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Human papillomavirus in the
setting of immunodeficiency:
Pathogenesis and the emergence
of next-generation therapies to
reduce the high associated
cancer risk

Rehana V. Hewavisenti1†, Joshua Arena1,2†,
Chantelle L. Ahlenstiel1,2‡ and Sarah C. Sasson1*‡

1Immunovirology and Pathogenesis Program, The Kirby Institute, The University of New South Wales,
Sydney, NSW, Australia, 2UNSW RNA Institute, The University of New South Wales, Sydney,
NSW, Australia
Human papillomavirus (HPV), a common sexually transmitted virus infecting mucosal

or cutaneous stratified epithelia, is implicated in the rising of associated cancers

worldwide. While HPV infection can be cleared by an adequate immune response,

immunocompromised individuals can develop persistent, treatment-refractory, and

progressive disease. Primary immunodeficiencies (PIDs) associated with HPV-related

disease include inborn errors of GATA, EVER1/2, and CXCR4 mutations, resulting in

defective cellular function. People living with secondary immunodeficiency (e.g. solid-

organ transplants recipients of immunosuppression) and acquired immunodeficiency

(e.g. concurrent human immunodeficiency virus (HIV) infection) are also at significant

risk of HPV-related disease. Immunocompromised people are highly susceptible to

the development of cutaneous and mucosal warts, and cervical, anogenital and

oropharyngeal carcinomas. The specific mechanisms underlying high-risk HPV-

driven cancer development in immunocompromised hosts are not well understood.

Current treatments for HPV-related cancers include surgery with adjuvant

chemotherapy and/or radiotherapy, with clinical trials underway to investigate the

use of anti-PD-1 therapy. In the setting of HIV co-infection, persistent high-grade anal

intraepithelial neoplasia can occur despite suppressive antiretroviral therapy, resulting

in an ongoing risk for transformation to overt malignancy. Although therapeutic

vaccines against HPV are under development, the efficacy of these in the setting of

PID, secondary- or acquired- immunodeficiencies remains unclear. RNA-based

therapeutic targeting of the HPV genome or mRNA transcript has become a

promising next-generation therapeutic avenue. In this review, we summarise the

current understanding of HPV pathogenesis, immune evasion, and malignant

transformation, with a focus on key PIDs, secondary immunodeficiencies, and HIV

infection. Current management and vaccine regimes are outlined in relation to HPV-

driven cancer, and specifically, the need for more effective therapeutic strategies for

immunocompromised hosts. The recent advances in RNA-based gene targeting
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including CRISPR and short interfering RNA (siRNA), and the potential application to

HPV infection are of great interest. An increased understanding of both the

dysregulated immune responses in immunocompromised hosts and of viral

persistence is essential for the design of next-generation therapies to eliminate HPV

persistence and cancer development in the most at-risk populations.
KEYWORDS

human papillomavirus (HPV), human immunodeficiency virus (HIV), RNA interference,
squamous cell carcinoma, transplant, primary immunodefciencies, cancer, nanoparticles
1 Introduction

Approximately 15-20% of global cancers are associated with

oncogenic viral infections (1, 2). These viruses adopt numerous

mechanisms by which they evade immune responses and establish

persistent infections resulting in malignant transformation (3). A

common trait among oncogenic viruses is that only a small

proportion of chronically-infected cells develop cancer (4). Viruses

such as Human Papillomavirus (HPV), Epstein-Barr Virus (EBV),

Hepatitis B virus (HBV), and Hepatitis C virus (HCV) are known to

be implicated in the pathogenesis of human cancer (5). These viruses

act as obligate intracellular parasites, where the microbe encodes

proteins that affect cell development, apoptosis, and growth cycle. The

virus ‘reprograms’ host cellular signaling, disrupting major

checkpoints regulating proliferation, differentiation and cell death,

and genomic integrity (3). Immunosurveillance, important in

identifying and removing aberrant cells from the proliferative pool,

is also negatively impacted (3). Additionally, cancer progression as a

result of chronic viral infection is dependent on host factors,

including local and systemic immunity, somatic mutations,

immunosuppression, genetic predisposition, and environmental

factors, such as carcinogen exposure.

HPV is a double-stranded DNA virus associated with cancers of

the squamous epithelia of the cervix, oropharynx, and anogenital

regions. There are currently ~200 identified HPV types, with many

capable of causing a range of mucosal or cutaneous epithelial

hyperplastic lesions (6). These types are divided into low-risk HPV

(LR-HPV) and high-risk HPV (HR-HPV) groups depending on their

likelihood of malignant progression (7, 8). Immunosuppressed

individuals are at a heightened risk of developing HPV-associated

lesions and cancers, making HPV a useful model for understanding

viral-host interactions leading to epithelial-derived tumors. The most

well-understood HPV-induced cancer is cervical cancer, with 99%

being related to HR-HPV types (3). However, HPV-associated cancer

affects many other mucosal sites, with 64–91% of vaginal, 40–50% of

vulvar, 88–94% of anal, and 40–50% of penile cancers being HPV-

associated (9).

Immunosurveillance plays a crucial role in initiating antigen-

dependent responses in eliminating HPV infection and virally

transformed cells. In immunocompetent hosts, 90% of anogenital

HPV infections are cleared (10, 11). Innate immune cells such as

natural killer (NK) cells, dendritic cells (DCs) and Langerhans cells
02
(LCs) play an important role during the initial onset of infection,

while HPV-specific CD8+ T cells target early viral proteins in infected

cells (9, 12, 13). Conversely, HPV-associated malignancies have been

commonly associated with at-risk population groups, including organ

transplant recipients, systemic immunosuppressed patients, and

people living with HIV (PLWH). Although HPV can evade

immunity for long periods of time in immunocompetent hosts,

infection is generally resolved. However, HPV infection can be

persistent in immunocompromised individuals, with extensive HPV

disease manifesting as non-regressive high-grade intraepithelial

lesions (HSILs), leaving these individuals susceptible to HPV-

associated malignancy formation (14–18).

Current therapeutic regimens for the treatment of HPV-associated

cancers can include surgery, chemotherapy and/or radiotherapy. HPV-

associated cancers are treatedmedically the same as HPV cancers, despite

different biological origins. This approach is often insufficient and can be

associated with poor survival rates (19). Globally, the 5-year survival rate

of cervical carcinomas is 64%, penile squamous cell carcinomas (SCCs) is

47%, anal SCCs is 70%, rectal SCCs is 56%, and oropharyngeal SCC is

51% (20). In immunocompromised individuals, these survival statistics

are lower. HIV-positive (HIV+) women with cervical cancer have a 3-

year survival of 35% (21) whilst those with anal squamous cell carcinoma

(ASCC) have a 5-year survival rate of 47% (22). Effective treatments for

immunocompromised individuals are challenging due to the limited

understanding of the varying immune responses to disease, which are

highly dependent on host factors. A greater understanding of these

underlying immune mechanisms in at-risk individuals is crucial for the

future design of next-generation therapeutics and technologies targeting

HPV. The prevention of persistent HPV infection and cancerous

progression in at-risk groups is a priority globally. Here, we discuss the

current understanding of HPV pathogenesis, key challenges in current

clinical management, and the emergence of next-generation RNA

therapeutics, focusing on at-risk populations (Figure 1).
2 HPV epidemiology and risk factors

2.1 HPV epidemiology

HPV is endemic globally, representing the most common sexually

transmitted disease with 84% of sexually active women and 91% of

sexually active men estimated to acquire the infection during their
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lifetime (23). HPV prevalence differs by age, with elevated rates of

incidence amongst the 18-21 and 55–65 year-old cohorts. HPV is

present in ~11.4% of the worldwide population, with the highest

prevalence in Sub-Saharan Africa (24%), Eastern Europe (21%), and

Latin America (16%) (24). In the period 1990-2012, the global

incidence of HPV-associated malignancies reduced by 0.3%, but

varied between geographic regions, with decreased incidence linked

to strong HPV vaccination regiments in developed nations and

increased incidence in countries with weaker healthcare

infrastructure (25, 26) (Figure 2). Consequently, HPV infection is

still implicated in the pathology of approximately 5% of all

cancers (27).
2.2 Risk factors associated with HPV
progression to cancerous lesions

HPV infection alone is not sufficient for the formation of HPV-

associated cancers (28). Studies have aimed to identify the co-factors

that predict and are associated with HPV infection progression to

cancer, with major findings summarised below.

2.2.1 HPV type
HPV type is the primary factor associated with infectious

progression to cancerous lesions. HR-HPV is a group 1 carcinogen

and includes types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 66

(29). HR-HPVs play a crucial role in the etiology and pathophysiology

of malignancies of the cervix, anus, oropharynx, vulva, and penis (9,

30–34). LR-HPV genotypes include 6, 11, 40, 42, 43, 44, 54, 61, 70, 72,
Frontiers in Immunology 03
and 81, and can cause benign or low-grade cervical tissue changes and

genital warts that seldom progress to cancerous lesions (35, 36). Of all

the subtypes, only LR-HPVs 6 and 11 are classed as group 2B

carcinogens (37).

2.2.2 Tobacco smoking
Tobacco smoke is classed as a group A carcinogen by the World

Health Organisation, containing >4500 chemical compounds, with at

least 70 oncogenic to humans (38). Inhalation and use of tobacco-

containing products have been significantly associated with the

progression of HR-HPV infection to pre-cancerous and squamous

cell carcinomas of the head and neck, cervix, anus, and penis (39–42).

The precise mechanism by which tobacco smoke exacerbates the

pathogenicity of HPV remains unknown, however recent studies

suggest that tobacco comprises chemicals that enhance viral

oncogenic expression in HPV-infected epithelium (43).

