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Despite the successful development of vaccines and neutralizing antibodies

to limit the spread of severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), emerging variants prolong the pandemic and emphasize the

persistent need to develop effective antiviral treatment regimens. Recombinant

antibodies directed to the original SARS-CoV-2 have been successfully used to

treat established viral disease. However, emerging viral variants escape the

recognition by those antibodies. Here we report the engineering of an

optimized ACE2 fusion protein, designated ACE2-M, which comprises a

human IgG1 Fc domain with abrogated Fc-receptor binding linked to a

catalytically-inactive ACE2 extracellular domain that displays increased

apparent affinity to the B.1 spike protein. The affinity and neutralization

capacity of ACE2-M is unaffected or even enhanced by mutations present in

the spike protein of viral variants. In contrast, a recombinant neutralizing

reference antibody, as well as antibodies present in the sera of vaccinated

individuals, lose activity against such variants. With its potential to resist viral

immune escape ACE2-M appears to be particularly valuable in the context of

pandemic preparedness towards newly emerging coronaviruses.
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1 Introduction

In the past two years, the Coronavirus disease 2019 (COVID-19) pandemic has claimed

several millions of lives worldwide and has caused enormous -and unprecedented- social

and economic damage (1, 2). Fortunately -and unprecedented as well- efficient vaccines

have been developed and administered to millions of individuals in less than two years, and

currently it appears that vaccination has become the cornerstone for the control of the

pandemic worldwide (1, 3).
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In the face of this truly remarkable success, the development of

reagents for the treatment of established viral infections remains

challenging. A growing understanding and appropriate treatment of

the hyper-inflammatory and -coagulatory states occurring in the

course of moderate and severe disease resulted in a significant

reduction in mortality rates in treated patients. In addition, reagents

with direct antiviral activity have been developed. Such reagents can

be divided into two classes, small molecules with antiviral activity

and neutralizing antiviral antibodies. For the latter, the tools of

modern recombinant antibody technology, i. e., phage display, and

single-cell cloning, have been used to generate optimized

monoclonal antibodies with potent neutralizing capacity, directed

to the receptor-binding domain (RBD) of the viral spike protein (S-

protein) that binds to the ACE2 receptor on target cells (4–8).

Several of these reagents have received approval for use during the

early stages of infection. As of today, however, their activity in more

advanced stages has been limited. Indeed, antibody-dependent

enhancement (ADE), e.g., by non-neutralizing antibodies binding

to viral particles, was reported to promote their Fc-mediated uptake

by cells carrying Fc-receptors (FcRs), such as alveolar macrophages

(9, 10).

However, a major limitation for the therapeutic activity of

antibodies are recent mutations in SARS-CoV-2 variants that not

only confer enhanced affinity to ACE2 and thus increased infectivity

but also prevent the binding of antibodies raised against the B.1 S-

protein (11–13).

A recombinant antibody approved for treatment of limited disease,

REGN 10933 (14) exemplifies this strikingly. It strongly binds to the

RBD of the B.1 S-protein but fails to bind to the S-protein encoded by

known variants of concern (VOCs), such as the Beta and Omicron

variants. The latter escapes effective neutralization by five of seven

mAbs approved for treatment of COVID-19 (15–17). At the same

time, the S-protein of the Omicron variant gained affinity towards the

ACE2 protein (18, 19), resulting in increased infectivity.

In principle, the conceptual weakness of neutralizing antibodies

directed to the RBD domain of the S-protein discussed above might be

overcome by recombinant Fc-based fusion proteins comprising the

“natural” binding partner of the RBD domain, the ACE2 protein. In

contrast to RBD binding antibodies, the neutralizing capacity of such

proteins would not be impaired but rather strengthened by affinity

gaining mutations in the RBD. Moreover, since the RBD ACE2

interaction is mediated by a dimeric form of ACE2, an Fc based

format may promote ACE2 dimerization (20). Despite this conceptual

advantage, the construction of such fusion proteins faces challenges as

well: first, the affinity of recombinant ACE2 to viral S-proteins is lower

than that of most antibodies. Second, the enzymatic activity of

physiologically expressed ACE2 is critical for the proper function of

the renin-angiotensin-aldosterone system (RAAS). This system is of

vital importance, among others, for blood pressure regulation, and high

doses of enzymatically active protein might induce uncontrollable side

effects. Although it has been suggested that ACE2 may function as a

“rescue protein” in the course of the SARS-CoV-2 infection (21), we

share the view expressed in a paper Khodarahmi et al. (22), that

recommend the use of enzymatically inactive ACE2 if blockade of the

S-protein is intended.
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Based on the considerations outlined above, we have

