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Introduction: The Golgi apparatus (GA) is the center of protein and lipid synthesis

and modification in normal cells and is involved in regulating various cellular

process as a signaling hub, the dysfunction of which can lead to the development

of various pathological conditions, including tumors. Mutations in Golgi

apparatus-related genes (GARGs) are prevalent in most tumors, and their

mutations can make them pro-tumor metastatic. The aim of this study was to

analyze the predictive role of GARGs in the prognosis and immunotherapeutic

outcome of hepatocellular carcinoma.

Methods: We used TCGA, GEO and ICGC databases to classify hepatocellular

carcinoma samples into two molecular subtypes based on the expression of

GARGs. Signature construction was then performed using GARGs, and signature

genes were selected for expression validation and tumor phenotype experiments

to determine the role of GARGs in the prognosis of hepatocellular carcinoma.

Results: Using the TCGA, GEO and ICGC databases, two major subtypes of

molecular heterogeneity among hepatocellular carcinoma tumors were identified

based on the expression of GARGs, C1 as a high-risk subtype (low survival) and C2 as

a low-risk subtype (high survival). The high-risk subtype had lower StromalScore,

ImmuneScore, ESTIMATEScore and higher TumorPurity, indicating poorer

treatment outcome for ICI. Meanwhile, we constructed a new risk assessment

profile for hepatocellular carcinoma based on GARGs, and we found that the high-

risk group had aworse prognosis, a higher risk of immune escape, and a higher TP53

mutation rate. Meanwhile, TME analysis showed higher tumor purity TumorPurity

and lower ESTIMATEScore, ImmuneScore and StromalScore in the high-risk group.

We also found that the high-risk group responded more strongly to a variety of

anticancer drugs, which is useful for guiding clinical drug use. Meanwhile, the

expression of BSG was experimentally found to be associated with poor prognosis

of HCC. After interfering with the expression of BSG in HCC cells SMMC-7721, the

proliferation and migration ability of HCC cells were significantly restricted.
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Discussion: The signature we constructed using GARGs can well predict the

prognosis and immunotherapy effect of hepatocellular carcinoma, providing

new ideas and strategies for the treatment of hepatocellular carcinoma.
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golgi apparatus, hepatocellular carcinoma, signature, prognosis, immunotherapy
1 Introduction

The treatment of hepatocellular carcinoma (HCC) is currently a

major challenge worldwide, and despite the availability of multiple

treatment options, treatment outcomes continue to fall short of

expectations. Therefore, new breakthroughs and tools are needed to

address the current treatment bottlenecks.

The Golgi apparatus (GA) has long served as a platform for

sorting, modification, production and transport of proteins and

lipids. In addition to these classical functions, studies have

confirmed that the GA plays an important role in the regulation of

many cellular processes, such as cell migration, apoptosis,

inflammation, autophagy, and stress responses (1). The mechanism

of action of intracellular GA is a finely regulated process, and

dysregulation can lead to a variety of pathological conditions.

Increasing evidence suggests that GA functions are closely related

to cancer development and progression, including the regulation of

cell proliferation, motility, metabolism and immune evasion (2, 3).

The GA in cancer cells frequently exhibits functional and structural

disorders associated with cancer development and progression (4, 5).

In addition, the GA can also influence cellular metabolism and

participate in processes that control the phenotype of cancer cells,

including innate immune response, angiogenesis, tumor migration

and invasion (6, 7). Moreover, Golgi apparatus-related genes

(GARGs) have been found to be mutated at a high frequency in

tumors, and mutated GARGs tends to enhance tumor metastasis and

bring a poorer prognosis (8). It has also been shown that the

chromosome 1q21-43 region (containing many Golgi-related

functional genes) is frequently amplified in multiple cancer types (8).

The role of GARGs in tumors has been confirmed. Among

them, GOLM1 can regulate EGFR/RTK and thus promote

metastasis of HCC (9). In addition, GOLM1 can control colitis

and colon tumorigenesis by regulating the balance of Notch

signaling in the intestine (10). Golgi phosphoprotein 3

(GOLPH3) is involved in cell migration, GA morphology and

orientation, and protein glycosylation, and the increased

expression of GOLPH3 observed in a variety of tumors enhances

cis-transport of GA and leads to increased cytosolic ejection of pro-

metastatic factors such as cytokines, growth factors, and Wnt

molecules (11, 12). In addition, GA can enhance the secretion of

immune fac tor s and promote the forma t ion o f an

immunosuppressive tumor microenvironment that promotes

tumor progression and metastasis. For example, PI4KIIb
promotes the migration of myeloid-derived suppressor cells, a key

immunosuppressive cell type associated with metastasis, by

mediating the cytokine of immune modifying molecules (CXCL1,
02
IL-1a, IL-8 and VEGF) in lung adenocarcinoma cells (13).

GOLPH3 interacts with cytoskeleton-associated protein 4

localized in the extracellular body and is able to enhance the

secretion of Wnt3a, thereby limiting T cell differentiation (14).

Therefore, GARGs play an important role in tumor

development and immune effects, which is a new direction to be

explored. In this study, a prognostic and immune response system

based on GARGs for hepatocellular carcinoma was constructed by

bioinformatics analysis using public databases to provide guidance

for clinical treatment of hepatocellular carcinoma.
2 Materials and methods

2.1 Data processing

Search and download the gene set “GOCC_GOLGI_APP

ARATUS” through Gene Set Enrichment Analysis (GSEA) MSigDB

database (http://www.gsea-msigdb.org/gsea/msigdb/index.jsp).

