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The need and benefit of immune
monitoring to define patient
and disease heterogeneity,
mechanisms of therapeutic
action and efficacy of
intervention therapy for precision
medicine in type 1 diabetes
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Department of Internal Medicine, Section of Immunomodulation and Regenerative Cell Therapy, Leiden
University Medical Center, Leiden, Netherlands
The current standard of care for type 1 diabetes patients is limited to treatment of

the symptoms of the disease, insulin insufficiency and its complications, not its

cause. Given the autoimmune nature of type 1 diabetes, immunology is critical to

understand the mechanism of disease progression, patient and disease

heterogeneity and therapeutic action. Immune monitoring offers the key to all

this essential knowledge and is therefore indispensable, despite the challenges and

costs associated. In this perspective, I attempt to make this case by providing

evidence from the past to create a perspective for future trials and

patient selection.

KEYWORDS

immunotherapy, type 1 diabetes, immune intervention, precision medicine, immune
monitoring, autoimmune disease, disease endotypes, mechanism of action
Introduction

The type 1 diabetes (T1D) community has been blessed with an impressive gain in insight

into the immunopathogenesis of T1D in recent years. Detection of islet autoantibodies has

been standard of practice to confirm a diagnosis of T1D or to predict future development of

this disease (1). Islet autoantibodies have proven unambiguous, robust and specific immune

correlates of risk and development of T1D (2). With the autoantibody targets (pro)insulin,

zinc-transporter 8 (ZnT8), glutamic acid decarboxylase 65kDa (GAD65) and insulinoma

antigen-2 (IA-2) being intracellular and thus being inaccessible, the conundrum of

autoantibodies in relation with T1D has not yet been resolved and a pathogenic role

remains elusive. Accordingly, their role as correlates of successful immune intervention

has been disappointing: preserved beta-cell function so far does not associate with changes in
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islet autoantibody appearance in immune intervention trials of T1D,

despite many efforts (3). This notion sets the bar high to define

immune correlates of immune intervention therapy: we need to define

suitable leukocyte profiles or markers of islet-specific T-cells that

could help to assess mechanism of therapeutic action and/or beta-

cell preservation.
Immunopathogenesis of
type 1 diabetes

Islet autoreactive CD4 and CD8 T-cells can be detected in blood

of T1D patients (4–12). Since their presence is not limited to T1D

patients (6, 13, 14), islet autoreactive T-cells cannot be used

diagnostically on the individual basis, but changes in their profiles,

reactivity and frequency have been shown to correlate with disease

and recurrence of T1D after beta-cell replacement therapy. The

targets of islet autoreactive T-cells are numerous and include

insulin, proinsulin, preproinsulin, GAD65, 38kDa insulin granule

protein, ZnT8 and IA-2 (15). Recently, a new universe of modified

beta-cell proteins targets was identified as neoantigens in T1D that

include post-translational (chemical and enzymatic changes) (16–18)

and post-transcriptional modifications (alternative splicing of mRNA

and misreads resulting from ribosomal infidelity) (19, 20). Given that

these neoantigens are not expected to contribute to thymic education

and central immune tolerance, their immunogenicity is high, and

their terms of engagement differ from T-cell responses against native

self-proteins: T-cells against native autoantigens tend to have lower

TCR avidity and docking abnormalities, while their epitope binding

affinity to HLA often is low (11, 12, 18, 21–25); T-cells reactive with

neoantigens resemble those against viruses, bacteria and alloantigens

(17–19, 26, 27). This renders neoantigens strong candidates

provoking the immune system and contributing to loss of immune

tolerance and epitope spreading that both precede and follow

diagnosis of T1D. Neoantigens also point to a role of the target

tissue in its own demise, since these proteins changes tend to follow

metabolic, inflammatory or infectious stress of pancreatic islets (15).