2.2.3 High parity
High parity has been suspected of playing a role in the

pathophysiology of HPV-associated carcinogenesis. A 2002

International Agency for Research on Cancer (IARC) multicentric

case-control study found a direct positive association between the

number of full-term pregnancies and the onset of HPV-associated

squamous cell carcinoma, but not adenocarcinoma or adenosquamous

carcinoma (44). Similarly, a 2022 meta-analysis of 6685 parous women

found a 2.65 higher odds ratio for the development of cancerous lesions

existed compared to their null parity counterparts (45). It is

hypothesized that increased levels of progesterone and estrogen

during the final weeks of pregnancy alter tight junctions between
FIGURE 1

HPV pathogenesis and treatment in at-risk individuals. (A) HPV pathogenesis, persistent infection, and progression to cancer. Primary infection occurs
when HPV gains access to basal cells through microlesions or damage to the skin. Upon viral replication, HPV can evade the immune response resulting
in persistent disease. E6 and E7 oncogenes disrupt the cell cycle, which can result in persistent disease, cellular transformation and HPV-driven
carcinoma. (B) Describes the three main immunodeficiencies 1) Primary immunodeficiencies relating to inborn errors of immunity, 2) Secondary
immunodeficiencies relating to those under immunosuppressive drugs 3) Acquired immunodeficiencies relating to people living with HIV/AIDS. The
major HPV pathologies caused by high-risk HPV and low-risk HPV strains are identified on the extreme right-hand side panel (HPV-driven disease) (C)
Identifies the main treatments currently available and the next-generation therapeutics currently under investigation. Created with BioRender.com.
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squamous and columnar epithelium, increasing the oncogenic activity

of HPV (45).

2.2.4 Oral hormonal contraception
The increased uptake of oral hormonal contraceptive use amongst

women has renewed interest in the potential impact of associated

HPV infection progression. There is some evidence suggesting an

association between the long-term use of oral hormonal

contraception with an increased risk in the development of HPV-

associated cervical and anogenital carcinomas (46). However, a 2022

systematic review of 7 prospective studies did not find supporting

evidence to suggest a significant association between oral

contraceptive use and an increased risk of HPV-associated

malignancies (47). Further investigation into the relationship

between oral hormonal contraceptives and HPV disease progression

is required.

2.2.5 Diet
Dietary intake has been hypothesized to impact HPV clearance

and resolution, though there remains no scientific consensus on the

individual dietary components associated with resolution. Conflicting

evidence surrounding the intake of vitamin A (48–50), B–Carotene

(51–53) and folate (54–57) does not enable a determination as to their

effect on the clinical resolution of HPV or cancerous lesion formation.

Consequently, it remains uncertain as to the impact of diet in cases of

HPV-associated cancers.
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2.2.6 Immunodeficiencies
Immunodeficiency is one of the highest risk factors associated

with severe clinical manifestations of HPV-associated cancers.

Immunodeficiencies are categorized into three main groups; 1)

Primary immunodeficiencies (PIDs), 2) Secondary immunodeficiencies,

and 3) Acquired immunodeficiency e.g. HIV infection. PIDs are inborn

errors of immunity (58) and correlate with a higher prevalence of HPV-

associated conditions when compared to healthy controls (59).

Secondary immunodeficiencies include states of malnutrition and

immunosuppression. Immunosuppression therapies include regimens

prescribed to organ transplant recipients to reduce the risk of graft

rejection. Over 30 tumor types have been evident at an increased

frequency in individuals following transplantation, with the most

common being SCCs (60). Acquired immunodeficiencies,

predominately HIV infection, remain a significant co-factor in the

pathophysiology of HPV-associated malignancies.
3 HPV biology and pathogenesis

3.1 HPV genome

HPVs are small, ~8 kb double-stranded DNA viruses that contain

eight open reading frames (ORFs): E1, E2, E4, E5, E6, E7, L1 and L2

(61). E1, E2, E4 and E6 maintain viral function, whilst L1 and L2

encode structural capsid proteins required for viral replication (62).
A

B

FIGURE 2

Incidence of HPV associated malignancies in 2020. (A) Age standardised rate per 100,000 for men with cancer of the anus, oropharyngeal, larynx, penis,
lips, and oral cavity. (B) Age standardised rate per 100,000 for females with cancer of the anus, cervix uteri, larynx, oropharynx, lip, and oral cavity.
International Agency for Research on Cancer, World Health Organisation 2020.
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Two major promoters regulate transcription within the HPV genome:

the early promoter located in the long control region, which regulates

the expression of E6 and E7; and the late promoter located within the

E7 gene, which regulates the expression of E1, E2, E4, E5, L1 and

L2 (63).

HPVs are classed phylogenetically into five distinct genealogical

classes with a-papillomaviruses uniquely constituting the HR-HPV

and LR-HPV subtypes, as described above (64). HPV subtypes and

variants are declared based on the genetic distance between viral

genomes (65). A new HPV subtype is declared when the L1 ORF

differs from any other known HPV type by ≥10%. Within types,

variants exhibit between 0.5-1% genome differentiation (66). As of

2022, over 200 different HPV subtypes have been identified (67).

Variation amongst HR-HPV subtypes poses a significant risk to the

development of a singular therapeutic to target global prevalence (65).
3.2 HPV pathogenesis and immune evasion

HPV oncogenes can contribute to viral replication and cellular

aberrations. E6 and E7 are the two primary oncogenes that promote

HPV-associated carcinogenesis. HPV-associated cancers are more

likely to occur in combination with the aforementioned risk factors

including smoking, immunocompromise, or genomic alterations of

host cell DNA (3). The HR-HPV types most associated with

cancerous formation (in combination with host factors) are HPV16

and HPV18 (35, 68).

Factors that influence HPV infection and immune evasion

include host environmental, genetic, and immune elements. Minor

damage to the epithelium allows HPV infection of the basal

epithelium. HPV “reprograms” cellular machinery to replicate and

reproduce. The virus is then released from terminally differentiated

cells that slough off from the epithelial surface (69, 70). Although most

immunocompetent individuals can clear the infection within 12

months, anti-HPV antibodies are only detected 6-12 months after

infection. During this delayed adaptive response, HPV can adopt

intrinsic mechanisms to evade the host immune surveillance (11, 71).

This can be particularly problematic for immunocompromised hosts

with limited immunosurveillance.

In persistent infection, viral oncogenic expression can result in

alternations to the host genome, affecting the cell cycle, and yielding a

small number of aberrant cells that can avoid immune controls.

Oncogenic effects on the cell cycle result in intraepithelial neoplasia,

which has been extensively studied in cervical cancer (72) and is also

evident in HPV-driven anogenital disease (73). Following HPV

epithelial infection and integration into the host genome,

oncoproteins E6 and E7 inactivate tumor protein p53 and

retinoblastoma suppressor protein (pRb) (74), resulting in cellular

transformation. The E6 protein is associated with p53 degradation,

resulting in uncontrolled cellular proliferation and tumor growth

(75). The E7 protein degrades pRb which subsequently disrupts pRb

interaction with the E2F family of transcription factors. This results in

increased enzyme gene replication and cell division (76, 77).

Therefore, the dysfunction of tumor suppressors p53 and pRb

generates hallmark features of malignancy, including uncontrolled

proliferation, impaired apoptosis, and chromosomal instability (69).

E7 can also act as a mutator in the mitotic process resulting in mitotic
Frontiers in Immunology 05
abnormalities, such as unaligned or lagging chromosomes, and breaks

in chromosomal structure, resulting in further destabilization of the

host cell genome (78). Furthermore, HPV prevalence is not only due

to persistent infection, HPV infection of one strain increases the risk

of acquiring a new HPV infection. It has been reported that 20% of

men infected with one type of HPV strain, exhibited a higher number

of new HPV strains on follow-up. Therefore, an individual with more

than one HPV strain has an increased risk of developing HPV-

associated disease (79).
3.3 Immune responses in HPV clearance

During HPV infection, innate immune cells act as the first line of

defense, with the recruitment of pro-inflammatory and cytotoxic

immune cells from the adaptive immune system used to eliminate

viral particles. This results in the activation of effector cells, interferon

secretion, and the release of pro-inflammatory cytokines and

chemokines. Antigen-presenting cells (APCs), such as LCs and

DCs, identify viral particles via their toll-like receptors (TLRs).

HPV gene expression is confined to the keratinocytes and

resolution of infection requires antigen cross-presentation by APCs

and cross-priming of naïve CD8+ T cells for subsequent infiltration of

effector T cell responses (80). This expansion of HPV-specific T cells

orchestrates the adaptive immune response. Additionally, B cells are

important for producing neutralizing antibodies against HPV major

capsid protein L1 and aid APCs to encourage cytotoxic CD8+ T

cell proliferation.

T cells play crucial roles in preventing chronic infection. During

initial infection, CD8+, T cells target viral proteins E6 and E7. In

subsequent infections, the immune memory of early antigen-specific

T cells eliminates virally infected cells to prevent disease

establishment. This has been demonstrated in cervical cancer,

where a lack of HPV-oncogenic specific CD8+ T cells has been

associated with high-grade cervical intraepithelial neoplasia (CIN)

(81). Women with active HPV16 infection demonstrated a robust

cytotoxic CD8+ T cells response and rapid HPV clearance. Both CD4+

and CD8+ T cell responses were associated with HPV-E6-related

lesion regression, while E7 regression has been attributed solely to a

CD4+ T cell response (82–85). Therefore, E6 and E7 elicit different

immune responses and recruit different T cell subsets, which could be

highly dependent on HPV type. Although HPV16 and HPV18 are the

predominant HPV types associated with high-grade neoplasia, E6 and

E7 expression in other HR-HPV strains may elicit different immune

responses, which are as equally severe in immunocompromised

people and requires further investigation.
3.4 HPV progression to invasive cancer

A hallmark of HPV infection is its effectiveness in evading

immune recognition. Viral replication is exclusively within the

intraepithelial site with no induced cytolysis, viremia, cell death, or

inflammation associated with replication and release (70, 86).

Although effective viral clearance and HPV resolution are achieved

by an effective cell-mediated immune response, in some cases, the

HPV genome can lay dormant in cells evading immunosurveillance.
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Animal models have demonstrated that during lesion regression,

when no active infection is evident, infected cells containing viral

DNA persist in a latent state without viral gene expression. Although

the virus is inactive, host factors including changes in hormone levels

or immune suppression can cause HPV reactivation (70). HPV16 has

a longer duration of persistence compared with other HPV types,

which may contribute to its strong association with neoplastic

development (87, 88). Failure to develop effective cell-mediated

immune responses to control the infection results in high-grade

intraepithelial neoplasia. Accumulation of genetic abnormalities can

cause progression to invasive carcinoma. It has been shown that some

cervical cancer patients lack antigen-specific T-cell responses, which

may be due to an inability to recognize viral antigens. However, a

clear link between HLA type and factors of host susceptibility to

developing carcinoma requires further elucidation (12, 89, 90).

HPV can downregulate immune signaling pathways within

keratinocytes, altering the innate and adaptive immune responses.

This ceases the production of pro-inflammatory cytokines, such as

type 1 interferons, that drive the inflammatory response and are

important signals for the activation and migration of APCs.

