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What makes a plasma cell long-lived?

The plasma cell (PC) is the terminal differentiation state of B lymphocytes,

phenotypically characterized by an enlarged granular cell body with a highly productive

endoplasmic reticulum (ER) and strict energetic requirements to maintain their main

function: antibody production. Despite being mitotically quiescent, PC are able to keep up

high anabolic activity for months, up to several years. Early studies on “immunoglobulin

producing cells” not yet characterized in detail at this point in time suggested an antibody

production rate of several ten million molecules per hour and cell (1, 2). When resting B

cells are activated in or outside of germinal centers (GC) giving rise to plasma blasts (PB),

they rapidly undergo metabolic reprogramming and increase glycolysis and oxidative

phosphorylation (OXPHOS) rates (3). From there, they can develop into either short-lived

PC (SLPC) or home to the bone marrow (BM), where they become resident (4, 5), long-

lived PC (LLPC) (6, 7). However, whilst some cellular and molecular components of the PC

niche have been identified (8, 9), the factors maintaining those cells productive at high

levels are less well known. Even telling apart SLPC from LLPC is not an easy job.

Microanatomical location seems not to be a definite criterion, since affinity-matured PC

and LLPC were also found to persist in spleen (10, 11) and in inflamed tissue, in mice and

humans alike (12, 13). While one study in mice claimed that LLPCs are produced late

during GC responses (14), results from a recent publication indicate that murine LLPC are

also formed in early phases of the GC response (15), with some LLPC having undergone no

affinity maturation at all (16). Furthermore, evolutionary conserved surface markers for

PC, let alone LLPC, are missing. The majority of PC do express B cell maturation antigen
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(BCMA) and CD138 in mice and humans (17–20), however, there

is also substantial CD138 heterogeneity found in human cultured

BM aspirates (21). There is further no unique distinctiveness of

surface markers for LLPC, which is also true for transcriptional

programs (22). Most prominent, the expression of Prdm-1, Mcl1,

Irf4 or Xbp1 are common requirements (15, 23). Additionally,

microRNA miR-148a was identified in murine LLPC serving

metabolic regulation (24). Very recently, after pre-sorting of

murine LLPC from SLPC according to scRNA-sequencing-

assisted clustering of PC subsets (23), the adhesion molecule

EpCAM and a lack of the chemokine receptor CXCR3 were

identified as characteristics of IgG LLPC in mice. This approach

also illustrates that considerable effort is to be undertaken in order

to point out these very rare cells from a heterogeneous

parent population.

Investigating metabolic features as an additional deterministic

layer of plasma cell development could help to simplify the

identification of LLPC. Since the metabolism of a B cell becoming

a PC needs to change quite dramatically, we suggest taking the

activation of metabolic enzymes, glycolysis and respiration rates

and the import of nutrients into account. Metabolic pathway

properties at different stages of the maturation and differentiation

process may be of an – in part epigenetic – advantage for cell

longevity. For example, murine studies in pre-B cells have linked

receptor signaling with the regulation of chromatin accesibility (25).

In Th17 cells, the accumulation of the citric acid cycle metabolites

2-hydroxyglutarate and acetyl-CoA confers transcriptional

regulation via histone modification (26, 27). Whether such cues

are able to lastingly imprint the prerequisites of a long-lived

phenotype during B cell activation, and if so, for how long, is not

known. The fact that serum half-lives of antibodies induced by

different viral antigens (Ag) are heterogeneous [e.g., 200 years for

measles, 50 years for varicella zoster, 11-19 years for diphtheria and

tetanus (28)] is suggesting a dependence of PC longevity from initial

triggers (29). Viewed from the B cell side, high-affinity BCRs seem

to generate a selection advantage through increasing OXPHOS (30).