Efforts to standardize robust immune assays to detect islet-specific

autoreactive T-cells have been challenging (28–39). Decades of

attempts to standardize T-cells assays by the Immunology of

Diabetes Society have led us to appreciate that T-cell autoreactivity

does not equal serology in terms of opportunities and expectations to

run these assays routinely to robustly measure islet autoimmunity as

diagnostics. The frequencies of islet autoreactive CD8 and in

particular CD4 T-cells in circulation is very low. Together with the

wide range of candidate islet proteins, epitopes and HLA restriction

elements, this affects the feasibility to detects islet autoreactive T-cells

comprehensively. In case of CD8 T-cell autoreactivity, combinatorial

assays were developed to reduce blood volume needs and allow

simultaneous detection of different T-cell specificities (7, 28). HLA

class II tetramers have rarely been used, and with few HLA-DR

polymorphisms and epitopes only (40). No consensus has yet been

reached on cryopreservation, ELISPOT and proliferation protocols,

but cryopreservation does affect islet autoreactive T-cell responses,

notably in case of IL-10 production (41–44). Functional T-cell have

been regarded as ‘boutique’ assays that require particular skills and
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expertise to be executed, thus limiting their use in multicenter clinical

trials (3). Detection of islet autoantigen-specific regulatory T-cells

(Treg) in clinical blood samples is particularly challenging (45, 46).

There are specific Treg phenotypes. Indirectly, the presence of

immune regulation of islet autoimmunity can be detected either by

IL-10 production by PBMC in response to stimulation with islet

autoantigens identified by ELISA (47, 48) or cytokine capture by

FACS (10), by cell sorting (10, 49) or limiting dilution analyses (50)

showing both effector and regulatory T-cell subpopulations

responding to insulin, and by blocking T-cell responses to insulin

or GAD65 with anti-HLA-DQ antibodies (51).

This being stated, it does not exclude benefit of T-cell studies to

understand disease heterogeneity and progression, and therapeutic or

clinical efficacy of immune intervention strategies (8). Given the

disappointing outcomes of clinical trials in T1D and the growing

awareness of patient and disease heterogeneity, there is an unmet

need to define this heterogeneity, mechanism of therapeutic action,

responsiveness and clinical efficacy of such trials (52–54). I propose

that immune monitoring may offer measures to stratify patients to

participate in trials based on immune signatures and genetic barcodes.
Disease endotypes?

Genetic diversity between T1D patients is one of the signs that the

disease may differ between patients (Figure 1) (9, 52, 55). HLA

polymorphisms correlate with islet serology and T-cell responses,

which is related to the role of HLA in thymic education and antigen

presentation. In addition, genetic polymorphisms in for instance IL-2

signaling or vitamin D3 metabolism have implications for efficacy of

related immune intervention strategies (56–60). So-called genetic risk

scores differ between ancestries and ethnicities, which may reflect

different corresponding disease endotypes, as suggested by disease

acceleration by abatacept in patients ‘of color’ (ethnicity was not

further specified by the authors) versus preservation of beta-cell

function in patients of European descent (61–64). Perhaps to most

visible correlate of disease variation is age: T1D often presents more

aggressively and acutely in infants, whereas disease progression and

loss of beta-cell function is more moderate in T1D diagnosed in

adults. Insulin autoantibodies are most frequent to first appear in

infants below the age of 2, and if they carry HLA-DR4, whereas older

children show GAD65 antibodies first before converting to T1D, with

HLA-DR3 as genetic correlate (65). The lesion also shows differences

with age, with insulitis being moderate in older T1D patients (66).

Even in children, two patterns were identified, with children

diagnosed before 7 years of age often showed a high rate of

inflammation with leukocytes that even included some B cells,

whereas children diagnosed beyond 12 years of age show less

inflammation and rarely any B-cells (9, 66). This difference in

insulitis was mirrored by abnormalities in the remaining beta-cells,

with younger cases showing co-localization of proinsulin with insulin,

possibly pointing to impaired beta-cell biosynthesis, function and

stress. Importantly, T-cell autoreactivity in the pancreatic lesion

appears to reflect what is seen in circulation but the reverse is not

always true (6, 14, 26, 67–70). Islet autoreactive T-cells isolated from

circulation can lyse beta-cells (i.e., diabetogenic) (19, 71), home to
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pancreatic tissue (72) and cause T1D upon adoptive transfer into