Transcriptomic analysis has shown oncogenic downregulation of

genes with antiviral effects, such as IFIT1 and MX1, as well as those

crucial for apoptosis (TRAIL and XAF1), IFN-g signaling (signal

transducer and activator of transcription 1; STAT1) and pathogen

recognition receptors (TLR3, RIG-I, MDA5) (91). HPV16 E6

expression disrupts Tyrosine kinase 2 (TYK2), an intracellular

enzyme important for mediating immune signaling and

inflammatory pathways essential for maintaining normal immune

responses. This affects the Janus kinase (JAK)/STAT signaling

pathway, which has been associated with cancer progression and

metastatic development and is implicated in the development of

cervical cancer. The STAT pathway is associated with essential

cellular mechanisms including cell proliferation, invasion, survival,

inflammation, and immunity (92). Induction of STAT3 in

transformed keratinocytes drives the production of the cytokine IL-

6 that, in a paracrine manner, causes STAT3-associated induction of

CCL2 in monocytes. This potent monocyte-attracting chemokine

skews the inflammatory microenvironment, resulting in a

regulatory milieu by attracting anti-inflammatory macrophages and

localized regulatory T cells (Tregs) (93, 94). High CCL2 expression

has been associated with poor cervical cancer outcomes, while IL-6

production downregulates CCR7 expression on activated APCs. This

inhibits migration-promoting chemokines essential for homing to

regional lymph nodes (95).

E7 interferes with IFN-regulatory factor 1 induction, whilst both

E6 and E7 have been shown to reduce E-cadherin surface levels. This

inhibits the effective migration and abundance of LCs within the

active lesion vicinity (96–99). Furthermore, CCL20 is an important

chemoattractant produced by keratinocytes to recruit LCs via the

CCR6 receptor. LCs are one of the most important tissue-resident

APCs, initiating T cell priming during HPV infection. E6 and E7 have

been shown to suppress the NF-kB pathway, implicated in chronic

inflammation in cancer, specifically affecting transcription-factor

dependent CCL20 induction, promoting APC recruitment into

active lesion sites (100). This modulation of signaling pathways by

HPV disrupts the cell cycle, resulting in an immunosuppressive and

tumor-promoting environment. The developing HPV-driven tumor
Frontiers in Immunology 06
cells can upregulate immune checkpoint molecules, such as PD-1/

PDL1, and CTLA-4, which negatively regulate cytotoxic T cells,

blocking anti-tumour specific responses. Overall, effective viral

evasion strategies coupled with the disruption of crucial

immunosurveillance pathways enable HPV to “hide” within host

cells and skew the surrounding microenvironment towards

immune tolerance.
4 HPV infection in primary, secondary
and acquired immunodeficiencies

In immunocompromised individuals, persistent and extensive

manifestations of HPV infection can result from an inadequate

immune response. This includes the development of non-regressive

lesions and/or progressive papillomas, leaving individuals in a pre-

cancerous state and at an elevated risk of developing HPV-driven

malignancies (101, 102).
4.1 Primary immunodeficiencies

For individuals with PIDs, HPV infection can clinically manifest

as benign warts, skin squamous cell carcinomas (SCC), or HPV-

driven malignancies (103). PIDs with HPV clinical implications

include epidermodysplasia verruciformis (EV), WHIM (warts,

hypogammaglobulinemia, infections and myelokathexis) syndrome,

DOCK8 mutations, GATA binding protein 2 (GATA2) mutations,

and severe combined immunodeficiency (SCID) (103, 104). In

immunocompetent individuals, B-HPVs, such as HPV5, HPV8, and

HPV9, infect cutaneous sites but present as asymptomatic infections

(105). In the setting of specific PIDs, clinical symptoms can be

characterized by body surface involvement of cutaneous warts,

including common warts (verrucae vulgaris), plantar warts

(verrucae plantaris), and flat warts (verrucae plana) (103). Key PIDs

associated with a high risk of progressive HPV disease are

characterized by defects in NK cell and CD8+ T cell counts as well

as CD4+ T cell lymphopenia. Although reported in detail (103, 104),

key PIDs are summarised below.
4.1.1 Epidemodysplasia verruciformis
EV is characterized by mutations in the EVER1 and EVER2 genes.

EVER has been implicated as a natural HPV barrier within

keratinocytes and immune cells. EVER1/2 are zinc-transporting

proteins expressed on immune cells including T cells, B cells, NK

cells, and endothelial and myeloid cells (106). EVER1/2 encodes

highly conserved membrane proteins in the zinc-transport complex,

regulating zinc homeostasis and therefore limiting zinc availability to

HPV-infected keratinocytes. Maintaining optimal zinc levels for

cellular functions reduces viral replication and ensures an adequate

anti-viral response (107). The specific roles of EVER1 and EVER2 in

HPV-related disease focus on their interaction with zinc transporter 1

and its ability to drive activator protein 1 (AP-1) transcription

activity. EVER dysfunction increases zinc concentration, activating

AP-1, an important transcription factor for the HPV life cycle, aiding

replication (107, 108). Zinc imbalance facilitates a-papillomavirus
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and B-papillomavirus pathogenesis, enhancing the expression of E6

and E7 (107). In EV, even LR-HPV can cause persistent disease

leaving these individuals at high risk of HPV-driven SSC (109).

Tumour necrosis factor alpha (TNF-a) overproduction in EV

individuals has been implicated in SCC development. TNF-a is a

central cytokine important in host defense again viruses by triggering

apoptosis with EVER proteins. EVER2 is a particularly important

sensitizer to TNF-a-induced apoptosis. Contrary, the TNF-a
signaling pathway can be harmful as it can switch from a pro-

apoptotic to a pro-survival environment, thus promoting tumor

progression, and metastasis (110). EVER2 is integral in preventing

the pro-survival TNF-a signaling pathway by binding to TNFR-

associated death domain protein (TRADD), preventing downstream

pro-survival pathways and promoting TNF-a-induced apoptosis

(111). Host vulnerability to persistent disease is hypothesized to be

due to defects in local TNF-a signaling (111), zinc transport

dysfunction (108), and increased expression of transcription factors

that enable HPV replication in the absence of functional EVER

protein (107).

EVER is also implicated in keratinocyte participation in local

inflammatory reactions within the skin. This is through local skin

secretion and responses to growth factors, various cytokines such as

TNF-a, IL-6, IL-19, and chemokines, such as TFG-b and IL-8 (107).

T cells, macrophages, and keratinocytes secrete pro-inflammatory IL-

6, enhancing inflammation in response to pathogens (112, 113) while

IL-8 aids in the migration of circulating neutrophils into tissues (114).

In EVER2 -/- keratinocytes, it has been reported that production of

IL-6 was reduced while IL-8 levels increased compared to wildtype.

The changes in signaling between keratinocytes and immune cells

could affect the ability to clear persistent lesions (115), however

further investigation into these mechanisms is required.

4.1.2 CXCR4 deficiency-WHIM syndrome
Warts, hypogammaglobulinemia, infections, myelokathexis

(apoptosis of mature myeloid cells in the bone marrow) syndrome

(WHIM) is associated with CXC chemokine receptor 4 (CXCR4)

deficiency, with HPV-related disease being a major clinical feature.

Manifestations include cutaneous warts typically on the hands, feet,

and trunk, along with neutropenia, and in some cases lymphopenia

(103). Papillomas can also develop in the genitalia and progress to

neoplastic lesions and carcinoma (116, 117).

CXCR4 is a transmembrane receptor on leukocytes, endothelial

cells, and stem cells, and is involved in important immune signaling

pathways essential for HPV control (118). JAK2 and JAK3 interaction

with CXCR4 activates the JAK/STAT pathway, which is important for

immune regulation (119, 120). The interaction between CXCR4 and

its ligand, stromal-derived factor-1 (SDF-1), is involved in multiple

downstream signaling pathways important for chemotaxis, adhesion,

and accumulation of immune cells to sites of inflammation. When

CXCR4 is defective, a lack of SDF-1 signals disrupts leukocyte

tracking to the affected site, allowing HPV to replicate and establish

disease (121, 122). LCs and keratinocytes also express SDF-1 and

CXCR4. CXCR4 gain of function mutation has been associated with

an increase in cell immortalization, with increases in TNF-a
expression (123, 124), driving HPV-driven carcinogenesis (103, 125).
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4.1.3 Autosomal recessive hyper-IgE syndrome
(DOCK8 mutation)

Dedicator of cytokines 8 (DOCK8) mutations cause an autosomal

recessive combined immunodeficiency resulting in a range of hyper-

IgE syndromes (126). People with DOCK8 deficiency are susceptible

to cutaneous viral infections, including herpes simplex virus, HPV,

molluscum contagiosum virus, and varicella-zoster virus. Clinical

disease presents as flat and verrucous warts, which can be extensive,

disfiguring, and often treatment-resistant (127). DOCK8 has been

implicated in aiding leukocyte migration, with deficiency resulting in

immunoregulation failure and subsequent HPV dissemination (128).

Over time, lymphopenia progresses with age, affecting CD8+ and

CD4+ T cells. In mice, DOCK8 deficiency impaired the suppression of

thymic Tregs (129, 130). In vitro, CD8+ T cells from patients with

DOCK8 deficiency had reduced proliferation to CD3/CD28

stimulation. Although rare, IFN-g and TNF-a production can also

be impaired (126). Multivariate cox regression analysis demonstrated

DOCK8 was an independent positive factor in the survival of HPV-

positive (HPV+) HNSCC, and positively correlated with immune cell

infiltration levels (131). The expanded skin virome has been studied

in DOCK8 immunodeficiency and it was found that even in the

absence of clinical HPV warts, there was a high number of abundant

reads (52% mean). This contrasted with other viruses such as

molluscum contagiosum virus (MCV) here reads were increasingly

low (0.4%) when clinical manifestations were absent. This biological

distinction between HPV and MCV suggests that DOCK8-deficient

individuals may be more susceptive to HPV carriage, and this may

explain their susceptibility to the development of squamous cell

cancers (132). The differences in the subclinical presence of HPV

versus MCV suggest biological distinctions between these eukaryotic

viruses, with patient skin demonstrating less susceptibility to MCV

than to HPV. However, further investigation to address whether there

is oncogenic potential HPV detected on the skin of DOCK8 deficient

individuals is required.