constructed and characterized an ACE2-Fc fusion protein

designated ACE2-M, that carries mutations to:
i. abrogate FcR binding and complement activation by the

Fc domain

ii. deplete enzymatic activity of the ACE2 protein

iii. enhance the apparent affinity of the ACE2 S-protein

interaction
Here we evaluate the capability of ACE2-M to bind and to

neutralize various virus variants. This activity was benchmarked

against the therapeutic antibody REGN 10933 and the serum of

vaccinated individuals.
2 Materials and methods

2.1 Generation and production of ACE2
fusion proteins and REGN 10933

The human ACE2 extracellular domain (aa 18-740; Gene ID:

59272) and the variable domain sequences of the REGN 10933

antibody (14) were codon-optimized for expression by Chinese

hamster cells using the GeneArt GeneOptimizer tool (Thermo Fisher

Scientific, Regensburg, Germany). VH, VL, and ACE2 sequences

(ACE2 wild-type (ACE2) or the indicated mutants, ACE2-RR,

ACE2-K, ACE2-M) were synthesized de novo at GeneArt (Thermo

Fisher Scientific, Regensburg, Germany). ACE-2 coding sequences

were fused at their C-terminus to a human Igg1 Hinge- Fc domain

via a flexible (GGGGS)3 linker. Modifications in the CH2 domain

consisting of the amino acid substitutions and deletions E233P; L234V;

L235A; DG236; D265G; A327Q; A330S (EU index), which abrogate

FcR binding and complement fixation, were introduced as described

(23). REGN 10933 variable sequences were inserted into a human Igg1
backbone comprising CH1‐CH2‐CH3‐ or CΚ‐constant domain

sequences as described (23). All constructs were transiently

transfected and produced using the ExpiCHO™ Expression System

(Thermo Fisher Scientific, Regensburg, Germany) according to the

manufacturer’s instructions and were then purified by HiTrap™

MabSelect™ SuRe columns (Cytiva, Freiburg, Germany), before

being subjected to preparative and analytical size exclusion

chromatography (SEC) using HiLoad™ 16/600 Superdex 200 pg and

Superdex™ 200 Increase 10/300 GL columns (Cytiva Freiburg,

Germany), respectively. Endotoxin levels of samples, as determined

by a limulus amebocyte lysate assay (Endosafe®Charles River,

Charleston, SC), were < 0.5 EU/ml. Sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) was performed as

previously described (23).
2.2 Spike proteins

SARS-CoV-2 full-length trimeric spike proteins corresponding

to the B.1 (B.1.126), Alpha (B.1.1.7), Beta (B1.351), Gamma (P.1),
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and Delta (B.1.617.2) were purchased from BioServ, (Sheffield, UK).

The Trimeric S-protein corresponding to Omicron (B.1.1.529) or

Omicron subvariant BA.5 and BQ1.1 were obtained from Sino

Biological (Beijing, China).
2.3 ACE2 catalytic activity assay

Enzymatic activity of ACE2 fusion proteins was measured using

the ACE2 Activity Assay Kit (Fluorometric) (BioVision, Milpitas,

CA) according to the manufacturer’s instructions. The proteins

were diluted in assay buffer to 22.7, 4.54, and 0.91 nM final

concentration. Fluorescence was measured using a Wallac 1420

Victor 2 Multi-Label Counter (Perkin-Elmer, Waltham, MA).
2.4 Competitive ELISA

The indicated S trimeric proteins were coated on 96-well plates

at 1µg/ml, 4°C overnight. After washing, wells were blocked with

PBS containing 3% BSA for 1 hour at room temperature. Next, a

serial dilution of the indicated ACE2 fusion proteins, REGN 10933

or serum antibodies were pre-mixed with 150 nM of His-tagged

ACE2 wild-type protein (BioLegend, San Diego, CA) and added to

the plates. In case of the Omicron variants (Sino Biological), the

His-tagged ACE2 protein was additionally biotinylated using the

One-Step Biotinylation Kit (Miltenyi, Cologne, Germany)