Similarly, differential CD19 expression could link initial signaling

through Ag activation and metabolic rewiring. CD19, on the one

hand, is enhancing BCR induced calcium flux to overcome a

proposed Ag threshold (31). On the other hand, CD19 in mice is

negatively regulating the activity of phospho-inositide-3-kinase

(PI3K), an enzyme crucial for initializing metabolic pathways

supporting proliferation and survival. In B cells, CD19 deficiency

leads to a 50% increase in PI3K activity compared to CD19

sufficient counterparts (32). Since PI3K activity is also a pro-

survival factor dependent on stromal cell contact and important

for the regulation of mitochondrial integrity and ER-stress in LLPC

(33), CD19- PC might have an advantage in coping with metabolic

stress. In support of that, the downregulation of CD19 was

identified as a hallmark of longevity in human plasma cells (34, 35).
A closer look on PC metabolism

BMPC mostly depend on OXPHOS, using amino acids,

especially glutamine, for their carbon demand; despite significant
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upregulation of the glucose transporter GLUT1 (3). The latter is

explained by the fact that glucose in PC is primarily used for

antibody glycosylation. However, in times of decreased nutrient

availability, PC can also metabolize the imported glucose into

pyruvate driving mitochondrial respiration (36). Missing glucose,

however, would slow or shut down the hexosamine biosynthesis

pathway producing N-Acetyl-glucosamine (GlcNAc), as shown in

cancer cells (37, 38). Since it is an essential structural component of

protein glycosylation patterns, missing GlcNAc would mean failure

in protein modification and trafficking (39). This mechanism has so

far been only proven for tumor-associated proteins, but supposedly

would have severe functional consequences for antibodies, too (40).

Antibody misfolding, hindered degradation of misfolded antibodies

or insufficient export from the ER induces ER stress that goes along

with calcium efflux, affecting phosphorylation of metabolic gate-

keepers like adenosine monophosphate (AMP)-activated protein

kinase (AMPK) and mechanistic target of rapamycin (mTOR) (41–

43). In fact, LLPC do import larger amounts of the fluorescent

glucose analog 2-Deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)-

amino]-D-glucose in mice, albeit via a still unidentified transport

system (44, 45). If glucose does becomes limiting and falsely

glycosylated antibodies are produced, then the cells are equipped

with a rescue mechanism called the unfolded protein response

(UPR). Ultimately, UPR is leading to autophagy that mobilizes

additional energy sources by recycling of cellular building blocks

from organelles like mitochondria and ER, a key process found

indispensable for PC survival (46). The importance of UPR and

autophagy in PC is further illustrated by the fact that PC signature

genes such as Xbp1, Ire1 and Atg6 are devoted to these processes,

though the latter is silenced in terminally differentiated PC (47, 48).

Of note, the term UPR is misleading, as this process is primarily a

timed orchestration of developmental factors preparing and

supporting the B cell- to plasma cell-transition rather than an

emergency response to unfolded proteins (49). Still, high-rate

antibody output is considerably challenging the cellular

machineries of posttranslational modification, folding and

trafficking that has to withstand times of crises. Thus, we

question a constant secretion rate and instead propose the

dynamic regulation of energy metabolism and antibody output as

a feature essential for PC longevity (Figure 1).
Intracellular calcium as integrator of
stressors

Calcium-mediated BCR signal strength has been known to

encode different B cell fates by regulating downstream

transcription and mTOR activity for quite some time (50–52).

Unexpectedly, employing functional intravital imaging in mice,

our group was able to detect also Ag-specific PB displaying vivid

calcium fluctuations within a comparatively high concentration

range (>500 nM) among otherwise calcium-low (<200 nM) peers

(53). Ruling out the possibility of residual BCR signaling or cytokine

receptor signaling, we sought for an alternative explanation for the

existence of a calcium-high population among PB. Possibly,

metabolic stress signals as a consequence of competition for
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nutrients in the densely packed medullary cords lead to transient

calcium increase in the cytoplasm, likely through mitochondrial

release (54, 55). Second, high production rates of antibodies induce

ER-calcium release alongside ER-stress, initiating calcium

replenishment from the extracellular environment. One proposed

downstream effector of increased cytoplasmic calcium is AMPK. In

times of energy crises, B lineage cells rely on AMPK for survival and

functional maintenance (56, 57). AMPK is binding energy-poor

AMP when its abundance is high – meaning adenosine

triphosphate (ATP) amounts are low. AMP binding leads to

AMPK phosphorylation and therefore activation. Studies with

fully nutrient-supplied T cells, however, have shown that AMPK

phosphorylation can also occur allosterically via calcium-

calmodulin/dependent kinase kinase b (CamKKb) (58, 59).