4.1.4 Severe combined immunodeficiency (IL2RG
or JAK3 deficiency)

Severe chronic HPV disease is associated with severe combined

immunodeficiency (SCID) caused by IL2RG (interleukin 2 receptor

subunit g) or JAK3 deficiency. IL2RG and JAK3 are important for

anti-viral immunity implicated in lymphocyte development,

proliferation, and survival (133). Although hemopoietic stem-cell

transplantation (HSCT) has been lifesaving for those with SCID,

evidence of severe HPV disease and partial immunodeficiency are still

evident up to 10 years post-HSCT. SCID solely associated with JAK3

deficiency is characterized by low NK cells, which can remain

depleted following HSCT. This may have significant effects on the

control of the earliest stages of HPV infection, where NK cell HPV-

targeted cytotoxicity predominates (134). Keratinocytes from patients

with IL2RG-deficient SCID have chemokine repertoire changes,

resulting in an impaired ability to recruit immune cells (135). IL-

2RG is a critical component of the IL-2 receptor and is shared among

the receptors for IL-2, IL-4, IL-7, IL-9, IL-12, and IL-15. IL-2RG

deficiency can impact HPV eradication and control, as it is shared

among a broad array of cytokine receptors crucial for optimum innate
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and adaptive immunity. For example, myeloid development is highly

reliant on IL-15, which in turn is dependent on IL2RG. IL-2RG

deficiency impairs DCs and monocyte function, disrupting adequate

signals to induce a pro-inflammatory immune response and recruit

CD8+ and CD4+ T cells (136, 137). Individuals with these deficiencies

are at a 50% risk of developing high-risk severe cutaneous warts post-

HSCT (104, 138, 139). This suggests that HSCT does not completely

revert immune defects, and a better understanding is required to tease

out underlying mechanisms that allow HPV clinical disease to

persist (140).

4.1.5 GATA2 mutations
GATA2 is a transcription factor important for hematopoiesis and

stem cell progenitor maintenance (141–143). GATA2 deficiency

results in the absence of major blood cell lineages, including B cells,

DCs, monocytes and NK cells (141, 144). HPV is implicated in >75%

of GATA2-deficient patients with 50% being at high risk of

developing persistent infection and recurrent warts (140),

subsequently progressing to malignant transformation. Although

HSCT can have positive effects on restoring immunity, the

progression of HPV prevalence and persistence post-HSCT is not

well investigated, and only reverses the effects of GATA2 deficiency in

approximately half of the patients (145). The clinical features of

GATA2 deficiency are highly dependent on peripheral cell numbers

with severe symptoms associated with more extreme cytopenia. T

cells are not as affected by GATA2 mutation compared to other

subsets, however, an inversion of the normal CD4:CD8 ratio, coupled

with a reduction in naïve cells, is reflective of an immune repertoire of

chronic viral infection.

4.1.6 Serine/threonine kinase 4 deficiency
STK4 homozygous mutations cause a deficiency associated with B

cell lymphopenia and CD4 lymphopenia, particularly affecting naïve T

cells, and signaling pathways important for T cell survival and death

(103, 104). NK cell and CD8+ T cell levels remain at normal levels.

STK4 deficiency results in lowering the transcription factor FOX01,

which plays a significant role in T cell homeostasis, with patients

showing progressive CD4+ T cell lymphopenia. This in turn affects

downstream signaling pathways, impairing homing of naïve T cells by

decreasing the IL-7 receptor, CCR7 and CD62L (103). In this condition,

T cells are more prone to apoptosis and Treg development and

maintenance are additionally affected (146). In immunocompetent

individuals, STK4 is a tumor suppressor protein. STK4 is significantly

decreased in HPV-associated cervical cancer via HPV E6 and E7

oncoproteins suppressing STK4 mRNA and increasing YAP-

dependent gene expression, which aids HPV replication and tumor

progression. Therefore, defects in STK4 result in individuals being at an

elevated risk of HPV-driven carcinogenesis (147).
4.2 Secondary and acquired
immunodeficiencies

4.2.1 Transplant recipients
Immunosuppressive therapy improves long-term graft and patient

survival in transplant recipients. However, immunosuppressive drug
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regimens increase the cumulative occurrence of persistent HPV

infection, including the development of pre-cancerous lesions and

treatment-refractory cutaneous and anogenital warts. The development

of HPV-associated warts in transplant patients has been linked to the

duration of immunosuppression, with 50-90% of patients four to five

years post-transplant developing warts (148). In HSCT, the development

of HPV-driven cervical, vaginal, and vulvar warts leaves women at an

increased risk of developing related cancer (149). A systematic review of

anogenital HPV-associated cancer in solid organ transplant recipients

found the highest increased standardized risk in cancers of the vulva and

vagina (22.8), penis (15.7) and anus (4.9). Transplant patients with

underlying HPV-associated infection and precancerous lesions were at

the highest risk of developing cancer post-transplant (150).

The predominant body of evidence regarding persistent HPV

infection transitioning to anogenital neoplasia and cancer is in renal

transplant patients. Renal transplant studies have demonstrated that

latent HPV reactivation occurring post-transplantation increased

HR-HPV active infection by 27% (151–153). Additionally,

prolonged CD4+ T cell lymphopenia has been reported in renal

transplant patients that can persist for up to 10 years post-

transplant, leaving individuals at an elevated risk of HPV disease

persistence and allograft rejection (154, 155). Renal transplant

recipients have a 65-100-fold increase in developing SCC compared

to immunocompetent individuals (156, 157). In women who have

undergone a renal transplant, a 5-fold increased risk of developing

genital warts was observed compared to the control population (158).

Within the first year of a renal transplant, the frequency of HR-HPV

infection increased from 24% to 36% over a period of 6 months. The

high HR-HPV viral load was positively associated with the

development of HPV CIN, a cancer precursor (159). A case-control

study reported that 20% of renal transplant patients were diagnosed

with anal intraepithelial neoplasia (AIN) compared to 1% of controls

(1). RT-PCR confirmed HPV16 prevalence in 47% of the transplant

group versus 12% in the control group. Despite no evidence of

anogenital disease in patients before transplant, AINs developed

post-transplant in the setting of immunosuppressive therapy (160).

AIN prevalence in ASCC is 20%, with established HPV infection

being prevalent in 47% of transplant patients (160). Natural history

studies of AIN in renal transplant recipients are predominately

reported in HIV+ men who have sex with men (MSM), where

more than 50% of lesions progressed from low to high-grade AIN

over a two-to-four-year period (161). This response may be particular

to renal transplant, with varied responses reported following other

forms of transplant (162). Similarly, in a study of 1023 women

following renal transplant in the Netherlands, there was a five-fold

increased risk for cervical cancer, followed by a 41-fold increased risk

in the vulvar and a 122-fold increased risk of anal cancer in the

transplanted compared to the general population. In 91.7% of lesions,

HR-HPV was detected with 54.5% being attributed to HPV16 (153).

For transplant recipients, viral oncogenicity is highly dependent

on the level of required immunosuppression. The nature of

immunosuppressive drugs is to block cytotoxic T cells to prevent

organ rejection, however, this decrease in immunosurveillance can

cause HPV reactivation and replication. In vitro and in vivo studies

have shown that corticosteroids, calcineurin inhibitors (e.g.

cyclosporine A) and antimetabolites (e.g. azathioprine) have a

direct pro-oncogenic effect (163–165). Calcineurin inhibitors have
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been reported to be more potent immunosuppressors compared to

other drugs such as antimetabolites, being associated with a higher

risk of developing HPV disease. One study reported that ~36% of

kidney transplant patients treated with cyclosporine, azathioprine,

and prednisone, developed papillomatous lesions with 25% of these

lesions attributed to HPV16 infection. Oral cavity lesions occurred in

14% of recipients treated with cyclosporine, which was not evident in

those on an immunosuppressive regime without cyclosporine (166).

In contrast, another study found a non-significant correlation

between HPV status and cyclosporine use (167). There is minimal

understanding of whether specific immunosuppressive drugs taken

alone or in combination increase the likelihood of HR-HPV

reactivation in transplant recipients. Improved knowledge around

combination immunosuppressive drug regimens and their link to

HPV reactivation and related diseases may lead to improved

treatment protocols that reduce high-risk groups developing

HPV disease.

4.2.2 HPV-driven malignancy in the setting
of HIV co-infection

PLWH have an acquired immunodeficiency that places them at

high risk of developing HPV-associated malignancies. Antiretroviral

therapy (ART) reduces the incidence of many AIDS-defining cancers,

including Kaposi’s sarcoma caused by herpesvirus and EBV-driven

non-Hodgkin’s lymphoma. However, any beneficial effects in

reducing the incidence of HPV-driven HSILs, persistent disease,

and cancer risk are not well understood. PLWH are at a higher risk

of developing many types of cancers compared to the general

population (14, 18, 60, 168–171). While HIV+ women have

significantly higher rates of cervical CIN when compared to

uninfected women (172–174), HIV+ MSM have an increased risk

of developing HPV-associated AINs (170, 175, 176). However, there

is a limited understanding of HPV type and distribution. In Kenya

and South Africa, HPV16/18 prevalence was not significantly

different between HIV+ and HIV-negative (HIV-) women with

cervical carcinoma (177). However, higher CD4+ T cell counts were

negatively correlated to infection with multiple HPV types (177).

CD4+ T cell counts of <200 cells/mL are strongly associated with HR-

HPV infections as well as genital wart development (178–181).

Therefore, even though the HPV distribution may not differ in the

presence of HIV, CD4+ T cell lymphopenia may facilitate HR-HPV

infection due to a lack of effective signaling to enable a robust

cytotoxic response. While the oncogenic potential of HR-HPV is

well-established, the impact of HIV co-infection on HPV and the

downstream susceptibility to malignant transformation is not well

understood (150).

The common underlying mechanisms of host susceptibility to HIV

and HPV co-infection are centered around the disruption of epithelial

integrity. It has been postulated that HIV and HPV co-infection occurs

locoregionally within an individual, but not within the same cells. HIV

infects CD4+ immune cells that can elicit disruptions to epithelial

integrity, increasing the ability of HPV to reactivate or infect the host

(182). Mucosal disruption is required for HIV virions to breach the

mucosal barrier in the anogenital tract to target cells for viral replication,

which can subsequently provide a pathway for HPV co-infection and

progression to disease establishment and malignancy. It is hypothesized

that mucosal epithelial cells upregulate inflammatory cytokines, such as
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TNF-a and TGF-b (183), and downregulate E-cadherin and tight

junction proteins, allowing permeability and access for HIV and HPV

to invade (184–186). Depending on the period between HIV

establishment and HPV infection, the immune system, specifically

CD4+ T cells, may already be affected and present at low numbers,

increasing host susceptibility to persistent HPV infection.

