(PTP1B) reduce neutrophil chemotaxis and NETs formation by

inhibiting the PI3g/AKT/mTOR pathway downstream of CXCR4

signaling (306). Interestingly, administration of DNase-I-coated

melanin-like nanospheres (DNase-I pMNSs) mitigates sepsis-

associated NETosis, thereby preventing the further progression of

ARDS (307). The oleic acid-based nanosystems dose-dependently

inhibited the production of ROS, O2
-, and NE by activated

neutrophils, n, thereby reducing NETs formation, and larger

nanocarriers showed greater efficiency in improving ARDS (308).

The drugs coated by lipid nanocarriers have the characteristics of

prolonging circulatory half-life, increasing drug stability, and

enhancing focus targeting ability (309), and are especially suitable

for directional lung delivery in sepsis (310). The pulmonary

capillary network enables larger nanoparticles to deposit in the

lung (311), where anionic nanoparticles are well tolerated (312),

which may also be a new route for treating septic ARDS.

One of the signs of ARDS in patients with sepsis is increased

pulmonary microvascular endothelial permeability and abnormal

accumulation of neutrophils. Lung endothelial barrier damage is

mediated by cell contact breakdown and actin remodeling, and the

accumulation of neutrophils in the lungs is mainly driven by

cytoskeletal rearrangement (155). In the early stage of sepsis,

excessive inflammatory responses activate neutrophils and

promote their migration to the lungs. Subsequent neutrophil

sequestration in the lungs leads to abnormal tissue perfusion,

which in turn leads to pulmonary capillary microcirculation

disturbance. Then, neutrophils with delayed apoptosis cause lung

tissue damage through the release of ROS, protease, NETs, etc.,

eventually leading to the occurrence of severe hypoxemia and

pulmonary edema. Studies showed that the peripheral miRNA
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may be the key epigenetic factor of endothelial activation and

neutrophil dysfunction in ARDS. MiR50-887-3 expression

increased on the endothelial cells of septic patients with ARDS,

promoting neutrophil trans-endothelial migration by increasing

VCAM-1, TLR2, CCL5, and CXCL10 expression (313). Inhibition

of miR50-887-3 expression on vascular endothelium may be a

potential target for septic ARDS. Sphingosine-1-phosphate (S1P)

in plasma, a lipid recognized by GPCRs (S1Pr1, S1Pr2, S1Pr3) on

endothelial cells, regulates neutrophil leakage triggered by lung

inflammation in mice (314). As an analog of S1P, FTY720 and its

analog FTY720 s-phosphonate (Tys) enhance the barrier protection

function of lung endothelial cells by activating S1Pr1 (315, 316).

The binding of S1P to S1Pr1 induces actin cytoskeletal

recombination, adhesion junction assembly, and VE-cadherin

localization to intercellular contact areas, but S1Pr1 also

undergoes time-dependent desensitization (317). Fingolimod, an

S1Pr agonist with a bias toward receptor internalization and

degradation, is effective in treating multiple sclerosis (318–320)

and may be used to control neutrophil aggregation. In addition, the

sweet taste receptor T1R3 is also a kind of G-protein-coupled

receptor. Activated T1R3 may protect the lung endothelial barrier

by eliminating Src/P21-activated kinase (PAK)/p110aPI3K-
mediated cell contact breakdown and Src/myosin light chain 2

(MLC2)/heat shock protein 27 (HSP27) -mediated actin

remodeling (321). In vitro studies have shown that exogenous

prostaglandin F2a (PGF2a) promotes neutrophil migration in

endometrial carcinoma by up-regulating CXCR2/CXCL1

expression through PGF2a receptors (also known as FP

receptors, a type of GPCRs) (322, 323). However, FP receptor

antagonist AL8810 promotes neutrophil migration to BAFL by

increasing adhesion molecules expression on the vascular

endothelium such as ICAM-1 and E-selectin, while decreasing the

gene expression of alveolar surfactant protein and aggravating

pulmonary edema (324). FP receptor agonists may have the

potential to treat septic ARDS, but this needs further study. The

administration of ligands binding to GPCRs on endothelial cells to

activate intracellular signal transduction pathways mediates

cytoskeletal recombination to inhibit neutrophil aggregation to

the lung, which may be a new therapeutic target for lung

endothelial cell protection in septic ARDS.