Leakage of calcium ions from mitochondria and/or ER could

possibly contribute to reaching a calcium concentration threshold

for this pathway to take hold. Importantly, chronic calcium

exposure has been found to inhibit AMPK in muscle cells via

increased phosphatase activity, in a setting where the cells were

additionally treated with 5-aminoimidazole-4-carboxamide

ribonucleotide (AICAR), an AMP analog (60, 61). Calcium

oscillations, however, activated AMPK. One of the main functions

of active AMPK is to inhibit mTOR activity via phosphorylation of

adapter molecules (62). Since mTOR inhibition leads to autophagy,

stress-induced calcium release into the cytosol would directly lead

to switching on mechanisms resolving stress or at least bridging the

time until more favorable environmental conditions arise.

But why is it that PC would need such mechanisms in the first

place? Given the BM is an organ with high cellular turnover due to

hematopoiesis and a tissue undergoing profound age-related
Frontiers in Immunology 03
changes, it is evident that a certain degree of heterogeneity in the

survival niches exists in space and time.
The PC niche and PC turnover models

The BM PC niche fulfills two basic requirements: promoting PC

survival and serving as a foundation for adhesion. The stromal cell

scaffold of the BM, together with several types of accessory cells,

provides the main pro-survival cytokines A proliferation inducing

ligand (APRIL), IL6 and CXCL12, the latter being also the

chemoattractant guiding PB from secondary lymphoid organs to

the BM (63, 64). CXCL12 is sensed by the PC via CXCR4, and tight

PC adhesion within the niche is accomplished by VLA4 and LFA1

pairing with VCAM1 and ICAM1 of stromal cells, respectively (65,

66), as well as CD28 with CD80/86 (67, 68). CD28 expression

supports LLPC survival by maintaining metabolic fitness via

reactive oxygen species (ROS)-dependent signaling and IRF4

activity (69). APRIL directly supports PC survival and can be

sensed by the PC via TACI and BCMA (70–72), an interaction

also critical for differentiation of B cells into PC and therapeutic

target in autoimmunity and multiple myeloma (MM) (73–75).

Interestingly, homing can take place also in APRIL-deficient mice

(65), so the pro-survival effect is likely independent from direct cell

contact. Further, CD138, next to functioning as an adhesion

molecule and receptor, can augment the scavenging of APRIL

and IL-6 via binding to its heparan sulfate-chains on the cell

surface and therefore support survival (76–80).

The general perception of the niche is that it consists of static

(the stroma) and dynamic components, i.e. accessory cells
FIGURE 1

Graphic representation of two hypothetic metabolic states of PC within the BM, depending on niche composition. In this model, PC within their
stromal cell niche (green mesenchymal stem cells) are low in cytoplasmic calcium (I, blue PC) in times of sufficient nutrient supply (purple
hexagons), e.g. due to a dense vessel network (red branches) and only few other hematopoietic cells (grey), competing for nutrients. Calcium-low
cells produce antibodies at high rates. Vice versa, in times of metabolic stress (II) through decreased nutrient supply due to hematopoietic nutrient
sinks or vessel remodeling (5), antibody output is decreased.
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providing soluble cytokines, such as granulocytes, megakaryocytes

and others (9). Further, the number of niches is finite. PC will home

to their niche persistently, unless driven away by inflammation and

being outcompeted by newly formed PC (81). Models of PC

turnover discussed include the random turnover model, in which

newly formed PC replace older ones by chance, and the

deterministic model, in which PC originating from certain B cell

clones have a greater intrinsic (or imprinted) capability of homing

and replacing than others. The problem of both these models is that

they assume niches are changing neither in quality nor in number.

However, a growing number of studies are reasonably challenging

these notions, as discussed below.
Heterogeneity in the BM

The reason that PC are considered static in their survival niche

is probably the time scale on which we observe them in in vivo

imaging studies. Using time-lapse imaging of up to 12 hours, Benet

et al. could show that PC indeed experience phases of increased

displacement between marrow regions, interrupted by periods of

sessility (82). In addition, they observed clusters of PC in certain

areas. While on the one hand this fact disproves the paradigm that

PCs always remain alone in the same niche, it also means that the

extrinsic conditions in the BM are divided into zones; those that

promote movement and those that retain PCs (63). These

conditions can also change, presumably on the level of cytokine

abundance and/or receptor expression.

