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The SARS-CoV-2 virus, also known as the severe acute respiratory syndrome

coronavirus 2, has raised great threats to humans. The connection between the

SARS-CoV-2 virus and cancer is currently unclear. In this study, we thus evaluated

the multi-omics data from the Cancer Genome Atlas (TCGA) database utilizing

genomic and transcriptomic techniques to fully identify the SARS-CoV-2 target

genes (STGs) in tumor samples from 33 types of cancers. The expression of STGs

was substantially linked with the immune infiltration and may be used to predict

survival in cancer patients. STGs were also substantially associated with

immunological infiltration, immune cells, and associated immune pathways. At

the molecular level, the genomic changes of STGs were frequently related with

carcinogenesis and patient survival. In addition, pathway analysis revealed that

STGs were involved in the control of signaling pathways associated with cancer.

The prognostic features and nomogram of clinical factors of STGs in cancers have

been developed. Lastly, by mining the cancer drug sensitivity genomics database, a

list of potential STG-targeting medicines was compiled. Collectively, this work

demonstrated comprehensively the genomic alterations and clinical

characteristics of STGs, which may offer new clues to explore the mechanisms

on a molecular level between SARS-CoV-2 virus and cancers as well as provide

new clinical guidance for cancer patients who are threatened by the COVID-

19 epidemic.
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1 Introduction

Cancer represents a leading cause of death and a serious obstacle

to the global improvement of life quality. In 2020, 19.3 million new

cancer cases and approximately 10 million cancer-related deaths are

expected to occur globally, based on the statistics from GLOBOCAN

(1). The burden of cancer incidence and mortality is still speedily

growing all over the world. Seeking new treatment options is

extremely urgent for cancer patients.

The COVID-19 pandemic caused by the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2), is currently having a profound

influence on global health (2). The influence of COVID-19 has been

unprecedented thus far, and long-term symptoms could have

unexpectedly devastating effects (3, 4). Increasing evidence indicates

that a variety of symptoms can persevere after the acute infection has

been cleared in many COVID-19 patients. As a result, symptoms may

have appeared as a result of the altered immune microenvironment

caused by COVID-19. Given the long existence of the symptoms and the

huge population infected by SARS-CoV-2 virus, the influence of

COVID-19 on cancer, which is also tightly tied to the immune system,
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needs extra caution. Furthermore, viruses and cancers have significant

correlations, which have been proven by numerous studies. More than

15% of malignancies are directly caused by viruses (5). Specifically,

multiple human oncogenic viruses, including human hepatitis B

(HBV) and C (HCV) viruses, human papillomavirus (HPV), Epstein-

Barr virus (EBV), and Kaposi’s sarcoma-associated herpesvirus (KSHV),

have been identified after an exhaustive search for viruses related to

human cancers (6–9). SARS-CoV-2 has recently been discovered to

prevent the growth of Hodgkin’s lymphoma (10). The human immune

system can be strengthened by SARS-CoV-2 RNA vaccines to eradicate

cancer (11). The connection between malignancies and SARS-CoV-2,

however, has not been fully investigated. Viruses can affect tumor growth

through specific target genes, hence, the involvement of SARS-CoV-2

target genes in cancers is worth investigating (12).

This study thoroughly evaluated the genomic mutation, clinical

characteristics, methylation, the activation of signature-related

pathways and immunological characteristics of SARS-CoV-2 target

Genes (STGs) in thirty-three solid tumors. At the same time, taking

lung adenocarcinoma (LUAD) and kidney renal clear cell carcinoma

(KIRC) as examples, risk prognostic models based on STGs were
FIGURE 1

Flow chart of the study. Note: #: FDR ≤ 0.05; *: p ≤ 0.05; **: p ≤ 0.01; ***: p ≤ 0.005; ****: p ≤ 0.001; ns, not significant. p which represents the
statistically significant need to be always italicized and we also unified it as a lowercase character.
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constructed, and nomogram prognostic models were constructed by

further integrating clinical features (Figure 1). This study examines the

close correlation between these features and clinical survival in many

types of malignancy. This will further reveal the important role of STGs

in tumors. Therefore, targeting STGs may be a promising strategy for

treating patients with cancer, as well as a potential resource for research

on the relationship between coronaviruses and tumors, and may further

provide potential ideas for viral therapies that target tumors. At the same

time, with the prevalence of COVID-19, this study will be more helpful

for us to understand the specific response of tumor patients to SARS-

CoV-2 virus.
2 Materials and methods

2.1 Dataset download and processing

The STGs were retrieved from the VThunter database (https://db.

cngb.org/VThunter) (13) and literature. Clinical parameters (n = 11,160)

as well as gene expression (n = 10,471), Single-nucleotide variations

(SNV) (n = 10,234), copy number variation (CNV) (n = 11,461), and

methylation (n = 10,063) were obtained and processed from GSCA

(Gene Set Cancer Analysis, http://bioinfo.life.hust.edu.cn/GSCA/#/),

which collected the pan-cancer data of the Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/) (14–16). Reverse

phase protein array (RPPA) data from The Cancer Proteome Atlas

(TCPA) (https://tcpaportal.org/tcpa/index.html) was used to investigate

pathways (17). The analysis between the gene expression and drug

sensitivity was based on the Genomics of Drug Sensitivity in Cancer

(GDSC) database (www.cancerrxgene.org) (18). The deadline for

database website access and data download is September 15, 2022.