according to the manufacturer’s instructions. For visualization, a

Penta-His HRP conjugate (1:1000) (Qiagen, Hilden, Germany) or

mouse anti-Biotin HRP conjugate (1:1000) (Invitrogen, Waltham,

MA) were used. Unbound HRP-conjugated antibodies were

removed by washing, TMB substrate was added, and absorbance

was measured at 450nm.
2.5 Determination of anti-spike antibodies
in the sera of vaccine recipients

Sera were collected from 8 healthy donors (25-65 years of age). All

donors received a first dose of Vaxzevria vaccine and then a second

dose of Comirnaty or Spikevax. Sera were collected 40-45 days after the

second dose and anti-SARS-CoV-2 antibody concentrations were

measured using the Euroimmun Anti-SARS CoV-2 ELISA IgG kit

(Euroimmun, Luebeck, Germany). Briefly, serum samples were diluted

at 1:100 and 1:1000 and ELISA was performed following

manufacturer’s instructions. A titration of a reference neutralizing

antibody (REGN 10933) was used to calibrate the assay.
2.6 Measurement of fusion- and
spike protein interaction by
biolayer interferometry

Trimeric S-proteins were analyzed for their binding to ACE2-RR

or ACE2-M fusion proteins using an Octet HTX system (Sartorius,

Goettingen, Germany). Assays were run with a sensor offset of 3 mm
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and an acquisition rate of 5 Hz on AHC biosensors in 16-channel

mode. Microplates were loaded with 60 mL per well of assay buffer

consisting of PBS with 0.05% Tween-20 and 0.1% BSA. Sensors were

equilibrated in assay buffer for 10 min. Following a baseline step of 60s,

the analyte S-proteins were loaded for 120 s. Association was measured

for 150s and dissociation for 300s. Regeneration of the sensors was

performed using 10 mM Glycine pH 1.5. Data evaluation was done

using Octet Analysis HT Software. The reference subtraction was

performed to consider the potential dissociation of analyte loaded

onto the biosensor. Data traces were aligned to the baseline, followed by

an inter-step correction for the dissociation step. Savitzky-Golay

filtering was applied to the data and the curves were fitted globally

using a 1:1 binding model (with Rmax unlinked by sensor).
2.7 Viruses

All experiments with SARS-CoV-2 viruses were conducted in a

Biosafety Level 3 laboratory at the University Hospital Tübingen.

The SARS-CoV-2 strain icSARS-CoV-2-mNG (24) was obtained

from the World Center for Emerging Viruses and Arboviruses

(WRCEVA) of the UTMB (University of Texas Medical Branch,

Galveston, TX, USA). SARS-CoV-2 B.1.126 (parental D614G),

referred as B.1, and SARS-CoV-2 B.1.351 (Beta), were isolated

from patient samples and variant identity was confirmed by next-

generation sequencing of the entire viral genome as described

before (25, 26). SARS-CoV-2 B.1.1.529 (Omicron) was isolated

from a throat swab collected in December 2021 at the Institute for

Medical Virology and Epidemiology of Viral Diseases, University

Hospital Tübingen, from a PCR-positive patient. Fifty microliters of

patient material were diluted in medium and used directly to

inoculate 150,000 Caco-2 cells in a six-well plate. 48 hours post-

infection (hpi), the supernatant was collected, centrifuged, and

stored at -80°C. After two consecutive passages, an RNA sample

from the supernatant was prepared, and NGS confirmed that the

clinical isolate belongs to the lineage B.1.1.529. All virus stocks were

generated in Caco-2 cells collecting supernatants 48-72 hpi.