4.2.2.1 HIV infection can increase host susceptibility
to HPV invasion

While damage to epithelial integrity can result in susceptibility to

HIV and HPV co-infection, active HIV infection may also increase

susceptibility to HPV. A reduction in key innate molecules, including

B-defensin-2 and thrombospondin, has been proposed due to the

interaction between the two viruses,resulting in an increased risk of

HPV-induced malignancies (187, 188). Defensins are important for

viral inactivation, and the recruitment of T cells and neutrophils (189,

190). In CIN and invasive cervical SCC, B-defensin-2 is lower

compared to the normal ectocervical epithelium (189). A similar

pattern in thrombospondin levels is seen in invasive SCC (188). The

HIV protein Tat is also implicated in increasing the gene expression

of both HIV and other DNA viruses (191, 192). Disruption of tight

junctions by HIV Tat and glycoprotein 120 (gp120), enables HPV to

penetrate the basal layer of the oral epithelium (193). HIV Tat may

increase the expression of E6 and E7 proteins, as well as E2, which is

important for HPV replication (194) and has been described in HPV-

associated cervical and oral SCC (195–197). Additionally, Tat can

upregulate HPV-associated oncogenesis and reduce p53 protein

levels, as well as re-activate dormant HPV (195, 198). Therefore,

HIV results in pathogenesis that increases the likelihood of HPV

disease in parallel.

Although many HIV-associated comorbidities have declined with

ART, HPV disease burden remains high, specifically for anal and

cervical SSC (199, 200). There is conflicting data on the impact of

ART on HPV infection. Women living with advanced stages of HIV

undergoing ART had a significant reduction in oncogenic HPV

infection, prevalence, and incidence, whereas another study

contradicted this outcome and suggested that ART was associated

with increased lesions, warts, and oral HPV persistence (201, 202).

Swiss patients (6%) undergoing highly active ART for four years,

continued to have low CD4+ T cell counts (<200 cells/mL), with 50%

unable to reach the clinically acceptable 500 cell/uL count (203).

Prolonged ART in HIV-infected individuals may not improve HPV-

specific immunity, resulting in HPV persistence and the development

of neoplasia (204, 205). Additionally, although T cell reconstitution

occurs, it may be functionally dysregulated. Such T cell dysregulation

includes Treg dysfunction, poor antigen presentation by dendritic

cells, as well as a skewing toward an inflammatory T helper 1

response (206).
4.2.2.2 Active HPV infection may increase the likelihood of
HIV transmission in the host

While there is growing evidence that HIV infection can cause

immune dysfunction resulting in opportunistic HPV disease, it has

also been suggested that HPV can in turn increase the risk of HIV

transmission. A meta-analysis of the effect of HPV infection on HIV

susceptibility demonstrated that HPV infection is associated with a
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two-fold increased risk of HIV acquisition (207, 208). In sub-Saharan

Africa, women with prior HPV cervical infection were at 2.4 times

higher risk to acquire HIV than the control cohort (209), whilst a

separate study found that HPV+MSM had a 3.5-fold increased risk of

HIV seroconversion (210, 211). MSM with a CD4+ T cell count <200/

mL had a higher risk of developing HSILs, with HIV+MSM having an

increased risk of developing HPV-associated anal SCC.

Increased HIV susceptibility to an HPV-infected host has been

linked to high HPV viral load, inflammatory cytokines at mucosal

surfaces, mucosal barrier damage, CD4+ T cells in anogenital mucosa,

and expression of neutrophil proteases. During HPV infection, lesion

regression is marked by a high CD4+ T cell count within the stroma and

epithelium, which potentially provides HIV with an opportunity to infect

their target cell (212). Inflammatory mediators, such as MCP-1, IL-8 and

LP-1, implicated in NK and T cells responses to wart regression, are

important for HPV clearance but also associated with high HIV

acquisition (213–215). Recruitment of neutrophil proteases and pro-

inflammatory cytokines disrupts normal epithelial cell differentiation and

epithelial barrier and integrity. AlthoughHIV is known to primarily enter

cells via CD4, HIV utilizes other common receptors, including CXCR4

(216) and CCR5 (212, 217). The HIV envelope glycoprotein binds to

these receptors to facilitate HIV entry into cells, followed by membrane

fusion and viral internalization where replication occurs (191). In the

presence of HPV, a relative abundance of CD4+ T cells, DCs and

macrophages that express CXCR4 and CCR5 provide HIV entry. DCs

are known to capture HIV antigens and migrate to the lymph node for

antigen presentation, however prolonged contact with autologous CD4+

T cells, can facilitate HIV infection (218). Therefore, these potential

mechanisms and favorable environments during HPV infection can pave

the way for successful HIV transmission.
5 HPV-driven cancers

5.1 HPV detection methods

Various detection methods are used to identify HPV to account

for differential biomarkers and histopathological differences [Table 1;
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tools for specific HPV-driven cancer types have been previously

summarised (220). In HPV-associated OPSCC (HPV+OPSCC),

high levels of p16 and wild-type p53 are indicative of HPV

infection. Immunostaining of p16 (associated with HPV-16) can be

used as a marker to identify HPV-implicated cancers (221). This is of

particular importance in OPSCC which can be caused by HPV or

occur independently of HPV. HPV-negative OPSCC (HPV-OPSCC)

can be identified through mutation in p53 and poor p16 expression

due to deletion, mutation, or hypermethylation (222). In HPV

+OPSCC, p16 overexpression can also be a result of other non-

HPV-related pathways. Consequently, p16 staining is commonly used

in conjunction with other methodologies to identify HPV+OPSCC

accurately (223).
5.2 Predominant HPV-driven cancers in
immunocompromised individuals

5.2.1 Cervical cancer
Cervical cancer is the fourth leading cause of cancer in women

globally, accounting for 342 000 deaths worldwide in 2020 (224). The

initial stages of cervical cancer can be asymptomatic prior to

progression, where symptoms then include vaginal bleeding, pelvic

pain, and dyspareunia (26). Immunocompromised individuals are at

the greatest risk of developing non-regressive HPV-related lesions

which can transition to cancer. Compared to uninfected women,

women living with HIV have a two-fold increase in developing

cervical cancer (26, 225, 226). In immunocompetent individuals,

cervical cancer can take 15-20 years to develop, compared to 5-10

years in the setting of HIV co-infection. Cryotherapy or thermal

ablation can be used to treat pre-cancerous lesions. HPV testing of

women aged 30-65 years, with cervical screening occurring from the

age of 21 or following the onset of sexual activity can aid in the early

detection of HR-HPV genotypes and result in early intervention. If

diagnosed with HIV, cervical cytology is recommended every six

months from the year of diagnosis, with annual screening thereafter

following no evidence of HPV infection. In solid organ transplant
TABLE 1 HPV methods of detection used to identify HPV genotype.

Methods Specificity Sensitivity Advantages and disadvantages

Southern Blotting Assay High High Ability to differentiate between episomal and integrated DNA.
Not easily applied to FFPE samples

ISH High Low Ability to differentiate between episomal and integrated DNA.
Low sensitivity

HPV PCR High Low Cost-effective
Does not quantitate viral load or inform whether the virus is active (low sensitivity).

Real-time PCR High High Ability to differentiate between episomal and integrated DNA.
Not easily applied to FFPE samples and is labor-intensive.

Reverse Transcriptase PCR High High High sensitivity
Time-consuming

p16 Immunostaining Low High Identifies marker of transcriptionally active virus.
Low specificity

Signal Amplification Methods High Low Methodology easily performed (user-friendly)
May produce false positives (low sensitivity)
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patients, cervical cancer screening is also performed annually (227). A

colposcopy, with or without a lesion biopsy, is conducted if abnormal

cervical cells are evident. A cervical cancer diagnosis is made through

histopathological examination with tumor size and disease metastasis

defining the cancer stage (73).

5.2.2 Anal squamous cell carcinoma
HPV is detected in 80-90% of anal cancers, with HPV16 being the

predominant type (228). The prevalence is highest in Australia, North

America and regions of Europe (229). Like cervical cancer, anal

carcinoma develops from lesions of varying cytological and

histological severity, known as AIN. While low-grade AIN

regressed in most immunocompetent individuals, high-grade AIN

can progress to invasive cancer (230, 231). Persistent HR-HPV

infection causes pre-cancerous lesions in immunocompromised

individuals that do not regress due to inadequate adaptive

immunity. These dysplastic lesions can progress to ASCC (232).

Despite the widespread availability of ART, the incidence of

ASCC is continuing to increase (233). MSM and PLWH exhibit a

20-fold and 30-fold increased risk of ASCC, respectively (171), and

HIV+ MSM have a 50-150-fold increased risk (232, 234, 235). In the

natural history Study of the Prevention of Anal Cancer (SPANC),

HIV+ and HIV- MSM (≥35 years) were enrolled to explore anal HPV

infection epidemiology and cytological and historical abnormalities.

HSIL incidence was strongly associated with younger age and

persistent HR-HPV infection. Conversely, HSIL clearance was

associated with smaller lesions, AIN 2, and a lack of HR-HPV

infection (171). HPV16 and HPV18 showed the highest prevalence

in MSM, however, HPV31, HPV22, and HPV58 also demonstrated

increased incidence (>2.0/100 person-years). Women with a history

of cervical dysplasia and transplant patients are also at an elevated

risk. Renal transplant recipients have been shown to have a 10 times

greater relative risk of developing ASCC than the general

population (236).

ASCC screening involves high-risk populations undergoing

anorectal exams where anal swabs can be collected for HPV

genotyping and the identification of atypical cells. Screening aids in

the early diagnosis and treatment of precancerous lesions prior to

cancerous progression. Identification and characterization of early-

stage cancer are facilitated by anal cytology and high-resolution

anoscopy (HRA), which obtain directed tissue biopsies (176, 237).

HRA is limited in its application due to restricted views in cases of

uneven lesion topography, necessitating parallel use of digital

anorectal exams. ASCC screening is not as established as cervical

cancer screening, with little investigation into the effectiveness of

routine surveillance and the treatment of high-grade AINs (60). With

the rising prevalence of ASCC in immunocompromised individuals,

additional research is required to develop effective screening strategies

to accurately identify high-risk lesions in earlier stages where

intervention mayimprove prognosis.