Thirty-three cancer types with the number of samples included in this

study (Table 1).
2.2 Differential gene expression and
prognostic analysis

In the analysis of mRNA expression levels, only 14 cancer types

(COAD, ESCA, KIRC, HNSC, PRAD, BRCA, BLCA, THCA, STAD,

KIRP, LUAD, LIHC, and KICH) were included because they

contained more than 10 pairs of tumor and normal samples. The

values of mRNA expressions from TCGA database were normalized

by RNA-Seq by Expectation-Maximization (RSEM) values. The mean

(tumor)/mean (normal) was used to calculate the fold change. P-

values were calculated by t-test and adjusted by the false discovery

rate (FDR). The expression of STGs in 33 malignancies as well as the

related clinical survival data were integrated to stratify tumor samples

into low and high expression groups for analysis of survival (19).
2.3 Single-nucleotide variant analysis

The TCGA database was accessed for SNV data. Seven mutation

types which referred as disadvantageous mutations were included in

this study: missense-mutation, nonsense-mutation, frame-shift-

insertion, in-frame-insertion, frame-shift-deletion and splice-site.
Frontiers in Immunology 03
2.4 Copy number variation analysis

Raw CNV data were obtained from the TCGA database and

processed with GISTICS 2.0 to detect highly amplified or deleted areas

(20). The level of mRNA expressions and CNV were combined and

quantified by using the Spearman correlation analysis to determine the

relationships (21). FDR was used to adjust p-values. The Log-rank test

was applied to determine the survival rates of different groups.
2.5 Methylation analysis

Methylation analysis was performed on the selected 14 cancer

types which the paired data was available. T-test was utilized to

evaluate the changes in methylation levels between tumor and normal

groups. Relationships between STGs’ mRNA expression and their

methylation levels were determined by using Spearman analysis. FDR

was used to adjust p-values. Median methylation values were

employed to stratify tumor samples into hypermethylated and

hypomethylated groups for further survival analysis.
2.6 Related pathway analysis

Based on 10 pathways closely related with cancers, the pathway

activity scores in thirty-three tumor samples were calculated, respectively.

The pathways were listed as below: TSC/mTOR, RTK, RAS/MAPK,

PI3K/AKT, hormone estrogen receptor (ER), hormone androgen

receptor (AR), epithelial–mesenchymal transition (EMT), DNA

damage response, cell cycle, and apoptotic pathway. STGs were

grouped into low and high groups based on their expression levels

between different pathway activity status (activation or repression), which

were defined by the median pathway scores (22). The distinction in

pathway activity score (PAS) across groups was determined by t-test. P-

values were adjusted by FDR. We anticipated that gene “A” was a

particular activator when PAS of Gene “A” with high expression was

greater than PAS of Gene “A” with low expression. Likewise, when PAS

(high expression of Gene “A”) was lower than PAS (low expression of

Gene “A”), we reasoned that gene “A” was a repressor (23).
2.7 Drug sensitivity analysis

The IC50 of 265 small molecular compounds in 860 cell lines and

STGs expression under the drug treatment were retrieved from the

GDSC database. We performed Pearson correlation analysis to

establish the association between STGs mRNA expression and the

IC50 concentration of the drugs. FDR was utilized to adjust p-values.

A positive correlation suggested that upregulated gene expression was

involved in the development of drug resistance.
2.8 Analysis of the relationship between
STGs and immunity

Correlation coefficients were calculated by using the ImmuCellAI

algorithm to evaluate the infiltration of twenty-four types of immune
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cells (24). Spearman correlation was utilized to analyze the link between

immune cell infiltration and GSVA score of STGs, with P-values

adjusted by FDR. Markers of the three immune-related pathways:

chemokines, MHC pathway, and immunostimulants were obtained

from the TISIDB database (http://cis.hku.hk/TISIDB/) (25). The

GEPIA2 database was further used to investigate the link (Pearson

coefficient) between STGs expression and the above three immune-

related pathways (26).
Frontiers in Immunology 04
2.9 Establishment and validation of
risk model