Multiplicity of infection determination (MOI) was conducted by

titration using serial dilutions of both virus stocks. The number of

infectious virus particles per ml was calculated as (MOI × cell

number)/(infection volume), where MOI = -ln (1-infection rate).
2.8 Virus neutralization assay

Caco-2 (Human Colorectal adenocarcinoma, ATCC HTB-37)

cells were cultured at 37°C with 5% CO2 in DMEM containing 10%

FCS, 2 mM L-glutamine, 100 mg/ml penicillin-streptomycin and

1% NEAA. Neutralization assays using clinical isolates were

performed as described in Wagner et al., 2021. Briefly, cells were

co-incubated with the clinical isolate SARS-CoV-2 B.1.126, SARS-

CoV-2 B.1.351 (Beta), or SARS-CoV-2 B.1.1.529 (Omicron), at

MOI of 0.7-4.0, and serial dilutions of the ACE2 protein designs. 48

hpi, cells were fixed with 80% acetone, and immunofluorescence

(IF) staining was performed using an anti-SARS-CoV-2

nucleocapsid antibody (GeneTex, Cat No. GTX135357) and goat
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anti-rabbit Alexa594-conjugated secondary antibody. Cells were

counterstained with DAPI solution and images were taken with

the Cytation3 (BioTek). Infection rates were calculated as the ratio

of Alexa594-positive over DAPI-positive cells, which were

automatically counted by the Gen5 software (BioTek). Inhibitory

concentration 50 (IC50) was calculated as the half-maximal

inhibitory dose using four-parameter nonlinear regression

(GraphPad Prism).
2.9 Binding of ACE2 fusion proteins to
SARS-CoV-2 infected cells

For binding experiments, 3×106 Caco-2 cells were seeded in a

T75 flask the day before infection, in a medium containing 5% FCS.

Cells were infected with SARS-CoV-2-mNG, and 48 hpi cells were

detached from the flask using Accutase, fixed with 2% PFA for 10

minutes at 37°C, and resuspended in FACS buffer (PBS, 1%FCS).

1×106 cells in 100 µL in FACS buffer were distributed in a U-shape

96-well plate. The plate was centrifuged at 600 g for 5 min and the

buffer was removed by a fast decant. Cells were incubated for 1h at

4°C using 50 µl of 3-fold serial dilutions of ACE2 protein or REGN

10933, tested from 40 µg/ml following 12 dilution points. Cells were

washed with 150 µl of FACS buffer/well, centrifuged, and the

supernatant decanted. The washing step was repeated using 200

µl of FACS buffer/well. Subsequently, cells were incubated with 50

µl of a 1:200 dilution of the Secondary AB- R-Phycoerythrin (PE)

conjugated affinity pure F(ab’)2 Fragment Goat-anti Human IgG-Fc

gamma fragment (Jackson-Immuno) for 30 minutes at 4°C. The

two washing steps were repeated, and the cells were resuspended

using 100 µl of FACS buffer/well. Controls included: mock-infected

cells incubated with the highest and lower protein concentrations;

infected cells non-incubated as well as infected cells stained only

with the secondary antibody. Alternatively, Caco-2 cells were

infected with SARS-CoV-2 parental or Omicron variants and the

same protocol described above was followed. After incubation with

PE-secondary antibody, cells were permeabilized with 80% Acetone

for 5 minutes at room temperature, washed as described before and

immunofluorescence (IF) staining was performed using an anti-

SARS-CoV-2 nucleocapsid antibody (GeneTex, Cat No.

GTX135357) (1:1000, 1 h) and goat anti-rabbit Alexa594-

conjugated secondary antibody (1:2000, 1 h). After the final

washing steps, the cells were analyzed using a MACSQuant VYB

(Miltenyi). FACS analysis was performed with MACS Quantify

Software (Miltenyi) and Flowlogic (Miltenyi–Inivai).
3 Results and discussion

3.1 Construction and characterization
of ACE2-M

ACE2 fusion proteins were constructed by fusing the ACE2

extracellular domain to a human IgG1 Fc fragment that was

originally developed to prevent binding to FcRs by T cell
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activating bispecific antibodies. This modification consists of 6

mutations and one deletion in the CH2 domain of the human

IgG1 Fc domain that completely abrogates binding to FcRs and

ablates complement activation (23).