humanized mice (73). In terms of T-cell reactivity, distinct profiles of

CD4 T-cell autoimmunity could be identified in children with T1D,

where some showed immune reactivities to all four tested islet

autoantigens (PPI, IA-2, DRiP and GAD65), whereas others

responded to none, and half of the children reacted with 2-3 islet

autoantigens. Curiously, epitope spreading was most pronounced in

children with the longest disease duration, implying activation of new

T-cells to new islet autoantigens even after diagnosis. Comparison of

T-cell autoreactivity to insulin before and after diagnosis and

initiation of insulin replacement therapy revealed a loss of

autoreactivity to insulin rather than exacerbation of this response

(74). Yet, no autoimmune T-cell correlates could be identified that

associated with a temporary clinical remission and reduced insulin

need (‘honeymoon’) often seen in the first year after diagnosis of T1D,

even though serum cytokine profiles relating to remission were

reported (75–77). Autoimmune phenotypes also differed between

children and adults, while half of the T1D patients showed signs of

IL-17 in response to islet autoantigens (78), underscoring the use of

T-cell assays to determine disease heterogeneity and possibly point to

endotypes more or less likely to respond to particular intervention

therapies. While frequencies of islet autoreactive T-cells often overlap

between T1D cases and non-diabetic control subjects, their

functionality may differ (48). Intriguingly, T-cell reactivity to islet

epitopes was characterized by proinflammatory responses (i.e., IFNg)
in diabetic cases versus anti-inflammatory or regulatory responses

(IL-10) in age- and HLA-matched controls. Curiously, patients

showing both IFNg and IL-10 in response to islet epitopes

manifested disease significantly later than those only producing

IFNg. These observations illustrate the presence of favorable and

unfavorable immune signatures that may help identify disease

endotypes with faster or slower progression and guide patient

selection for distinct therapeutics.
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Identification of therapeutic targets

Immunological monitoring studies have also pointed to potential

targets of therapy. For instance, the cytokine production patterns in

response to stimulation with islet epitopes has led to the development

of several therapeutic strategies aiming to convert a proinflammatory

response into an anti-inflammatory one, either with peptides

injection in solution, or loaded into tolerogenic dendritic cells or

nanoparticles (8, 22, 47, 79–90). The discovery of impaired IL-2

signaling has led to assessment of ultra-low dose IL-2 to selectively

stimulate regulatory T-cells (60, 91), while IL-17 production by some

patients in response to islet epitopes has made pharma consider to test

blockade of this cytokine as intervention strategy (78). The expression

of the chemokine receptor CXCR3 by islet infiltrating autoreactive T-

cells and the production of the corresponding ligand, chemokine

CXCL10 (IP-10), by distressed beta-cells pointed to the opportunity

to interfere in leukocyte migration to pancreatic islets (92, 93). A

therapeutic monoclonal antibody against B-cells (rituximab) has been

tested to preserve beta-cell function shortly after diagnosis (94). Not

surprisingly, given my exposé above, this drug only had some effect in

the youngest patients. Most importantly, the undisputed role of T-

cells in the pathogenesis of T1D has led to the development of several

anti-T-cell therapeutic strategies that showed benefit in subsets of

patients to either preserve beta-cell function or delay clinical

manifestation of the disease (95–97). Additional candidates for

targeting by immunotherapy are shown in Figure 1.

Mechanism of therapeutic action
(immunological efficacy)

Immunological assays are ideally suited to determine the

mechanism of action and potential identify subsets of patients
FIGURE 1

The need and benefit of immune monitoring of T1D patients before and during therapeutic immune intervention. Different aspects of immune
monitoring with regard to defining disease heterogeneity, that may lead to the identification of targets of therapeutic intervention. Once such immune
intervention is explored in clinical trials, immune monitoring can help define the mechanism of immunological action of an intervention strategy, as well
as define baseline characteristics or immunological correlates that may act as endpoints of clinical therapeutic efficacy. It is believed that immune assays
may help determine patient subgroups with particular disease entities (endotypes) with particularly favorable chances of clinical benefit (precision
medicine), which will avoid subjecting other patients with unlikely clinical benefit to a particular therapeutic intervention strategy.
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better suited for certain strategies. For instance, in-vitro studies of

inhibitors of the co-stimulatory checkpoint CTLA4 that is important

in activation and regulation of T-cells responses by antigen-

presenting cells proved to have differential effects on naïve T-cells

versus autoreactive memory T-cells, impairing activation of the first

but sparing reactivation of the latter and implying that this strategy is

best suited to prevent priming of naïve T-cells and epitope spreading

(63, 98, 99). The effects of anti-thymocyte globulin (ATG) and

humanized monoclonal antibodies against CD3 (ChAglyCD3) or

CD25 (daclizumab) were tested on prediabetic islet antigen-specific

autoreactive T-cells with regard to downmodulation of the target

protein, proliferation, cytokine production, complement-dependent

cytotoxicity (CDC), antibody-dependent cell cytotoxicity (ADCC),

and survival (100). ATG leads to depletion of autoreactive CD4+ T-

cells by ADCC, CDC, and apoptosis, whereas anti-CD3 and anti-

CD25 inhibited T-cell autoreactivity in a nondepleting fashion. ATG

treatment led to a cytokine burst of Th1- and Th2-associated

cytokines. Modulation of cytokine release through humanized

monoclonal antibodies was moderate and selective: anti-CD25 led

to increased release of IL-2 and reduced production of TNF, whereas

anti-CD3 decreased release of IFNg and IL-5 and increased secretion

of IL-10. Thus, ATG and the humanized monoclonal antibodies

displayed contrasting mechanisms of action.