5.2.3 Oropharyngeal squamous cell carcinoma
Oropharyngeal SCC is associated with significant morbidity and

mortality. The global, incidence of OPSCC in 2020 was 3,777,713 with
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the highest prevalence in Asia, Europe, and North America (26).

OPSCC affects the upper aerodigestive tract, including the tonsils, the

base of the tongue, and the soft palate. Unlike most HNSSCs, which

are associated with smoking and alcohol consumption, a biologically

distinct subset of OPSCC arises from HPV. HPV+OPSCC represents

15-20% of HNSSC associated with HPV, with 95% of HPV+OPSCCs

attributed to HPV16 (238). Over the past two decades, there has been

an increase in HPV+OPSCCs, and a decrease in HPV-OPSCC

prevalence due to lifestyle changes including a decrease in smoking

rates (239–241). Compared to HPV-OPSCC, HPV+OPSCC occurs in

younger individuals, with less exposure to alcohol and smoking, and a

greater number of sexual partners. Immunodeficient individuals can

also be at elevated risk, with PLWH demonstrating a two to six times

increased risk of developing HPV-associated HNSCC (242).

Immunosuppression is another major risk factor for SCC

development, with organ transplant recipients having a 65 to 100-

fold increase in risk compared to the general population. Currently,

there is no standard screening regime or treatment for HPV+OPSCC

or oral cancer, with therapy based on tissue site rather than cancer

pathophysiology. Like anal cancer, optimal screening and therapeutic

regimens may depend on the underlying pathophysiological

mechanisms. CD8+ tissue-resident T (CD8+ TRM) cell populations

in OPSCC are correlated with better patient survival and the

underlying cellular and molecular mechanisms require further

investigation (243). Further understanding of differences between

HPV+OPSCC and HPV-OPSCC has the potential to inform novel

host-directed therapies in this area.

5.2.4 Vulva cancer
VC accounts for 5% of gynecological cancers with HPV16 and

HPV18 implicated in non-keratinizing vulva SCC (26). HPV-positive

VC is diagnosed in young women, with immunosuppression being a

significant risk factor (244) transplant patients have a 100-fold

increase in VC incidence. Immunosuppressed patients develop VC

precursor intraepithelial neoplasia, which displays hallmarks of

severity i.e. multifocal lesions with extensive disease (245). In

women living with HIV, vulvar intraepithelial neoplasia (VIN)

development was 29 times more likely compared to the general

population, with a 3.3-fold increase in the risk of persistent VIN

post-treatment (246–248).
5.3 Clinical management of HPV-
driven cancer

Clinical management of HPV-associated malignancies relates to

the site of neoplasm. HPV-associated cancer treatment strategies are

multimodal and can include monotherapies or combinations of

traditional surgery, chemotherapy, radiotherapy, and targeted

immune therapy (249, 250). Many patients with early nodal

involvement require initial surgical removal and radiation therapy

(251), whereas, in more advanced tumors, treatment is centered

around radiochemotherapy (252). Therapeutic regimens for several

malignancies are currently approached in the same manner
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irrespective of HPV status, and it is unclear if there is treatment

equivalence in people who are co-infected with HPV and HIV (253).

PLWH have shown improved outcomes from immune checkpoint

inhibitor blockade (i.e. PD-1 inhibition) however, the detailed cellular

and molecular mechanisms underlying this response are unclear.

The most comprehensive data for PD-1 inhibitors derive from the

use of pembrolizumab (254) and nivolumab in HNSCC (255). In a

KEYNOTE trial in active metastatic HNSCC, cetuximab (a drug that

restricts tumor growth) with chemotherapy was compared with

pembrolizumab monotherapy or pembrolizumab in combination with

chemotherapy. In both pembrolizumab treatment groups, HNSCC

exhibited improved overall survival when compared to cetuximab with

chemotherapy. Patients on pembrolizumab monotherapy had a median

overall survival of 14.9 months, compared to 10.7 months in the

cetuximab with chemotherapy group. Similarly, patients on

pembrolizumab with chemotherapy showed a median overall survival

of 13 months versus 10.7 months in the cetuximab with the

chemotherapy group. Despite these data suggesting the benefit of using

pembrolizumab, HPV status was not reported among patients (256). In

the KEYNOTE01 trial, using pembrolizumab in active HNSCC, HPV

+HNSCC patients showed better progression-free survival (4 months)

versus HPV-HNSCC (2 months) (255). A comprehensive summary of

immunotherapies in HNSCC patients and differences in immune

responses has been previously reviewed (249).

Similar clinical trials are ongoing in cervical cancer and ASCC. In

cervical cancer, pembrolizumab was approved in 2018 based on a phase

II study (KEYNOTE 158 -NCT02628067). This involved 98 patients

with recurrent and/or metastatic cervical carcinomas (257), however,

results did not show the same level of improvement as seen with

HNSCC. Reports of the effects of pembrolizumab in cervical cancer are

sparse and a better understanding is required amidst ongoing trials

(KEYNOTE-826, phase III trial, NCT03635567) (258). Several clinical

trials including NCT03233711, NCT02314169, and NCT02919969

have investigated PD-1 blockade in ASCC, and have demonstrated

anti-tumor efficacy (259, 260). However, much of this work has not

explored the efficacy of PD-1 blockade in the context of HPV and HIV

coinfection. Further understanding of the molecular pathways

underlying the responses to immune checkpoint blockade, resulting

in tumor reduction is required (261).

The routine screening of pre-cancerous lesions remains the most

effective evaluator of cancer development risk. Following cancer

development, clinical management of HPV-related malignancies in

immunocompromised people is multifactorial and dependent on

cancer type and stage. In the ART era, alternative therapies, such as

chemotherapy, have been increasingly offered alongside targeted

therapy. A significant challenge is designing a treatment plan that

will minimize the risk of leukopenia and immune dysfunction,

increasing the risk of other opportunistic infections. For PLWH,

ART is continued through cancer management to preserve adequate

adaptive immunity. Surgery is useful if lesions are located in specific

areas with well-defined margins and can involve electrodesiccation to

destroy tumor cells. Chemotherapeutic drugs and HIVmedication are

metabolized through cytochrome p450 within the liver, with some

chemotherapy agents regulating or inhibiting this enzyme which can

in turn decrease treatment efficacy or increase toxicity. As with

chemotherapy, ART can also interfere with the pharmacology of

targeted therapy (262, 263).
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6 Advances in HPV
therapeutic strategies

6.1 Current conventional therapies and
treatment plans

The 9-valent HPV (9vHPV) prophylactic vaccine targets HPV

types 6, 11, 16, 18, 31, 33, 45, 52, and 58 (264) and has demonstrated

efficacy in reducing HPV incidence in immunocompromised people

(170). he 9vHPV vaccine covers the major HR-HPV and LR-HPV

genotypes responsible for 70% of cervical cancers and 90% of other

HPV-associated cancers (265, 266). Immunogenicity data suggest that

a two-dose regimen with a 6-month interval is effective in

immunocompetent individuals 16 years old and under, while a

three-dose regime is recommended for those older than 16 years

old (170, 267). Although a gender-neutral HPV vaccination regime

inclusive of both boys and girls is beginning to be implemented in

some upper-income countries (268), the major challenge lies in

lower-income countries where vaccinating young girls is still a

challenge due to limited resources. Furthermore, despite this new

gender-neutral regime taking place, there is a significantly lower

number of boys getting vaccinated, with 44% and 5% of boys being

vaccinated in high-income and low/middle-income countries

respectively. Nevertheless, prophylactic vaccines are not effective

against established HPV infection and there is a need for a

therapeutic HPV vaccine or specifically targeted immunotherapy

for individuals that have already acquired HR-HPV.

For immunocompromised individuals, the long-term vaccine

efficacy of prophylactic vaccines is poorly understood. Currently, no

approved therapeutics targeting HPV are available for use post-

infection. As the incidence of HPV rises in low-socioeconomic

nations, there is a requirement for any novel HPV therapeutic

(prophylactic or curative) to be cost-effective, globally distributable,

and equally accessible whilst covering a large proportion of HR-HPV

genotypes (269). As HPV poses a significant lifetime risk of associated

cancer development within an immunocompromised host, a

therapeutic capable of directly targeting HPV within infected cells

or boosting the host’s immune response to HPV is essential. Whilst

current vaccination strategies utilize the L1/L2 capsid proteins as

targets, this approach fails to account for limited L1/L2 expression in

basal epithelial tissue where carcinogenesis occurs, preventing the

initiation of a strong immune response (270). While prophylactic

vaccination aims to prevent infection, therapeutic vaccines aim to

generate robust cytotoxic lymphocyte responses against E6 and E7

viral proteins (269). Several different therapeutic vaccines are

currently in development, including protein and peptide-based

vaccines, live vector-based, DNA, and specific-cell-based vaccines,

which have been discussed in detail elsewhere (271).

In contrast to prophylactics, host-directed therapies for HPV-

driven cancer focus on the generation of host immune responses

against antigens associated with cellular transformation. Such

treatments include adoptive cell transfer, genetically engineered T cell

therapy [T-cell receptors (TCRs) and chimeric antigen receptors

(CARs)] (272, 273), and the use of immune checkpoint inhibitors

(255, 258–260). Adoptive cell transfer, involves autologous antigen-

specific CTL expansion ex vivo, with re-delivery to the patient’s

circulation (274). Although promising, the reintroduction of CTL to
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the host is highly dependent on immune and tumor cell signaling to

maintain an effective immune response. This can result in varying levels

of effectiveness. A major challenge of emerging immune or antiviral-

based therapies targeting HPV is that a clear advantage over current

treatment must be demonstrated whilst ensuring patient safety.

Developing such therapeutics for use in immunocompromised

patients has additional complexity, due to a suppressed immune

response. Equal consideration for potential drug interactions with

concurrent medications in both HIV individuals on ART and

transplant patients on anti-rejection regimens is required. Therefore,

a novel approach to the development of therapeutics is targeting HPV-

specific proteins or genes, to prevent tumor establishment and cancer

progression in hosts where the immune system is impaired.

A comprehensive list of therapeutic and immunotherapy-based

developments has been previously summarised (269, 275), however

minimal data is available for those that are immunocompromised.