Multivariate Cox regression analysis was performed to create a

risk model of prognosis by using the R software’s SURVIVAL

package. The risk model was a RiskScore formula that included

multiple genes with a weight. A negative score indicated that the

certain gene was a risk factor, whereas a positive score indicated that it

was a protective factor. Based on the median values of the calculated

scores, patients were split into high-risk and low-risk groups. Log-

rank test was applied to examine Kaplan-Meier survival. Additionally,

ROC was utilized to evaluate the prediction accuracy of the model and

analyze the interaction of genes within risk. The p-values and hazard

ratios (HR) with 95 percent confidence intervals (CI) for Kaplan-

Meier curves were calculated using the log-rank test and univariate

Cox regression.
2.10 Nomogram analysis

The “forestplot” program was used for both univariate and

multivariate cox regression analyses to create forest plots that show

each variable’s p-value, HR as well as 95 percent CI. The “rms”

software was used to generate nomograms on the basis of the

multivariate Cox proportional risk analysis to forecast overall

survival at one, three and five years, respectively. The nomograms

graphically showed the outcomes of these variables and predicted

each patient’s prognosis risk using the points assigned to each

risk factor.
2.11 qRT-PCR analysis

Cell lines of HK-2, 786-O and Caki-1 were obtained from the

American Type Culture Collection® (ATCC, Virginia, US). In a 6-

well plate, cells were seeded at a density of 50,000. When the cells had

reached confluence, total RNA was extracted using Trizol reagent

(Invitrogen, NY, US). cDNA was synthesized using an iScript cDNA

synthesis kit (Bio Rad, Hercules, US). Using a qPCR equipment

(LightCycler® 480, Roche Life Sciences), real-time PCR was done

with Power SYBR Green PCR Master Mix (Thermo Fisher Scientific,

Massachusetts, US) and the gene-specific primers mentioned in Table

S1. The b-actin served as an internal control. Using the efficiency-

corrected 2−△△CT approach, the relative difference was reported as

the fold matched control values.
3 Results

3.1 SARS-CoV-2 virus target
gene identification

Four STGs including ACE2 (Angiotensin-converting enzyme

2), NRP1 (Neuropilin-1), SCARB1 (Scavenger Receptor Class B

Member 1), and AXL were identified and retrieved from the

VThunter database by querying the human receptors to which
TABLE 1 Abbreviation of cancer types and the number of samples.

Cancer type Abbreviation n

Adrenocortical carcinoma ACC 92

Breast cancer BRCA 1,218

Bladder uroepithelial carcinoma BLCA 411

Cervical squamous cell carcinoma and endocervical
adenocarcinoma

CESC 310

Cholangiocarcinoma CHOL 45

Colon adenocarcinoma COAD 329

Lymphoid neoplasm diffuse large B-cell lymphoma DLBC 48

Head and neck squamous cell carcinoma HNSC 566

Esophageal carcinoma ESCA 196

Glioblastoma multiforme GBM 174

Kidney chromophobe KICH 91

Kidney renal clear cell carcinoma KIRC 606

Kidney renal papillary cell carcinoma KIRP 323

Acute myeloid leukemia LAML 173

Brain lower grade glioma LGG 534

Liver hepatocellular carcinoma LIHC 359

Lung adenocarcinoma LUAD 576

Lung squamous cell carcinoma LUSC 554

Mesothelioma MESO 87

Ovarian serous cystadenocarcinoma OV 309

Pancreatic adenocarcinoma; PAAD 183

Pheochromocytoma and paraganglioma PCPG 187

Prostate adenocarcinoma PRAD 550

Rectal adenocarcinoma READ 105

Sarcoma SARC 265

Skin cutaneous melanoma SKCM 474

Stomach adenocarcinoma STAD 450

Testicular germ cell tumor TGCT 156

Thyroid cancer THCA 572

Thymoma THYM 122

Uterine corpus endometrial carcinoma UCEC 201

Uterine carcinosarcoma UCS 57

Uveal melanoma UVM 80
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the SARS-CoV-2 virus targets (13). The developers of the database

manually selected up-to-date datasets generated in animal scRNA-

seq research, evaluated them using a single processing pipeline,

categorized 107 viral receptors in 142 viruses, and derived correct

expression signatures in 2100962 cells from 47 animal species

(13).. Suggested by one of the reviewers, the additional STG

TMPRSS2 (Transmembrane serine protease 2) that is also

involved in the viral entry and spread of coronaviruses like

ACE2, was further added for analysis. Information on these

STGs and the relevant experimental supporting literature can be

found in Table 2.
3.2 Significant expression differences of
STGs between tumor and normal tissues

STGs were aberrantly expressed in 13 solid tumors (P<0.05,

Figure 2A and Table S2), including KICH, LUSC, BRCA, LIHC,

BLCA, COAD, PRAD, THCA, LUAD, HNSC, ESCA, KIRP and

KIRC, but not STAD. Particularly, SCARB1 expression levels were

considerably elevated (P<0.05) in several malignancies. Except for

TMPRSS2, which was down-regulated, the other four STGs were up-

regulated in KIRC (P<0.05).

Then the correlation between gene expression and survival was

further analyzed. The results showed that NRP1 expression was

related to poor survival and regarded as a risk factor in STAD,

CESC, READ and UVM (HR>1) but correlated with high survival as

a protective factor in KIRC (HR<1) (Figure 2B and Table S3).

SCARB1 was linked to poor survival (HR>1) in HNSC, UVM and

SKCM but to high survival as a protective factor in LGG (HR<1).

Additionally, AXL was a risk factor (HR>1) in STAD, LGG, MESO,

and KIRC, but a protective factor (HR<1) in SKCM and KIRP.