To avoid the introduction of undesired peptidase activity, two

catalytically-inactive forms of ACE2 were generated. The first

mutant, ACE2-RR, contains two substitutions in the catalytic

pocket, H374R, and H378R, that prevent zinc binding within the

active site of the protein (27). The second mutant, ACE2-K, has a

single mutation at position 273 (R273K), which is critical for

enzymatic activity (28). Fc-fusion proteins constructed with either

of the two variants show the size expected for a dimeric molecule as

demonstrated by SDS-PAGE and size exclusion chromatography

(Supplementary Figures 1A–C). In contrast to ACE2-RR, ACE2-K

retained some residual enzymatic activity and showed a slight loss

in binding affinity to recombinant trimeric parental S-protein as

measured by enzyme-linked immunosorbent assay (ELISA)

(Supplementary Figures 1D, E). Thus, the ACE2-RR version of

the fusion protein was selected for further modification.

To enhance binding to the S-protein, we introduced three

additional mutations to the ACE2-RR-Fc fusion protein that are

located at the S-protein binding surface of ACE2: T27Y, L79Y, and

N330Y (Figures 1A, B). These mutations are similar to an ACE2

variant described by Chan and collaborators (29). ACE2-M, was

produced as a stable dimer and had no detectable enzymatic activity

(Figures 1C–E).

We next measured the binding affinity of recombinant trimeric

S-protein and ACE2-M by ELISA, which was benchmarked against

an Fc-fusion protein comprising the wild type ACE2 protein, as well

as against the reference antibody REGN10933. In this assay, ACE2-

M showed a 4-fold higher binding affinity than wild-type ACE2

fusion protein (Figure 1F). Interestingly, the apparent binding

affinity measured by flow cytometry of Caco-2 cells infected with

a recombinant parental virus resulted in a greater than 18-fold

affinity enhancement (Figure 1G). In both assays, the S-protein

apparent binding affinity of ACE2-M and REGN 10933 was similar.

The differences between the affinities of antibodies and fusion

proteins to S-proteins coated to an ELISA plate compared with

those embedded in the membrane of a virus-infected cell are

noteworthy. Obviously, binding to infected cells resembles the

“physiological state” more closely, and may predict different

neutralization capacities of the various fusion proteins more

reliably as demonstrated below.

To test whether ACE2-M retains binding to the globally

spreading SARS-CoV-2 VOCs Alpha (B.1.1.7), Beta (B1.351),

Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529),

structural analysis of ACE2-M and the respective S-RBD variants

was performed (Supplementary Figure 2). This analysis revealed

that the affinity-enhancing mutations introduced into the ACE2-M

protein appear to be spared by the viral escape mechanism,

probably because they form part of the RBD-binding interface.

Those observations were further confirmed by measuring the

binding kinetics of ACE2-M to all variants by biolayer

interferometry technology (BLI). The results depicted in

Supplementary Figure 3 demonstrate a superior apparent binding
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affinity of ACE2-M to spike variants. Again, the differences in

affinities were less pronounced compared to those observed by flow

cytometry of infected cells (Figure 1G).
3.2 ACE2-M resists viral escape, in contrast
to REGN 10933

Next, we tested the ability of ACE2-RR, ACE2-M, and REGN

10933 to inhibit binding of ACE2 to various S-proteins by

competition ELISA. To this end, the fusion proteins and REGN

10933 were mixed with a saturating amount of His-tagged-ACE2

protein before binding to immobilized S-proteins was determined.

In line with the BLI results, we observed an improved inhibition of

binding by ACE2-M to all S-proteins (Figure 2A). In contrast,
Frontiers in Immunology 05
REGN 10933 failed to inhibit ACE2 binding to Beta, Gamma, and

Omicron S-proteins. These results are consistent with previously

published data, suggesting that the reduced binding of REGN 10933

to certain S variants is likely due to mutations in amino acids K417

and E484 of the S-protein (30, 31), found in the Beta, Gamma, and

Omicron variants.