For the hematopoietic stem cell (HSC) niche, a heterogeneous

architecture has been known for a long time (83). It has been

discussed that HSC and leukocytes share in part similar features of

their respective interaction with stromal cells (84). Strikingly, they

often co-localize with PC and require the same cytokine, CXCL12

(85). Therefore, we would like to argue that the following

observations made for HSCs may also apply to the LLPC BM

niche, however, this still awaits confirmation. Quiescent HSC reside

in endosteal regions, whereas sinusoidal areas are characterized by

dynamic turnover and leukocyte trafficking. Local oxygen

concentration gradients might in part cause this heterogeneity, as

demonstrated by direct oxygen concentration measurements using

phosphorescence lifetime imaging (86). These researchers stressed

that the BM as a whole is a hypoxic organ despite being highly

vascularized, however they found a steep oxygen drop from the

endost to perisinosoidal regions, and with growing distance to

blood vessels. Notably, areas densely packed with cells appear to

be downright oxygen sinks, “reminiscent of solid tumors” (86).

Further, variations in the permeability of blood vessels were

identified to cause these local oxygenation differences and ROS

load of the cells, as indicated by indirect determination with

pimonidazole staining and Hif1-a expression in HSC (87). Since

the blood flow transports all kinds of nutrients into the highly

metabolically active BM, the same might be true for carbon sources

needed for PC homeostasis. Further, interstitial calcium

concentrations are low in regions with new bone material

deposition and hematopoietic progenitors are absent in these

regions, leaving the question open to what extent extracellular
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calcium concentration influences intracellular calcium levels, and

therefore cell turnover in vivo (88). These findings illustrate how a

microanatomical and metabolite heterogeneity consequently leads

to a differential distribution of BM cells. Assuming the same is true

for the plasma cell niches is only reasonable. However, up till now,

no adequate tools for spatially and temporally resolved metabolic

analyses within the BM are available in vivo (8).
Heterogeneity as a result of
BM dynamics

One approach to be expanded towards functional metabolic

analysis is longitudinal intravital imaging of the BM (LIMB) (5, 89).

Using this novel micro-endoscopic technique, our group was able to

show that during homeostasis, vessel distribution, volumes and

numbers are dynamically changing over time in the femoral

marrow. Mice carrying the LIMB endoscope were repeatedly

imaged for up to 6 weeks, revealing constant vessel remodeling.

This temporal heterogeneity can be explained by several

mechanisms: First, life-long exposure to gravity and exercise

contribute to bone remodeling and immune cell health, as

highlighted by studies under microgravity (90, 91). This effect

might very well influence niche dynamics over time. Further,

injuries might compromise the integrity of niches, leading to

revascularization and cell population redistribution (89).

Particularly, mechanosensing in macrophages mediated by the

Piezo family of ion channels plays a pivotal role in bone

regeneration following irradiation, and mechanosensing also

impacts on the HSC niche and number of common lymphoid

progenitors (92–94).

Furthermore, the alternation of day and night contributes to

temporal heterogeneity of BM microenvironments through

circadian gene and protein expression. This very likely affects

plasma cell niches, too. The cellularity of the BM in mice and

men (although they experience anticyclic rhythms since mice are

nocturnal and humans usually not), has been shown to change quite

drastically during any 24h. While structural bone remodeling

usually peaks 1 hour after daybreak (95), blood replenishment

and immune cell circulation even peak two times a day, regulated

by two bursts of norepinephrine and tumor necrosis factor (TNF)

(96). HSC cell trafficking to the blood was shown to be dependent

on rhythmic CXCL12 oscillations from BM stroma, orchestrated by

signals from the central nervous system (97). Furthermore, the

homeostatic clearance of neutrophils within the marrow provides

cues that directly act on the hematopoietic niche (98). That these

mechanisms also have functional implications on the adaptive

immune response has been demonstrated by the induction of

experimental autoimmune encephalomyelitis, a mouse model for

multiple sclerosis, at different time points per day (99). When cell

counts were high in the periphery (end of day), mice showed

dramatically faster disease progression than at the end of the

night. It has been argued that this is in part because immune cells

are reentering the marrow at night. Such daily turnover of cells in

the microenvironment of PC niches is likely contributing to

pressure-induced and nutrient supply-induced stress signals,
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1112922
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ulbricht et al. 10.3389/fimmu.2023.1112922
requiring a certain amount of metabolic flexibility. However,