TMPRSS2 was a risk factor (HR>1) in BRCA, but a protective factor

(HR<1) in KICH, LUAD and THYM. Finally, ACE2 was a protective

factor (HR<1) in UVM, MESO, KIRC and LIHC. These findings

implied that abnormal STG expression may influence the

occurrence and prognosis of multiple types of cancers via

different mechanisms.
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3.3 Somatic mutations of STGs

Based on the previous analyses, the gene expression of STGs in

different types of cancers and the relationship with survival have been

showed. It suggested that STGs may be largely linked to multiple

cancers. As we know, somatic mutations of certain genes are often

considered the initiation of cancers. Hence, in this part, the single-

nucleotide polymorphism (SNP) information of STGs was examined

to determine the frequency and variation type presented in each

cancer type. As shown in Figure 3A and Table S4 mutations of STGs

were existed in all the cancer types which were included in this study

except KICH. Notably, STGs were more frequently mutated (up to

9%) in UCEC and SKCM compared to other cancers. Furthermore,

the missense mutation was the main type of mutation. Based on the

SNV percentage analysis, the missense mutation rates were ranked as

follows: AXL (37%), NRP1 (33%), ACE2 (25%), TMPRSS2 (17%) and

SARB1 (15%) (Figure 3B). Next, the analyses showed that the somatic

mutations of ACE2 were protective factors in UCEC (HR<1), while

the mutations of AXL in LUAD, NRP1 in SKCM were risk factors

(HR>1). These findings implied that the mutations of STGs

significantly affected the prognosis of multiple malignancies

(Figure 3C and Table S5).
3.4 Copy number variation of STGs

Except Single-nucleotide polymorphism, copy number variation

also contributes largely to the genetic structural variation of the

genomes. Thus, the CNV changes of STGs in cancers were further

explored. Firstly, as seen in Figure 4A and Table S6, heterozygous

amplification and deletion were the two primary CNV types of STGs

(Typical CNV types included: TMPRSS2, ACE2, NRP1, AXL,

SCARB1). The expression of STGs has significant correlation with

CNV, such as SKCM, LUAD, LUSC, OV in SCARB1, LGG in AXL,

and SARC in NRP1(Figure 4B and Table S7). In Figure 4C and Table

S8, it is showed that CNV alterations of STGs were a risk factor in

UCEC, LAML, LGG and GBM, which were inversely linked with

survival. According to these findings, heterozygous amplification and

deletion made up the majority of CNV alterations in STGs, which are

correlated with STG expression and tumor prognosis, which may be

indicative of a poor prognosis.
3.5 Methylation analysis of STGs

In order to understand epigenetic regulation of STGs, the

methylation status of STGs was investigated. The correlation studies

revealed a negative relationship between the expression and methylation

levels of STGs in the majority of malignancies (Figure 5A and Table S9).

In Figure 5B and Table S10, hypermethylation of STGs was shown to

play an important role in several tumors, as TMPRSS2 in UVM and

GBM; ACE2 in LIHC and ESCA; AXL in MESO, LIHC and PAAD;

NRP1 in MESO, LIHC, ACC, LGG and HNSC; and SCARB1 in PRAD,

THYM, SKCM, UVM were considered as protective factors for good

survival (HR<1), while TMPRSS2 in LUAD, KIRP and KIRC; ACE2 in

ACC andUVM; AXL in ACC; NRP1 in KIRC; and SCARB1 in LGG and

KIRC were regarded as risk factors for poor survival (HR>1).
TABLE 2 STGs and the relevant experimental supporting literature.

Gene name Gene symbol Literature

Angiotensin I converting enzyme 2 ACE2
PMID: 32142651
(27)

Neuropilin 1 NRP1
PMID: 33082294
(28)

Scavenger receptor class B member
1

SCARB1
PMID: 33244168
(29)

AXL receptor tyrosine kinase AXL
PMID: 33420426
(30)

Transmembrane serine protease 2 TMPRSS2

PMID: 32276929
(31)
PMID: 34159616
(32)
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3.6 Analysis of the relationship between
STGs and cancer-related pathways

In this part, the connections between STGs and pathways that are

connected to cancer were explored. All five STGs were found to be
Frontiers in Immunology 06
heavily involved in a number of signaling pathways of cancer showing in

Figure 6A, including apoptosis, cell cycle, DNA damage, EMT, hormone

AR&ER, PI3K/AKT, RAS/MAPK, RTK, and TSC/mTOR. The number

in each cell of the graph indicated a certain gene involved in the pathways

of cancer types over all cancer types. In particular, AXL was deeply
frontiersin.org
A

B

FIGURE 2

Gene expression and survival analysis of STGs. All genes with significant differential expression are displayed. (A) STGs expression differences between
normal and tumor samples. (B) Survival analysis of STGs. The size of the dots represents the significance of the effect of the gene on survival for each
cancer type; p-value was calculated based on Kaplan-Meier analysis. Red or blue dots showed that the expression of a certain gene was respectively
associated with a poor or good survival of patients in the indicated cancer type.
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involved in the inhibition of cell cycle pathways but the activation of