Ex-vivo analyses of blood samples from participants of immune

intervention trials also helped to define the therapeutic mechanism of

action. CD19+ B lymphocytes were depleted in patients in receiving

rituximab (94). In a beautiful side experiment, the authors

demonstrated that this B-cell depletion impaired the response to a

neo-vaccine, but a subsequent vaccination with the same neoantigen

led to immune responses that were indistinguishable from untreated

patients, demonstrating that rituximab is a temporary immune

suppressant but does not induce immune tolerance (94). Early B cell

reconstitution in multiple sclerosis patients treated with rituximab was

not associated with a risk of relapse or progression, but instead could

reflect regulatory immunological phenomena in subgroup of patients

(101). Similarly, T-cell levels temporarily dropped in T1D patients

receiving anti-CD3 monoclonal antibodies, abatacept or anti-

thymocyte globulin (96, 97, 102, 103). In case of the latter, effector T-

cells were hit harder than Tregs, favoring immune regulation.

Immunological monitoring of autoimmune and anti-vaccine

responses in blood of T1D patients treated with Otelixizumab

demonstrated that recall immunity is preserved despite high-dose

anti-CD3 treatment, adding to the safety of anti-CD3 treatment as an

immune-modulatory agent in the treatment of T1D (104). Reactivation

of Epstein-Barr virus and self-limiting mononucleosis-like symptoms

were regarded as adverse side-effects but could be seen as evidence of

mechanistic efficacy, as this points to the inhibition of active effector T-

cells (97). Indeed, CD8 T-cell responses against EBV quickly increased

after treatment blunting the clinical symptoms of viral reactivation

(102). Blood samples from participants of various islet-antigen specific

immune intervention studies showed that injection of islet autoantigen

does not exacerbate disease progression but instead induced antigen-

specific regulatory T-cells that in some cases corresponded with

improved metabolic outcome (8, 79, 81, 83, 105–107). Most

mentioned immune modifying intervention therapies caused delays

in the fall in C-peptide in subsets of patients but they did not appear to

fundamentally alter the immune phenotypes and reactivities durably or
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change underlying pathophysiology of the disease. This is in line with

results from immune monitoring that only showed temporal changes.
Responder analysis
(therapeutic efficacy)