Despite major developments in therapeutic vaccinations and

immunotherapies, a need to develop treatments that can cater to

individuals that do not have an intact immune system persists. A

thorough understanding of HPV-cellular interaction, virus-host

interplay, and the tumor microenvironment’s role in the

development of immunotherapies that are specifically effective

toward HPV-transformed cells is required (66). It is likely that for

immunocompromised hosts, successful and effective treatment plans

will be multi-pronged, focusing on aspects such as tumor

microenvironment modulation, and specific alteration of HPV-

infected cells to make them less resistant to therapeutic intervention.
6.2 RNA-based therapeutic strategies
against HPV

Whilst therapeutic regimens exist in relation to HPV, all current

therapeutics premise on a functional immune system. This excludes a

small yet significant range of patients from obtaining adequate care.

With the exception of mRNA-based vaccination (which necessitates

an immune system by definition), RNA-based therapeutics hold the

unique ability to operate in severely immunocompromised

patient populations.

6.2.1 mRNA prophylactic vaccination
Next-generation mRNA-based vaccinations are a novel

technology applicable to HPV that has shown significant promise

in the fight against SARS-CoV-2 over the past two years and

demonstrated safe and highly efficacious responses in typical and

atypical patient populations (276, 277). Compared to traditional HPV

vaccine candidates, mRNA vaccinations designed against HPV

proteins lack any potential risk of causing disease, enable the

regulation of immunogenicity, and evade anti-vector immunity

(278). mRNA vaccination results in type I interferon (IFN-I)

pathway activation and the production of pro-inflammatory cellular

cytokines and chemokines, promoting a stronger immune response

via increased APC stimulation (279). Cost remains the most

significant hurdle to the widespread adoption of mRNA

vaccination, as scalability and availability of suitable manufacturing

facilities increase the cost per unit (280). Despite the challenges

associated with initial cost, the flexibility offered by mRNA
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vaccination in response to novel pathogens makes them an

appealing and viable avenue for therapeutic development.

Investigation into the development of a single-dose prophylactic

mRNA-based vaccination against HPV may also enable the greater

prevention of new HPV incidences in developing regions by

eliminating the need for two vaccine doses, as currently

recommended by global governing bodies, reducing the load on

local health infrastructure whilst improving intergovernmental

responses to novel viral variants.
6.2.2 Zinc finger nucleases
Zinc finger nucleases (ZFN) are engineered, modifiable nucleases

consisting of a Fokl DNA-cleaving domain bound to zinc finger

proteins. Two complimentary ZFN join to form an active ZFN

complex capable of recognizing sequence motifs ≥24 base pairs

(281). ZFN is programable by altering the amino acid sequence of

each zinc finger, enabling site-directed double-stranded cleavage to

suppress transcription (281).

ZFN has been demonstrated to be efficacious in the disruption of

the HPV E7 protein expression in vitro and in vivo, recognizing HPV-

specific genomic target sites and initiating double-stranded cleavage

(282). It has been found that by targeting the E7 DNA region of

HPV16+ (SiHa/CaSki) and HPV18+ (HeLa) cell lines, HPV-specific

ZNF can effectively induce disruption of E7 oncogenes, leading to

type-specific growth inhibition and apoptosis of HPV+ cells (282).

ZFN have similarly shown promise in regulating HIV resistance in

vitro and in vivo (283).

While ZFN provides numerous advantages including site-directed

epigenetic modification, significant disadvantages arise. ZFN are

difficult to construct, limited in target selection, and remain

expensive in comparison to second-generation and third-generation

genomic editing technologies, restricting their widespread adoption

for use in HPV treatments in developing regions (284, 285).
6.2.3 Clustered regularly interspaced short
palindromic repeat

Since its first reports in 1993, CRISPR systems have quickly

developed to become one of the most powerful tools associated

with the field of genomics (286). CRISPR-associated (Cas) proteins

enable the precise epigenetic regulation of DNA through either

insertion, deletion, or mutation of the genomic target. Many Cas

proteins are nucleases that cleave the double-stranded DNA at the site

of the genomic target, however, it is possible to affix various classes of

effectors proteins (287). CRISPR/Cas9 specifically locates and binds a

protospacer adjacent motif (PAM) within the host genome (288). An

associated guide RNA interrogates the DNA strand to locate the

complementary genomic target. Following the location of the

specified target, the CRISPR/Cas system induces epigenetic

modification to alter gene transcription and associated protein

expression (289). Nuclease sites of the Cas protein cleave the DNA,

which can be repaired via end joining, resulting in mutagenesis, or

homology-directed repair (290).

CRISPR/Cas9 technology has shown significant promise in the

suppression of virally expressed HPV E6/E7. CRISPR/Cas9 mediated

frameshift knockout of the E7 oncogene has been shown to

significantly inhibit aberrant cell proliferation of HPV18+ Hela and
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HPV16+ SiHa-associated cancerous activity in vitro. In vivo

confirmation using micelle delivery, CRISPR/Cas9 within

xenografted mice demonstrated significant E7 knockout (291, 292).

Additionally, CRISPR/Cas9 systems developed against E6 and E7

have been shown to restore the protein expression of p53 and

phospho-pRB (292). Increased cellular levels p56 and phospho-pRB

mitigate the hallmarks of HPV cancerous lesion progression by: (I)

reducing cellular proliferation (II) ceasing DNA synthesis (III) halting

cell cycle progression (IV) inducing apoptosis (V) down-regulating

expression of E2F-1 and bcl-2 (293). These findings suggest that

CRISPR/Cas9 systems hold the potential to strongly inhibit

tumorigenesis post HPV genome integration and serve as a viable

therapeutic avenue, although further investigation into unintended

off-target effects is required for advancement to clinical trials. Further,

the delivery of CRISPR/Cas9 therapeutics requires not just a gRNA

molecule, but also the large Cas9 protein or mRNA, increasing the

manufacturing complexity, cost and size of the delivery carrier.

6.2.4 Ribonucleic acid interference
Ribonucleic acid interference (RNAi) is a promising gene-

silencing technology that can be applied to HPV therapeutic

research to restrict viral replication and improve host clearance.

RNAi is a highly conserved, biological process that can operate via

two distinct pathways in response to double-stranded ribonucleic acid

(dsRNA) (1): via the targeting of transcribed messenger ribonucleic

acid (mRNA) products within the cell cytoplasm, termed post-

transcriptional gene silencing (PTGS); or 2) by directly targeting
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the gene promoter region located within the cell nucleus, in a process

termed transcriptional gene silencing (TGS) (294). These

mechanisms can be used to downregulate or impede gene

expression for therapeutic application (Figure 3). Whilst numerous

dsRNA duplex classes can operate via RNAi, short interfering

ribonucleic acid (siRNA) is one class that can act via both the

PTGS and TGS RNAi pathways (295, 296). siRNAs are 19-24 base

pair (bp) double-stranded (ds) oligonucleotides, comprising of a 3’-5’

active guide (antisense) strand and 5’-3’ passive passenger (sense)

strand (297).

PTGS-mediated siRNA targeting HPV oncogenic proteins E6/E7

significantly decreases the levels of mRNA transcripts associated with

infection. Downregulation of viral gene expression has been

demonstrated in vitro within the HPV16+ SiHa and CaSki, and

HPV18+ Hela cell lines (296, 298, 299). Reduction in viral gene

expression enables increased intercellular levels of p53 and pRb,

which serve to mediate the effects of HPV. Findings obtained in

commercial cell lines were replicated in vivo using nude mice, where

treatment with PTGS-mediated siRNA targeting mRNA associated

with E6 or E7 significantly reduced tumor size, weight and oncogenic

expression (300–303). PTGS siRNA is highly effective, but restrictive

as only a singular gene product can be targeted per engineered strand,

compared to TGS-mediated promoter-targeted siRNA, which can

target multiple gene products under the regulation of the

same promoter.

TGS-mediated siRNA targeting viral gene promoters have

similarly shown strong efficacy in reducing E6/E7 mRNA
FIGURE 3

RNAi pathways. Post Transcriptional Gene Silencing (PTGS) inducing short interfering ribonucleic acid (siRNA) operate via the actions of the ribonucleic
acid (RNA) induced silencing complex (RISC), a multiprotein nuclease complex comprised of Argonaute-2 (Ago-2), Dicer, TAR RNA binding protein,
protein kinase interferon-inducible double stranded RNA dependent activator, and GW domain protein 182 in humans. The antisense strand binds Ago-2
and is incorporated into the RISC complex. The antisense strand guides the complex to the targeted mRNA product, where Ago-2 facilitates the
cleavage of, and subsequent degradation of the messenger ribonucleic acid (mRNA). Transcriptional Gene Silencing (TGS) inducing siRNA operate via the
actions of the RNA induced transcriptional silencing (RITS) complex, a multiprotein complex comprised of Argonaute-1 (Ago-1) and other, yet
unidentified, proteins in humans. The antisense strand binds Ago-1 and is incorporated into the RITS complex, where it guides the complex into the cell
nucleus and targets the gene promoter. Heritable epigenetic modifications result in compaction of chromatin structures surrounding the target site,
preventing the transcription of gene products, and silencing expression. Created with BioRender.com.
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expression using a single siRNA targeting the site of transcription

initiation (304). TGS siRNA targeting the common HPV E6/E7

promoters p97 (HPV16) or p105 (HPV18) have shown significant

down-regulation of mRNA associated with E6 and E7 in vivo (305–

307). Like PTGS siRNA, the reduction in viral gene expression

enables increased intercellular levels of p53 and pRB, which serve

to mediate the carcinogenic effects of HPV infection. A striking

advantage of TGS-mediated siRNA as a therapeutic means of

targeting HPV infection is the innate ability to target numerable

gene products if regulated by a common gene promoter and the

heritable repressive epigenetic modifications that are passed to

daughter cells, resulting in longer and more durable silencing

effect (304).

Central to the uptake of RNAi by the general populous are cost

and availability. RNAi poses unique challenges to both. The costs

associated with the research, development, and implementation of an

RNAi platform are considerable (308). Although the manufacturing

capability of RNA and the necessary delivery platform needed to

deliver the inherently unstable RNA into the host cell (309) is

expanding rapidly in response to the uptake of mRNA vaccinations.