EMT pathways. These results indicated that STGs played an important

role in the regulation of cancer-related pathways.
3.7 Analysis of STGs and tumor
drug resistance

Genomic changes affect patient clinical response to chemotherapy

and targeted therapies. In Figure 6B, it showed a significant relationship

between STG expression and tumor resistance to 30 anti-tumor drugs
Frontiers in Immunology 07
(calculations by IC50). It suggested that aberrant STG expression may be

a mediator of tumor resistance to chemotherapy and targeted therapy.
3.8 Relationship between STGs
and immunity

InfiltrationScore in cancers and GSVA scores of STGs were

associated with each other. In fact, the expression of the respective

one-third or two-third immune infiltrating cells was negatively or

positively correlated with GSVA scores of STGs in the majority of
A

B

C

FIGURE 3

Frequencies of single nucleotide variants (SNVs) and variant types of STGs. (A) Mutation frequencies of STGs. Numbers represented the mutations
harbored of the indicated gene in a particular cancer type. “0” indicated no mutations in the gene’s coding region; and “null” indicated no mutations in
any region of the gene. (B) A waterfall plot of tumor distribution showed the distribution of mutations in STGs and the classification of SNV types. (C) The
relationship between SNV and STGs survival. Risk ratios and Cox P values were presented by bubble color and size. The color of the bubbles, from blue
to red, represented low to high hazard ratios; and bubble size was positively associated with the significance of Cox P value. Black border outlines
indicated Cox P values ≤ 0.05.
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cancers (*: P-value ≤ 0.05; #: FDR ≤ 0.05) in Figure 7A. In particular,

the expression of STGs was significantly and positively correlated

with the immune infiltration fraction in most of the tumors except

ESCA, DLBC, MESO, ACC, LAML, CHOL, LIHC. Our analyses also

showed favorable correlations between STGs and immunostimulatory

pathways (R = 0.35), MHC immune pathways (R = 0.3) as well as

chemokine immune pathways (R = 0.41) (Figures 7B-D). According

to these findings, STGs were linked to tumor immunity and may affect

tumor growth by promoting tumor immune pathways.
3.9 Predictive characteristics of STGs in
LUAD and KIRC

Because all five STGs are abnormally expressed in KIRC, this study

considered KIRC for evaluating a risk prognostic model based on STGs.

Meanwhile, as the SARS-CoV-2 is a respiratory virus, we also

considered LUAD. Five STGs were identified by multivariate Cox

regression analysis and were utilized to create predictive features in

LUAD and KIRC. In LUAD, Riskscore = (0.135) *ACE2 + (0.001) *

NRP1 + (0.1469) * SCARB1 + (0.1219) * AXL + (-0.1506) * TMPRSS2.

In KIRC, riskscore = (-0.2469) * ACE2 + (-0.3409) * NRP1 + (-0.0526) *

SCARB1 + (0.2364) * AXL + (-0.1833) * TMPRSS2. Based on the

median cut-off point of the risk score, all patients were divided into

high- and low-risk groups according to their prognosis scores. Each

STGs expression value in the formula connected to the risk score was

shown on the heat map. In both LUAD and KIRC, when the risk score

rose, the survival decreased and the cancer-related mortality increased
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(Figures 8A, D). Patients with low risk scores were considered to have a

greater chance of achieving the same survival time than those with high

risk scores (Figures 8B, E). The AUC value of one-year survival

analyzed by ROC for prognostic characteristics was 0.646 in LUAD,

while the AUC value of one-year survival analyzed by ROC for

prognostic characteristics was 0.733 in KIRC (Figures 8C, F). This

result demonstrates the possibility of validity of STGs for tumor

prediction and, more importantly, the important correlation between

STGs and tumors. Interestingly, the prognostic value of LUAD is worse

than that of KIRC, which may be due to severe LUAD and

superimposition of diseases such as COVID-19.
3.10 Nomogram analysis of STGs and
clinical factors in LUAD and KIRC

In order to develop a clinically applicable method to evaluate the

chance of patient survival, it is needed to construct a prediction model

that took clinicopathological parameters into consideration. Based on

univariate and multivariate analyses of OS rates in LUAD (Figures 9A, B)

and KIRC (Figures 9C, D), the nomogram line plots were built. They

used Cox regression algorithm to predict 1-year, 3-year, and 5-year OS in

the discovery group, and the predictors included NRP1, pT-stage, and

grade. The C-index was found to be 0.713 in LUAD (Figure 9E) and 0.73

in KIRC (Figure 9F), which had predictive power. In comparison to ideal

models in the whole cohort, calibration plots for the 1-year, 3-year, and 5-

year OS rates in LUAD (Figure 9G) and in KIRC (Figure 9H) showed

correct predictions.
A

B C

FIGURE 4

Copy number variation (CNV) was an influential factor in the abnormal expression of STGs. (A) Distribution of CNVs in thirty-three cancer types. Pie charts
depicted the proportion of various CNV forms of a certain gene in a particular tumor, with different colors representing various CNV types. (B) Bubble plots
indicated the correlations between the mRNA expression of STGs and CNV levels. Blue or red bubbles respectively represented the negative or positive
correlation. The darker the bubble color, the stronger the association. The larger the bubble size, the greater the FDR significance. The black border outlines
signified FDR ≤ 0.05. (C) Relationship between CNV and survival of STGs in cancer. The log-rank P values were represented by the size and color of the
bubbles. The bubble size was positively connected with the significance of Log-rank P value. The bubble color from blue to red showed the relevance of
Log-rank P value from low to high. The black border outlines indicated the Log-rank P value ≤ 0.05.
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3.11 qRT-PCR analysis of STGs in KIRC