Most value from immunological monitoring came from studies

comparing patients clinically responding to certain immune

intervention strategies versus those that did not (Figure 1). This so-

called responder analysis in the rituximab trial revealed that an

increased T-cell proliferative responses to islet antigens identified

clinical responders to rituximab therapy. In the Teplizumab trial in

new-onset T1D a partially exhausted T-cell type (KLRG1+TIGIT+) was

identify, functionally characterize and associated with response to

teplizumab therapy (108). Changes in this CD8+ T-cell subset of

partially exhausted effector cells were associated with clinical

response in a trial attempting to delay clinical onset of T1D; these

cells showed reduced secretion of IFNg and TNF (95). While the

authors propose that pathways regulating T-cell exhaustion may play a

role in successful immune interventions for T1D, biomarkers do not

necessarily equal mechanism: the increases in lymphocyte subsets may

be a consequence rather than a cause of immunotherapy and reflect

relative reductions in other subsets that led to this increase. The

teplizumab trial also revealed baseline characteristics that, next to

metabolic features, involved a lower frequency of CD4+CCR4+

memory and naïve T-cells, CD4+CCR6+ naïve CD4+ T-cells, naïve

CCR4+ CD8+ T-cells, and IFN-g-producing CD8+ T-cells, versus

higher numbers of activated CD8+ terminally differentiated effector

and CD8+ effector memory T-cells at baseline in responders versus

non-responders. These immune correlates warrant exploring these as

predictors of clinical efficacy. Similarly, exhausted-like CD8+ T-cell

phenotypes were linked to C-peptide preservation in alefacept-treated

(LFA3-Ig) T1D subjects (109), with CD4+CD25+CD127hi T-cell

frequencies at baseline as potential predictor of disease progression

and therapeutic efficacy in T1D (110). Autologous hematopoietic stem

cell transplantation (aHSCT) is the only therapeutic intervention thus

far resulting in complete and sometimes durable remission (insulin

independence) in new-onset T1D patients (111, 112). Patients with

lower frequencies of autoreactive islet-specific T-cells remained insulin-

free longer and presented greater C-peptide levels than those with

higher frequencies of these cells (111). In the prolonged-remission-

group, baseline islet-specific T-cell autoreactivity persisted after

transplantation, but regulatory T-cell counts increased. For the entire

follow-up, CD3+CD8+ T-cell levels did not change, whereas

CD3+CD4+ T-cell numbers remained lower than baseline in both

groups, resulting in a CD4/CD8 ratio inversion. Thus, immune

monitoring identified a subgroup of patients with superior clinical

outcome of aHSCT.

In the context of beta-cell therapies (pancreas, isolated islets or stem

cell derived beta-cells), immune monitoring provided seminal proof to

determine the in-vivo fate of islet allografts implanted into type 1

diabetic recipients (4, 7, 113–130). In this case, two distinct immune

reactions should be monitored: recurrent islet autoimmunity and

allograft rejection. Again, baseline immune profiles were highly

predictive of clinical outcome: lack of CD4 T-cell autoreactivity to

islets resulted in insulin-independence in 86% of the cases, whereas pre-
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existent T-cell responses to both GAD65 and IA-2 never led to this

favored outcome. General T- and B-cell counts also predicted outcome

(123, 127). Induction immunotherapy (thymoglobulin, basiliximab or

alemtuzumab) led to temporal reductions in T-cell counts and islet

autoimmunity that recured in relapsing patients either as isolated

phenomenon or followed by allograft rejection, pointing to the pre-

existent islet autoimmunity being the principal hurdle in beta-cell

replacement therapy in T1D, in spite of continuous immune

suppression (tacrolimus, mycomofetyl phenolate and/or sirolimus)

that was dictated to prevent induction of alloimmunity to the islet

graft. Persistence of recall T-cell immunity against vaccine antigens

(e.g., tetanus toxoid) was indicative of sub-maximal or insufficient

immune suppression regimes. Immune monitoring also identified

recurrent islet autoimmunity as cause of rare and late loss pancreas

allograft function in the case of whole pancreas transplantation,

underscoring the value of immunological studies (120, 131).
Future perspectives

The complexity and diversity of the immune system and the range

and diversity of immunological features and mechanisms that are

believed to be involved in the selective beta-cell destruction leading

to T1D put a daunting but indispensable task on the shoulders of

immunologists. Despite the many challenges involved, including the

shortage of robust and reproducible immune assays and limited access

to both blood samples and the lesion, it has proven excessively

rewarding to define and apply immune correlates to further define

patient and disease heterogeneity, to identify, monitor and validate

candidate immune intervention strategies and to define T1D subgroups

or endotypes that may most favorable outcome on the one side

(precision medicine), and to avoid offering immunotherapies to those

unlikely to benefit (‘imprecision medicine’). Immunomonitoring of

T1D patients receiving islet allografts defined the immunological fate of

the islet grafts in vivo, and guided choice of transplant immune

suppression, islet encapsulation and gene-editing protocols stem cells

and beta-cell progenitors aiming to reduce islet immunogenicity. Given

the remaining knowledge gaps in immunopathogenesis and

heterogeneity of T1D, it should not be a matter whether, but rather

how, to monitor the immune system of T1D patients and at-risk

individuals. Bio sampling and storage is critical to determine

immunological and possibly even therapeutic efficacy of immune

intervention trials. New robust, high through-put and reproducible

technologies including multiplex phenotyping and single cell

transcriptomics are welcome for the definition of high-resolution

immune correlates but given that non-adaptive immune parameters

rarely delivered as informative in terms of disease progression,

heterogeneity and therapeutic response, focus on the lymphocyte

compartment is justifiable. Given that the single endpoint accepted

by FDA or EMA as primary outcome remains beta-cell function,

whereas the currently explored therapeutic interventions target the

immune system rather than beta-cells, there is a growing but largely
Frontiers in Immunology 05
unmet need to define immune correlates of both mechanistic and

clinical efficacy (132). The first steps have been made in this direction

and the future looks promising.
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