On the other hand, modifying the chemotaxis of neutrophils by

regulating the internalization of GPCRs may improve the

inflammatory response in the lungs during sepsis. Barbadin is a

novel inhibitor that blocks the interaction of b-arrestin and AP-2,

reducing receptor desensitization by inhibiting clathrin-mediated

internalization of GPCRs, thus allowing neutrophils to

continuously respond to external stimuli (325, 326). Furthermore,

LMBD1, the first protein was shown to be involved in the regulation

of insulin receptor (IR) internalization (327), is hypothesized to

contain nine transmembrane domains that subcellular localize in

multiple membrane-bound organelles, including lysosomes and

plasma membranes (328). LMBD1 can interact with AP-2 and

selectively participate in clathrin-mediated IR endocytosis (327).

When LMBD1 is deficient, IR is retained in the plasma membrane,

suggesting that LMBRD1 may be an important molecule mediating

GPCRs internalization. In addition, administration of the glycolytic
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inhibitor 2-deoxyglucose (2-DG) restored the ability of neutrophils

to cluster to infected abdominal lesions in sepsis mice, partially

reversed glycolytic-induced neutrophils migration dysfunction and

down-regulated CXCR2 expression, suggesting that 2-DG may be a

potential therapeutic strategy (329).
Conclusion

ARDS is an important cause of acute respiratory failure, which

is usually associated with multiple organ failure, and sepsis is one of

its common causes (330). The incidence of sepsis-induced ARDS

remains high despite the clinical efficacy of antibiotic therapy

during infection (1). The lung is usually the first target organ

attacked by multiple organ dysfunction in sepsis (331, 332). The

main pathophysiological changes are the destruction of the alveoli-

capillary barrier (333), which leads to increased permeability of

pulmonary blood vessels, increased migration of neutrophils to the

lungs, and accumulation of protein-rich edema fluid in the alveoli,

thus causing tissue and organ damage (334). Due to the difficulty in

balancing the specificity and sensitivity of currently available

biomarkers, finding new targeted therapeutic markers is still

crucial to prevent ARDS in patients with sepsis.

The excessive inflammatory response shown in the early stage of

sepsis leads to a large accumulation of neutrophils in the lungs,

excessive activation, and delayed apoptosis, which is an important

cause of acute lung injury or acute respiratory distress syndrome. In

sepsis, the impaired migration of neutrophils to the pulmonary

tissues may be due to excessive binding to vascular endothelial cells

during initial adhesion, followed by reduced chemotactic reactivity

due to GPCR desensitization and internalization, resulting in strong

infiltration of these cells into the infected lung tissue. Therefore, the

ideal treatment strategy for septic ARDS is to reduce the

accumulation of neutrophils in the lungs without impairing its

microbial clearance and regenerative capacity (335, 336)

Cytoskeleton-regulated subcellular localization and conformational

regulation such as phosphorylation and dimerization are important

mechanisms of GPCRs desensitization. According to the ligand-bias

and phosphoryl-barcoding hypothesis, different ligands preferentially

promote different downstream GPCR pathways, so it is important to

develop allosteric regulators to precisely control the effects of

activated neutrophils. At present, the main treatment method for

septic ARDS is still a lung-supporting ventilation strategy (337).

Targeting GPCRs to regulate neutrophil chemotaxis to improve

pulmonary inflammation and microcirculation may be a promising

field for the treatment of septic ARDS. On the other hand, targeting

the interaction between neutrophils and GPCRs on pulmonary
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vascular endothelial cells may reduce the over-aggregation of

neutrophils in the lungs, which may also be an effective strategy.

Although other pathways inhibit neutrophil migration, such as

activating proteins C (338), ROS (339), and NETs (340), this

review focuses on the physiological mechanism of how GPCRs

expressed in sepsis patients cause ARDS by influencing neutrophil

migration to improve the prognosis of patients and prevent the

occurrence of irreversible MODS, providing more valuable reference

targets for the development of new therapies.
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