The results showed that the transcript levels of all the STGs (ACE2,

NRB1, SCARB1, AXL) were upregulated in KIRC. TMPRSS2 was

downregulated in KIRC. Besides, the basal expression of TMPRSS2 is

very low in the KIRC cell lines (Figure 10). This result experimentally

validates that STGs are aberrantly expressed in tumors.
4 Discussion

Since it is largely unknown how SARS-CoV-2 virus and

malignancies interact, more research is required. We extensively

characterized SARS-CoV-2 virus target genes in multiple samples of

thirty-three cancers by multi-omics data analysis. It has been shown

that SARS-COV-2 infection can modulate the lung tumor
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microenvironment by disrupting the vulnerable immune

mechanisms that lead to cytokine storms and cellular metabolic

variation, resulting in increased severity (33). Potential

immunosuppression, upregulated cytokine levels, changed

expression of ACE-2 and TMPRSS2, and a prothrombotic state

may exacerbate the effects of SARS-CoV-2 on cancer patients, have

the potential to be exploited as biomarkers for serious diseases and

therapeutic targets; and preliminary reports suggest that susceptibility

to SARS-CoV-2 virus infection may be higher in cancer patients, but

current evidence remains poor (34). Meanwhile, there is still a lack of

research between neocoronavirus and cancer at the level of targeted

genes. Our findings established a plausible link between SARS-CoV-2

virus target genes and tumors, as well as new information for cancer

patients who are more vulnerable to virus infection.

Firstly, we assessed the STG genetic signature in thirty-three

malignancies. We discovered that five STGs expressed abnormally in
A

B

FIGURE 5

Methylation of STGs. (A) Correlation of methylation with STGs expression. Blue or red dots respectively represented negative or positive correlations The
darker the color, the greater the association. (B) Disparities in survival between hypermethylated and hypomethylated STG samples. Risk ratios and Cox P
values were indicated by the size and color of the bubbles. The color of the bubbles, from blue to red, showed low to high hazard ratios, and their size
was positively connected with the significance of the Cox P value. Cox P values ≤ 0.05 were denoted by black border outlines.
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a variety of malignancies and participated in carcinogenesis, which

may have an impact on tumor prognosis. As shown in Figure 11,

TMPRSS2 and AXL was down-regulated often in cancers but

SCARB1 showed the reverse trends, while all of three was shown to

be expressed abnormally more frequently than ACE2 and NRP1,
Frontiers in Immunology 10
which could not provide an expression patten possibly due to their

limited situations. Interestingly, three STGs including NRP1,

SCARB1, and AXL were demonstrated that their over-expressions

were related with the bad prognosis more than the good prognosis of

cancer patients, while the down-regulation of ACE2 and TMPRSS2
A

B

FIGURE 6

Correlation of STGs with cancer pathways and drug sensitivity. (A) Percentage of gene mutations of STGs’ potential impact on the pathway activity. The
percentage indicated the mutations existed in a certain gene which had an effect on the pathways (FDR <= 0.05) over all the cancer types listed in this
study. (B) Bubble plots summarized the correlation between STGs expression and drug IC50 (tumor drug resistance). Blue or red bubbles respectively
represented negative or positive correlations. The deeper the color, the stronger the association. The larger the size, the greater FDR significance. Black
border outlines denoted FDR ≤ 0.05.
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was exhibited to be more frequently associated with the poor

prognosis. The results of the present study are in better agreement

with the results of previous experimental studies. ACE2, a well-known

host receptor of SARS-CoV-2 virus, could be a prognostic biomarker

of BRCA, and its over-expression was associated with good prognosis

(35, 36). TMPRSS2, a key gene mediating the entry of SARS-CoV-2

into humans, is highly expressed in prostate cancer and its high

expression could promote the development of prostate cancer (37–

40). NRP1, serving as a key factor of SARS-CoV-2 virus infection (41),

could increase the susceptibility of cancer patients to SARS-CoV-2
Frontiers in Immunology 11
virus and targeting (42), and its overexpression is associated with