longitudinal studies on BM resident cells have yet to be

performed. Interestingly, Golan et al. hypothesize that quiescent

HSC remaining in the marrow need to “train” their metabolism

daily through circadian rhythms, in order to be ready for immediate

activation during alarm situations (96). Of note, apart from gene

expression and posttranslational modification, phosphorylation is

another layer of metabolic regulation readily accessible and rapidly

controllable by circadian signal transduction (100). Since many

kinases are also calcium dependent enzymes, we expect to see

periodic fluctuations in BMPC cytoplasmic calcium as well.

Along with changing daylight also goes diurnal food intake,

which influences time-dependent availability of nutrients to the

BM. A study investigating the effect of fasting on monocytes found a

reduced inflammatory activity as an effect of AMPK-mediated

sensing of low energy equivalents, and hence reduced BM egress

(101). In the gut, fasting leads to a reduction in B cell numbers

in Peyer’s patches, as well as egress of naïve B cells, which, in

accordance with the response during the night (or during day in

nocturnal animals), retreat to the BM for the time of nutrient

deprivation (102). After refeeding, the cell pool is altered. The

intracellular consequence of fasting-refeeding, i.e. the transition

from low to high glucose levels, is remodeling mitochondria-ER

contact sites and calcium ion exchange between the organelles

(103). As seen from the circadian oscillatory IgA response in the

gut, feeding times also directly impact on PC (104).

To stress the time component of BM heterogeneity, it should also

be mentioned, that ageing disrupts bone marrow composition and

circadian regulation, as shown for macrophages (105). The

phenotypic appearance of BM in old age is characterized by a high

proportion of adipocytes, whichmay well have a significant influence

on the number and availability of niches. In fact, the impairment of

hematopoiesis by fat deposits has been shown (106). Under this

regard, it should also be discussed how results from mouse models

can be applied to humans, since the murine BM commonly studied is

juvenile and its human counterpart only exists in infancy.
Impact of niche dynamics on
humoral immunity

Taken together, BM microenvironments are most likely subject to

heterogeneity in space and, perhaps even more important for cell

survival, in time. How will this affect plasma cell longevity? LLPC need

to be equipped with mechanisms coping with stress signals in a flexible

manner. In other words, LLPC will have to translate extracellular

stimuli into intracellular responses, eventually affecting metabolism, to

a point that ensures reduced energy consumption, but only to an extent

not leading to cell death. Stressing this point, the sensitivity of GC B

cells and PB to mTOR inhibition by rapamycin stands in contrast to

the resistance of LLPC to the drug (107). Instead of dying, LLPC reduce

antibody production, as shown in rapamycin-treated mice,

ameliorating autoimmunity. After discontinuation of rapamycin

injections, antibody levels reinstall to values before treatment,

highlighting the reversible capacity of antibody secretion in LLPC.

One feature of metabolic flexibility could be for instance a greater spare
Frontiers in Immunology 05
respiratory capacity seen in LLPC vs SLPC, meaning the difference

from basal respiration to the ability to increase mitochondrial electron

throughput under stress (36). The manipulation of stress-resolving

mechanisms could also have implications for the development of new

therapies in the treatment of malignant PC-mediated diseases, likeMM

or auto-antibodymediated inflammatory diseases (108). These diseases

have in common that their causative agents, antibody-producing cells,

cannot be eliminated by classical B cell-depleting therapies or

immunosuppressive agents (109). The recognition that protein-

secreting cells are highly dependent on an intact ER led to the use of

the proteasome inhibitor bortezomib in MM and in several

autoimmune diseases (110–112). For MM therapy, targeting

glutamine metabolism has proven promising (113, 114). However,

since PC have developed the aforementioned sophisticated exit

strategies to conquer metabolic stress, for complete success of these

therapies it will be necessary to identify and target key molecules in the

stress-response pathways, probably in combination. For example, in

vitro and in mouse models, a synergistic anti-tumor effect of mTOR

inhibition with rapamycin and bortezomib has been reported (115).