Likewise, binding of ACE2 fusion proteins and REGN 10933

antibody to Caco-2 cells infected with authentic SARS-CoV-2

natural isolates corresponding to the parental strain (D614G) and

Omicron (B.1.1.529) showed similar results (Supplementary

Figure 4). REGN 10933 bound with high affinity to Caco-2 cells

infected with the parental virus, in line with the results obtained

with the recombinant virus in Figure 1G. However, REGN 10933

failed to bind to Caco-2 cells infected with the Omicron virus. In

contrast, ACE2-M retains high-affinity binding to Caco-2 cells
B

C D E

F G

A

FIGURE 1

Design and biochemical characterization of ACE2-M. (A) Schematic representation of the ACE2 molecules used in this study. The ACE2 extracellular
domain, comprising peptidase and collectrin domains, was fused to an IgG1-Hinge-Fc-Ko domain via a flexible linker (GGGGS)3 (ACE2 version). The
H374R-H378R mutations were introduced to abolish ACE2 enzymatic activity (ACE2-RR version). Additional mutations were introduced to increase
binding to the S-protein as indicated in (A, B). (B) Structure of ACE2 in complex with S-RBD (using PDB 6M0J) with residues substituted in ACE2-M
highlighted in gold. (C) Coomassie-stained gel of the three generated fusion proteins. NR, non-reduced; R, reduced. (D) Superposed analytic
chromatography profiles of the ACE2 proteins run on a Superdex S200 Increase 10/300GL column. The table indicates the corresponding retention
times. (E) Enzymatic activity of the ACE2 fusion proteins (4.5 nM) as measured by cleavage of a fluorescent peptide substrate. (F) Binding of the
fusion proteins and REGN 10933 to B.1 trimeric S-protein determined by ELISA. Results represent the standard deviation (SD) of n=3. EC50 as
calculated by the GraphPad software. (G) Binding of the fusion proteins and REGN 10933 to Caco-2 cells infected with the recombinant infectious
clone SARS-CoV-2 that expresses the mNeonGreen as a reporter gene. Binding was assessed by flow cytometry.
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infected with either isolate. Unexpectedly, we observed a 4-fold

lower MFI for binding to cells infected with Omicron vs. parental

virus. This observation could be explained by the reduced

replication capacity recently described for Omicron variant (32–

34). The reduced replication seems to be due to the inefficient use of

the cellular protease TMPRSS2, which promotes cell entry through

plasma membrane fusion (33). We speculate that reduced

replication in Caco-2 cells may result in a decreased expression of

S-proteins on the cell surface.
Frontiers in Immunology 06
To investigate the efficacy of ACE2-M in preventing viral

infection, we performed a neutralization assay in Caco-2 cells

using SARS-CoV-2 natural isolates from the parental B.1 as well

as Beta, and Omicron strains. ACE2-M neutralized all SARS-CoV-2

infected cells at picomolar concentrations (Figure 2B and

Supplementary Figure 5). ACE2-M activity was greater against

Omicron than against the Beta variant or the parental B.1. In

contrast, the activity of REGN 10933 against the Beta and Omicron

variants was reduced and undetectable, respectively. Altogether, our
B

A

FIGURE 2

Competitive binding of fusion proteins and REGN 10933 to ACE2 and their capacity to neutralize parental and SARS-CoV-2 VOCs. (A) Competitive
ELISA was performed by immobilizing the indicated full length S-proteins. The results depicted show the binding of 150 nM of His-tagged ACE2
wild-type protein, that was competed with the indicated concentrations of the ACE2 fusion molecules or REGN 10933 antibody. The error bars
represent the SD of two independent experiments with technical replicates. The IC50 values summarized in the table were calculated using the
GraphPad software. ND: Not detected. (B) Neutralization capacity was determined as described in material and methods. Briefly, Caco-2 cells were
infected with the indicated clinical isolates of SARS-CoV-2. Infection rates, calculated as the number of infected cells (Alexa594+) over the total
number of cells (DAPI+), were normalized to virus-only infection control. Mean and SEM values are calculated from three independent experiments
with technical duplicates. Neutralization assay corresponding IC50 values were calculated using GraphPad software. ND, Not detectable.
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results demonstrate that binding of ACE2-M to S-variants (vs.