poor prognosis in bladder cancer cells and hepatocellular carcinoma,

and inhibiting its expression could promote tumor cell apoptosis (43,

44). In addition, the increased expression of SCARB1 could promote

cell transformation towards malignancy of clear cell renal cell

carcinoma leading to poor prognosis of patients (45), while the

over-expression of AXL could accelerate EGFR mutation and

promote the metastasis, invasion or drug resistance of tumors such

as lung cancer (46), colorectal cancer (47), pancreatic cancer (48) and

prostate tumor (49).
A

B DC

FIGURE 7

Immunoassay of STGs. (A) Association between immune cell infiltration and the Score of STGs. Heat map summarized the significance of P values and
FDR based on the Pearman correlation analysis between input gene set GSVA scores and immune cell infiltration. Blue or red dots respectively indicated
negative or positive correlations, where the darker the color, the stronger the correlation. *P value ≤ 0.05; #FDR ≤ 0.05. (B) Correlation between STGs
and immunostimulant immune pathway. R represented the correlation, and R>0 indicated the positive correlation. (C) Correlation of STGs with MHC
immune pathway. R represented the correlation, R>0 indicated the positive correlation. (D) Correlation of STGs with chemokine immune pathway. R
represented the correlation, and R>0 indicated the positive correlation.
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Then, genetic and epigenetic studies have also shown that high

frequencies of SNV, CNV, and methylation were noted in these five

STGs, which may impact STGs expression in malignancies and affect

the prognosis of cancer patients. Figure 11 showed the SNVs of STGs

occurred in most tumor types, however, they were not correlated with

the tumor prognosis except for a few situations. In addition, the

CNVs of the five STGs were all connected with their expressions in

many tumors (SCARB1 most in 18 cancers, TMPRSS2 in 13 cancers,

followed by AXL in 10 cancers, ACE2 in seven cancers and NRP1 in

six cancers) and the majority of the associations showed positively,

indicating that CNVs of STGs were normally associated with the up-

regulation of STGs expression and were implicated in the promotion

of tumor growth. Moreover, the methylations of STGs were also
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linked with their expressions in tumors. In fact, their associations

(SCARB1 most in all investigated 33 cancers, followed by NRP1 in 31

cancers, TMPRSS2 in 27 cancers, AXL in 25 cancers and ACE2 in 13

cancers) appeared in more cancer types than those of CNVs with the

same trends among the five STGs. However, the majority of the

associations showed negatively, indicating aberrant hypermethylation

of STGs promoted down-regulation of STGs expression in cancers

and was involved in the control of tumor growth. Finally, though the

association of methylations with the tumor prognosis were shown in

no more than six cancer types, among which 5/6, 3/4, 2/3, 1/2, and 2/5

of them showed positively in NRP1, AXL, SCARB1 ACE2 and

TMPRSS2 respectively, indicating a good outcome at least 40% of

these STGs methylations in malignancies. On the basis of these
A B

D E

F

C

FIGURE 8

Prognostic risk model of STGs in LUAD and KIRC. (A-C) LUAD. (D-F) KIRC. (A, D) Sample distribution of risk score analysis according to the prognostic
risk model of STGs. Different patterns of survival status and time for low- and high-risk clusters. Heat map of cluster analysis showed the expression of
STGs of each patient based on the risk model. (B, E) Kaplan-Meier survival curves for patients OS in the low and high-risk groups. HR > 1 suggests a risk
model while HR < 1 suggests a protection model; 95% CL denotes the HR confidence interval; Median survival time denotes the time on the basis of the
survival rate at 50% in both low-risk and high-risk groups in years. (C, F) The ROC curves of the risk models at various times with larger AUC values
indicating greater predictive power.
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findings, we hypothesized that genetic and epigenetic modifications in

STGs would regulate the init iation and progression of

multiple malignancies.

In this study, one point that can’t be ignored is that the role of

immunity in tumor and COVID-19 is discussed through STGs. ACE2

and NRP1 play an important role in SARS-CoV-2 virus infection and

tumor progression (50). The outcome of SARS-CoV-2 infection can

be determined by the immune microenvironment of the tumor, and

immune mechanisms in different tumors may have influenced the

SARS-CoV-2 receptor expression among other factors leading to
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different evolutionary trajectories (51). Studying the potential

immune impact between STGs and pan-cancer may be beneficial to

further explore the different immune responses and mechanisms of

SARS-CoV-2 infection in patients with different tumors and to

improve immunotherapy for cancer. Recently, the human cell

receptor ACE2 of SARS-CoV-2 has received extensive attention due

to its role in SARS Co V-2 infection, and the up-regulation of ACE2 is

related to the anti-tumor immune characteristics, the increase of PD-

L1 expression and the good anti-PD-1/PD-L1/CTLA-4

immunotherapy response. Before being a common mediator of
A B

D

E F

G H

C

FIGURE 9

Nomogram analysis of STGs and clinical factors in LUAD and KIRC. (A, B, E, G) LUAD, (C, D, F, H) KIRC. (A, C) Forest map of univariate survival analysis.
(B, D) Forest map of multivariate survival analysis, p-value<0.05 represents significant relation to OS. (E, F) Developed nomogram of KIRC patients. The
nomogram was developed with the NRP1, pTstage and grade. (G, H) Calibration of nomograms. Calibration curves of the nomogram.
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SARS-CoV-2 virus infection, NRP1 has been a regular visitor in

cancer research, and it has been proved to be related to the immune

system (28, 52). NRP1 is a specific surface marker of CD4 +

25regulatory T cells, maintaining the stability and function of

regulatory T cells (53, 54). Because of its unique significance for

cancer immunology and immunotherapy, it can be used as a potential

target for immunotherapy (55, 56). AXL is also a research hotspot of

tumor molecular targeted therapy, and Axl signal transduction

promote s immunosuppr e s s i on and tumor induc t i on

microenvironment by changing the secretion of cytokines that

regulate the transport, migration, polarization and adhesion of

immune cells (57–59). SCARB1 can be used as a receptor target to

mediate drug regulation of immune microenvironment for the

treatment of tumors (60, 61).