Vice versa, vaccine development would profit massively from

knowing how to trigger longevity in PC and thus ensure lasting

protection. Despite a continuously growing global vaccine market

that by now has crossed the 100 billion dollar threshold and is

expected to gain another 60 billion over the next four years (116),

efforts to decipher the true mechanistic nature of durable antibody

responses remain low. Advances come from the investigation of

immunity induced in response to virus-like particles (117, 118).

Schiller et al. argue that presumably the molecular form of Ag

decides over induction of LLPC, also discussing an Ag-imprinting

mechanism (119, 120). They found that vaccines against human

papilloma virus (HPV), gain their remarkable durability from

specialized structural features of the protein sequence, naming

especially repeats with uniform spacing capable of activating several

BCRs of both IgM and IgD subtype, thus inducing an exceptionally

strong signal transmitted by IgD (121). Recently, TLR7 signaling has

been shown to support the establishment of a favorable vaccination

outcome (122). Some time ago, also TLR9 was identified in playing a

role in B cell activation leading to stabilization of glycolytic activity,

and the circumvention of mitochondrial depolarization by increased

intracellular calcium (123, 124). Further, vaccination failure due to a

lack of Ag-specific LLPC and an accumulation of SLPC in the BM has

been linked to a gain-of-function mutation in Cxcr4 common in

warts, hypogammaglobulinemia, infections, and myelokathexis

(WHIM) syndrome and Waldenström’s macroglobulinemia (125).

This could be explained with enhanced mTOR signaling promoting

extrafollicular PC differentiation and BM homing, as seen in a T-

independent setting (126). These results are once more stressing a

close connection between the sensing of environmental factors by

innate immune receptors, BCR- and cytokine signaling and the

homeostasis of controlled metabolic properties in establishing LLPC.
Conclusion

In summary, understanding the principles driving

differentiation of PC into the either short-lived or long-lived
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phenotype will be crucial for future therapy as well as vaccine

development. Additionally, the factors that maintain LLPC in BM

or inflamed tissue survival niches and their variability need to be

taken into account (Table 1). Unfortunately, unambiguous

identification of LLPC is challenging, requiring multiple analyses

of surface markers and transcription factors. Identification by

lifetime might be possible by time-stamped fate-mapping (15,

127). To also study the function of LLPC in their natural

environment, new longitudinal imaging techniques are urgently

needed. One approach to pursue is the monitoring of metabolic

parameters and their change over time or in response to stimuli that

mimic metabolic stress situations, for example with a combination

of LIMB and fluorescence lifetime imaging and enzyme mapping (5,

53, 128, 129). Further, because the BM environment is constantly

changing due to time of day, pressure changes in the tissue, aging or

diseases and along with it the cellular composition, the niches

themselves will likely also change. Thus, LLPC will encounter

different environmental challenges, namely supply with nutrients,

oxygen or cytokines, among others. Interestingly, though we still

need more research on what triggers longevity in LLPC, existing

data is pointing toward an imprinting mechanism by which some

PC are favoured over others to become LLPC. The imprinted

features are most likely metabolic regulators for the resolution of

stress. Regulation could for instance be achieved dynamically by

periodically cycling processes of autophagy and UPR, in connection

with changing intracellular calcium levels and fluctuations in

antibody output.
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TABLE 1 Extrinsic and intrinsic factors impacting on survival and longevity of BMPC (alphabetical order).

receptor
interaction ref.

metabolic
features ref. turnover ref.

potential
Imprinting ref.

CD138-heparan
sulfate

(76–80) AMPK-mTOR axis (40–42, 55, 56) age (104, 105)
activating BCR
signal strength

(49–52)

CD19-PI3K (31–35) autophagy (46) circadian rhythm (95–98)
timing of immune
reaction

(99)

CD28-CD80/86 (67, 68)
epigenetic
regulation

(25–27) gravity (90, 91) TLR signaling (122–124)

CDCR4-CXCL12 (63, 64)
cytoplasmic
calcium

to prove inflammation (81)
type and structure
of antigen

(28, 29, 120, 121)

LFA1-ICAM1 (65) OXPHOS (3, 30) injury (89)

TACI/BCMA-
APRIL

(68–75)
oxygen partial
pressure

(86, 87) interstitial calcium (88)

VLA4-VCAM1 (66) proteasome activity (110–112)

ROS (69)

sugar import (36, 44)

UPR (47–49)
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