parental) is preserved or enhanced (in case of Omicron), while it is

weakened or lost in the case of REGN 10933. Thus, these results

confirm our “founding hypothesis” for the construction of ACE2

fusion proteins, namely that viral variants will mutate “away” from

recognition by antibodies but “towards” recognition by ACE2

fusion proteins and hence to neutralization by such proteins.
3.3 SARS-CoV-2 VOCs are able to
evade vaccine-elicited antibodies but
not ACE2-M

To evaluate the binding efficiency of antibodies generated by

active immunization to parental, Beta, Delta, and Omicron trimeric

S-proteins, sera from 8 healthy fully vaccinated donors were used

and evaluated in a competitive ELISA similar to that described

above in Figure 2A. Similar to REGN 10933, antibodies present in

the post-vaccination sera showed a reduction in binding to Beta,

Delta, and, to a greater extent, to Omicron S-proteins (Figure 3A).

These results suggest that antibodies generated after active

immunization against the parental S-protein are less effective

against new variants in accordance with recent reports (35–40).

Next, we defined the required amount of neutralizing antibodies

and ACE2-M protein, to achieve a complete inhibition of binding to

S-proteins. To this end, SARS-CoV-2 antibody concentrations

present in the sera of vaccinated donors were quantified, adjusted,

and compared in a competitive ELISA to the ACE2-M protein. Our

results, depicted in Figure 3B, show that ACE2-M, at a
Frontiers in Immunology 07
concentration of 1 µg/ml, achieved almost complete binding

inhibition of ACE2 wild type to all S-variants, however, only a

partial binding inhibition could be obtained with antibodies in the

various sera. Of note, a serum concentration of 1 µg/ml is easily

reached during treatment of antiviral disease with suitable

monoclonal antibodies (41, 42).

We have demonstrated that ACE2 fusion proteins are not

subject to immune escape exerted by variants of the S-protein in

line with recent publications (43–46). In fact, variants with

increased affinity such as Omicron variants (BA.1, BA.5 and

BQ1.1), are neutralized more effectively than the parental B.1.

Recently, alternative receptors have been reported to interact with

the SARS-CoV-2 virus (47–51). In cells with low ACE2 expression,

it is thought that SARS-CoV-2 can enter the cells via several

alternative receptors, but the entry mechanism remains to be

defined. Although there is no direct evidence that SARS-CoV-2

escapes ACE2 treatment, the fact that the highly transmissible

variant Omicron BA.1 has evolved to be less dependent on

TMPRSS2, raises the possibility that alternative SARS-CoV-2

mutations may also contribute to viral evolution and may cause

ACE2 immune escape.

To our knowledge, ACE2-M is the first engineered ACE2

fusion molecule combining modifications for Fc-attenuation,

enzymatic depletion, and ACE2 affinity enhancement. Although

animal studies are required to conclusively evaluate the

importance of enzymatic depletion and Fc-attenuation, this

molecule provides an important additional option for treatment

of COVID-19 and other coronaviruses that use the ACE2 protein

as entry receptor.
B

A

FIGURE 3

Competitive binding of antibodies in the sera of vaccinated donors and ACE2-M to various spike proteins. (A) Similar competition ELISA assay to the
one described in Figure 1A was performed with sera from 8 healthy vaccinated individuals. Each serum sample was diluted in a range of 1/25 to 1/
25600 and tested against His-tagged ACE2 for binding to SARS-CoV-2 B.1, Beta, Delta, and Omicron – BA.1 S-protein variants. (B) SARS-CoV-2
antibodies were quantified in donor sera using the Euroimmun ELISA. Equal amounts of antibody or ACE2-M were diluted in SARS-CoV-2 negative
serum and tested in a competition ELISA for their ability to compete with wild-type ACE2-His for S-protein binding. The table summarizes the
percentage binding achieved by a protein concentration of 1µg/ml.
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