Each of the five STGs has proved its importance in the immune

system and may affect the balance of the immune system. In this

study, among 33 kinds of tumors, these five STGs are taken as a whole

to study their relationship with immunology, it is found that among

33 kinds of tumors, they have significantly positive correlation with

immune infiltration and also have significant correlation with various

immune cells. At the same time, the STGs are positively correlated

with MHC, immune system and chemokine. The results of this study

indicate the immune importance of the five STGs in this study, and

also reflect the possibility of SARS-CoV-2 virus infection profoundly

affecting human immune system. Previous results and the results of

this study show that these STGs play important roles in virus

immunology and tumor immunology. The changes of these STGs
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may affect the immune system, and then affect virus infection and

tumor occurrence and development. Both tumors and SARS-CoV-2

virus destroy the balance of the immune system through STGs, which

may create an immune microenvironment that is easy for the other

party to invade. The unbalanced immune microenvironment

becomes a bridge between SARS-CoV-2 virus and tumors.

STGs were identified in the pathway investigation as significant

cancer-related signaling pathway regulators. Different STGs cause

erratic activation or inhibition and are connected to distinct signaling

pathways which are relevant to cancer. These results raised the

possibility that STGs work as a network of links among signaling

pathways linked to cancer and may aid in the development of tumors.

Furthermore, by providing potential directions for immunotherapy

improvement, the data demonstrated that STGs play a crucial role in

tumor immunotherapy. In the meanwhile, STGs were associated with

tumor drug resistance based on the analyses we conducted. Therefore,

targeting STGs for the treatment of cancer patients who are infected

by SARS-CoV-2 virus might be an appropriate option.

In order to support the association between SARS-CoV-2 virus

and cancers, this study examined the predictive properties of STGs in

patients with malignancies and developed a prognostic risk model for

KIRC based on STGs. Progression of cancers has been proven to be

highly correlated with STGs which were used for risk modeling in this

study. According to the study’s survival analysis, the established risk

model was qualified to predict the survival of KIRC patients. It also

developed a prognosis columnar map of KIRC that comprised clinical

factors and STGs. In KIRC, NRP1 can not only build a risk prediction
FIGURE 10

qRT-PCR analysis of STGs in KIRC (n = 3). p<0.05 was considered significant. *p<0.05, **p<0.01, ***p<0.001, ****p<0.001, ns, not significant.
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model with good prediction performance together with the other

three STGs (Figure 8), but also show its key position in KIRC in

univariate analysis and multivariate analysis, and can build a robust

nomogram prognosis model with clinical factors (Figure 9). These

two prediction models had strong predictive performance and further

clarified the potential of NRP1 in STGs as a crucial gene for

prognostic diagnosis choice. We discovered that these findings

supported the prognostic and predictive significance of STGs

in malignancies.

The results of this study are significant and offer fresh perspectives

on the investigation of the mechanism underlying the interaction

between malignancies and COVID-19. Secondly, STGs are altered at

the most important regulatory levels, including the genetic and

epigenetic levels, the milieu of immune infiltration, and the route

level. These modifications may then result in variations in

pharmacological effects, therapeutic response, and patient survival.

The findings of this study also point to the genomic and clinical

characteristics of STGs in tumors, revealing a close connection

between SARS-CoV-2 virus and pan-cancer. COVID-19 may also
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be able to affect tumorigenesis and prognosis through STGs, and they

are frequently immune-related, suggesting a potential resource with

useful referential properties for viral and immunotherapy in tumors.

The key drawbacks of this study are the paucity of studies to explore

the influence of SARS-CoV-2 virus infection on tumors via STGs.

Additional research is required to validate these findings.
5 Conclusion

In summary, the multi-omics analysis elucidated the genomic and

clinical features of SARS-CoV-2 virus target genes in various cancers.

The outcomes demonstrated a correlation between the expression of

SARS-CoV-2 target genes and tumor prognosis, immune and drug

sensitivity. In addition, there are a number of intriguing mechanisms

linking SARS-CoV-2 virus target genes to cancer-related pathways.

SARS-CoV-2 virus and cancers may have a close relationship, and a

novel and essential cancer therapy may be derived from the SARS-

CoV-2 virus and immunity.
A B

D EC

FIGURE 11

Two-dimensional map (heat map) of correlation of related factors based on genes. Red represents upward adjustment, positive correlation or presence.
Blue represents down-regulation, negative correlation. White represents insignificant, non-existent or missing correlation. (A) ACE2, (B) NRP1,
(C) SCARB1, (D) AXL, (E) TMPRSS2.
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