These necessary investments translate to high treatment costs. FDA

approved siRNA therapeutic yearly list costs include: patisiran

(Onpattro), 451,430 USD; GIVLAARI (givosiran), 575,000 USD;

and AMVUTTRA® (Vutrisiran), 463,500 USD (310–312). These

costs are considerable and would need to decrease in order to

provide equitable access to RNAi-based therapeutics. Despite the

initial costs, advancements in process design, delivery platform

development, and RNA synthesis have enabled a steady decrease in

the production costs associated with RNAi therapeutics, reducing

costs and broadening the expected patient population (313).

Significant to the promise of RNAi therapeutics is the unique

adaptability to combat evolving viral pathogens and address several

heritable genetic conditions (294, 309, 314). Following continued

advancement in translational RNA research, improved access to

RNAi therapeutics could enable widespread adoption and the

subsequent treatment of numerable viral and genomic conditions

currently without therapeutic options.
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6.3 Delivery of siRNA or mRNA therapeutics
and applications

Currently, siRNA delivery remains technically challenging on

several fronts (315). RNAi delivery processes must prevent the

destruction of the inherently unstable, naked RNA prior to entering

the target cell and inducing silencing. Immune and metabolic factors

dramatically limit delivery mechanisms as they must be able to

overcome administrative, as well as vascular and cellular barriers

(316). These challenges, therefore, require stabilizing modifications to

siRNA sequences that can include 2′-O-methylation on the 3′
terminal ribose and/or carriers to facilitate the functional delivery

of RNAi therapeutics (317). Three delivery carriers that serve to

overcome these factors are nanoparticle delivery, GalNAc conjugates,

and lentiviral vector delivery (318).

Delivery through the employment of chemically modified

multifunctional nanoparticles serves to encapsulate the negatively

charged naked siRNA and effectively facilitate transportation to the

target cell without degradation caused by host barriers (Figure 4)

(319) At the time of publication, one therapeutic utilizing

nanoparticle technology: Onpattro (Patisiran) has been approved by

the US FDA for therapeutic use via intravenous infusion (320).

Additionally, recent success surrounding the safe and effective

implementation of nanoparticle-delivered RNA-based vaccinations

in response to SARS-Cov-2 heightens the potential for nanoparticle

delivery of genetic-based therapies (276, 277).

GalNac-siRNA conjugates are another form of siRNA delivery

that bind to the Asialoglycoprotein receptor widely present in liver

hepatocytes facilitating siRNA entry. Four siRNA utilizing GalNAc

conjugates: Oxlumo (Lumasiran), GIVLAARI (givosiran), Leqvio®

(inclisiran), and AMVUTTRA® (Vutrisiran), have been approved by

the United States FDA for therapeutic administration, however, the

potential for GalNac-siRNA applications outside targeting liver

disorders is less likely (321–325).

Lentivirus vectors expressing short hairpin (sh)RNA, which

match the siRNA target sequence and include a linking loop

between the sense and antisense strands, similarly allowing for the
FIGURE 4

Comparative diagram of in vivo / ex vivo gene deliveries. In-vivo gene delivery via the use of nanoparticles. Conjugation of the nanoparticle designed for
the target cell and the siRNA designed against the targeted genetic material are applied to the patient based of disease characteristics (i.e topical
application for HPV infected cervical cells). Ex-vivo gene delivery via the use of lentiviral vectors requiring the collection of patient cells, transduction
with the constructed lentiviral vector before re-introduction of the transduced patient cells back into the patient. Created with BioRender.com.
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silencing of a targeted gene through the facilitated entry of targeted

cells (326). The designed genetic material of the lentiviral genome can

be transcribed to interfere with pathogenic viral RNA within the same

cell, resulting in the downregulation of the targeted pathogenic viral

protein (327). Lentiviral vector shRNA delivery uses an ex vivo gene

therapy model, whereby patient cells are first isolated and transduced

outside of the body prior to infusion back into the patient (Figure 4)

(328). The use of lentiviral vector-mediated RNAi has been shown to

reduce cellular proliferation and tumorigenesis of HPV-associated

cancers and neuroblastoma in vivo and serves as a viable route for

further inquiry (329, 330). However, there remains safety concerns

with the lack of control of lentiviral integrations site into the host

genome, and thus studies are ongoing to improve this aspect of

lentiviral gene delivery (331).
7 Discussion

The epidemiological trends and biological mechanisms relating to

HR-HPV and human carcinogenesis have been well documented.

Additionally, there have been significant advancements made in

preventative measures and therapeutic developments. Currently, the

highest prevalence of HPV-related disease is in Sub-Saharan Africa,

Eastern Europe, and Latin America (24, 25). Rates of cervical cancer

are increasing and HPV+OPSCC are decreasing in western countries

respectively. People living with immunodeficiencies are at a

disproportionately high risk of persistent HPV infections and

progressive disease compared to the general population.

Adequate immunosurveillance is crucial for viral elimination and

preventing disease establishment. HPV-specific CD4+ and CD8+ T cells

and inflammatory cytokines have been shown to negatively correlate

with disease severity, with T cells being particularly important in

targeting E6 and E7 epitopes (82). Where immunosurveillance is

compromised, HPV disrupts critical signaling pathways such as JAK/

STAT, apoptotic (TRAIL and XAF1), and IFN-g (STAT1) resulting in
immune evasion.

Lymphopenia is a common feature in those with specific primary

and secondary immunodeficiencies at high risk of HPV-related

disease. Patients with PIDs predisposed to HPV-related disease

(103, 104), are predominantly associated with a CD4+ T cell

lymphopenia, a decrease in CD8+ T cells and NK cells, and

impaired TCR signaling; all factors important for targeting and

eliminating HPV. CD4+ T cell lymphopenia is also evident up to 10

years post-renal transplant, a long-term effect associated with

accelerated renal allograft decline and a high risk of cancer

development compared to non-CD4+ T cell lymphopenic patients

(154, 155). Despite ART improving prolonged increases in immune

function (332) in PLWH, there is still a proportion who do not clear

their lesions and are at high risk of developing HPV-driven cancer.

Tissue-resident memory T cell subsets and their roles in those

with immunodeficiencies also require further investigation. This may

be crucial to understanding tissue-specific responses in at-risk

populations. Many reports focus on T cell responses in peripheral

blood to assess immune response, which singularly is not the most

accurate measure of immune function or cancer development. High

CD8+ TRM cell numbers have been correlated with better patient

prognosis in HPV+OPSCC compared to their peripheral counterparts
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(243) and have shown to be a good prognostic indicator in many

other malignancies including melanoma, ovarian and cervical cancer

(333). There is a need to better understand tissue-specific responses to

HPV, especially in immunocompromised individuals.

The clinical management of several malignancies remains

consistent, irrespective of HPV status revealing a major limitation

to current practices for poor responders and immunocompromised

people. Currently, screening for HR-HPV detection or pre-cancerous

lesions to aid in early diagnosis is only well established in cervical

cancer compared to other HPV-driven cancers. While surgery can be

combined with radiotherapy and chemotherapy, this approach is

associated with substantial morbidity. In those established primary,

secondary, and acquired immunodeficiency, opportunistic pathogens

can establish disease. There is a need for more sophisticated, targeted

treatments, especially for those with impaired immunity. Despite

prophylactic vaccines showing high efficacy in the general population,

long-term benefit in immunocompromised hosts is not well

understood. Additionally, vaccine protection is limited to HR-HPVs

naive to the host and therefore has major limitations as a preventative

strategy. This is also applicable to HPV latency in infected cells. There

is a need to address protection against LR-HPVs which can manifest

severe clinical disease in immunodeficient individuals. There has been

an acceleration in the investigation of cell-based therapies, immune

checkpoint inhibitors, and therapeutic vaccines to address

these limitations.

Host-directed therapies hold great promise for the treatment of

patients with advanced-stage or relapsed HPV-associated cancers,

however, there has been limited investigation into the efficacy of these

in immunocompromised populations. Currently, PD-1/PD-L1

blockade has shown to improve overall survival in HPV+

individuals compared to chemotherapy, however, there is limited

data on checkpoint inhibitor outcomes in specific at-risk populations.

Furthermore, whether transplant patients and PLWH have different

responses to checkpoint inhibition, regardless of HPV status, requires

further elucidation. Several studies have shown that PD-1 inhibition

(249) improves survival in HNSCC but has not been replicated in

cervical cancer or ASCC, possibly suggesting divergent local tumor

microenvironments at play (257, 259, 260). Additionally, the potential

of therapeutic vaccines in combination with radiotherapy,

chemotherapy or checkpoint inhibition requires further studies.

RNA-based therapeutic systems do not require an intact immune

system (with the exception of mRNA vaccination) and hold great

potential for the treatment of chronic pathological infections that

resist traditional treatment approaches. RNA-associated

downregulation of genes associated with HPV malignancies may

inhibit viral genomic expression and reduce cellular proliferation by

restoring normal intracellular p53 and pRb levels through the

prevention or destruction of oncogenic RNA transcripts (334).

Further development of RNA technologies against the early and

late-stage promoters of the HPV genome could enable the silencing

of multiple proteins simultaneously, reducing the likelihood of further

cellular transformation. The disabling of viral replication and

subsequent aberrant cellular development may facilitate the

increased clearance of chronic HPV infection and result in

improved clinical outcomes. Therefore, the investigation into RNA

therapeutics serves as a logical route for next-generation antiviral

therapeutics targeting HPV.
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8 Conclusion

Given the inaccessibility of health infrastructure to provide sterilizing

HPV vaccines inmany parts of the world, and the existing high burden of

HPV infection that can no longer be cured by prophylaxis, additional

approaches are needed to treat the resulting pre-malignant and cancerous

lesions. While there is a large body of research regarding the

epidemiology of HPV-associated cancers in the immunocompromised

population, it would be beneficial to investigate the effectiveness of

currently available treatments in this sample patient population. There

is a growing need to investigate the safety and immunogenicity of

prophylactic HPV vaccines in PLWH. This will be important for

determining the efficacy of these vaccines and the degree of risk of

developing HPV-associated diseases. Although the use of ICB appears

promising, particularly in regard to the use of PD-1 inhibitors for patients

with HPV-driven cancers, treatment efficacy in immunocompromised

individuals is not well understood. Given that people living with primary

and secondary immunodeficiency have high rates of persistent, extensive,

and malignant HPV-driven disease, such host-directed therapies may

have divergent results from those seen in immunocompetent people. The

rapid advancement of frontier gene-based RNA therapies, of which most

do not require a functional immune system, may therefore play a pivotal

role in eventually reducing the excess morbidity and mortality of HPV-

driven disease in those most at-risk.
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