The mRNA expression data and clinical information of samples

from patients with HCC were downloaded from the TCGA, GEO and

ICGC databases, of which the TCGA database included 374 HCC

samples and 50 normal liver samples, and 365 HCC samples were

retained after screening (excluding HCC samples with survival time of

0). the GEO database (GSE76427 and GSE14520) obtained data for 115

and 219 HCC samples, respectively. Thus, TCGA-LIHC, GSE76427

and GSE14520 had a total of 699 HCC samples. the ICGC database

(ICGC-LIRI-JP) excluded blood samples and samples with metastatic

tumors, and finally retained data for 208 HCC samples.
2.2 Gene screening

Valuable GARGs were screened for further analysis using the

TCGA database. First, we used the weighted gene co-expression

network analysis (WGCNA) package to screen out the most

relevant modules for HCC, and extracted the genes from the

modules for subsequent analysis. Second, differential expression

analysis was performed for normal and tumor samples of TCGA.

We used the “limma” R package and Wilcoxon test to screen Golgi

apparatus-related differentially expressed genes between normal

and HCC samples in the TCGA cohort (FDR< 0.001, |logFC|> 1).

Third, COX analysis of GARGs was performed to obtain prognosis-

related genes. Finally, the overlapping genes of the three were

screened for the next step of analysis.
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2.3 Identification of GARGs molecular
subtypes by consensus clustering

First, we merged the HCC sample data from the three datasets

TCGA-LIHC, GSE76427 and GSE14520. TCGA-LIHC data (FPKM

normalized) were converted to Transcripts Per Kilobase per Million

mapped reads (TPM). For the microarray cohort, the normalized

matrix files of expression data and clinical information were

downloaded directly and log-transformed, GSE76427 and GSE14520

using the “sva” R package to eliminate batch effects (15). Then batch

correct and normalize the three data sets (Figures S1A, B).

Then, we used the R package “ConsensusClusterPlus” to

perform consensus clustering analysis on the screened

overlapping gene-related molecular subtypes. Next, we used the R

packages “survival” and “survminer” to investigate the relationship

between subtypes and OS. Principal component analysis was used

to identify whether the two subtypes were able to distinguish well

between HCC samples. The R package “pheatmap” was used to

show the relationship between molecular subtypes of GARGs and

clinicopathological characteristics (sex, age and Stage).
2.4 Gene set variation analysis and single
sample gene set enrichment analysis

Gene set variation analysis (GSVA) was performed using the

KEGG gene set (c2.cp.kegg.v7.5.1.symbols) to assess pathway

differences across molecular isoforms. Biosignature gene sets were

obtained from the Hallmarker gene set. Single sample gene set

enrichment analysis (ssGSEA) was used to assess the relative

activity of biological pathways between different isoforms.
2.5 Analysis of tumor microenvironment
among molecular subtypes

TME is a dynamic system that undergoes specific modifications

during the development of cancer and eventually leads to metastasis

and diffusion, which is still the main cause of death of cancer patients

(16). Tumorigenesis is a complex and dynamic process. TME includes

intercellular compartments composed of stromal fibroblasts,

infiltrating immune cells, blood and lymphatic networks, and non-

cellular components including ECM (17). We analyzed the

characteristics of the two molecular subtypes by comparing the

content of non-tumor cell components and tumor purity between

the two molecular subtypes. Understanding the interactions between

different immune cells and between immune cells and stromal cells

(such as hematopoietic stem cells or CAFs) will be crucial to the

therapeutic development of tumor microenvironment.
2.6 Construct and verification of
GARGs signature

To further represent the prognostic value of GARGs in HCC,

we constructed a risk score system constructed from GARGs using

the TCGA database and GEO database to predict prognosis and
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immunotherapeutic response in hepatocytes. We constructed a

signature using Cox regression analysis and lasso penalty method

using previous overlapping genes to obtain a risk scoring system

based on GARGs: riskScore =  on
i=1(coefi  ∗  expi), The samples were

divided into two groups (high-risk and low-risk) based on the

median value of risk scores, and then survival analysis, principal

component analysis (PCA), and ROC curve plotting were

performed, followed by nomograms to further determine the

prognosis of patients. Also, to verify the reliability of the

signature, we validated the signature using an external dataset

ICGC database to determine its accuracy and stability.
2.7 Quantitative real-time PCR

After obtaining informed consent from patients, we collected 20

pairs of HCC tissues and paraneoplastic tissues (from the Second

Affiliated Hospital of Nanchang University), then cultured one

normal hepatocyte line (HL-7702) and four HCC cell lines

(HCCLM3, MHCC97H, HepG2 and SMMC-7721), and after

extracting RNA from the tissues and cells, q-PCR experiments

were performed to verify the signature genes.
2.8 Immunohistochemistry experiments

Immunohistochemistry (IHC) experiments was used to detect

protein expression differences: HCC tissues were paraffin-embedded,

sectioned, dewaxed and hydrated, incubated with anti-trait gene

antibodies overnight at room temperature, then labeled with

secondary antibodies for 30 minutes, stained and photographed.
2.9 Immunofluorescence

We inoculated 2000 SMMC-7721 cells onto a 24-well plate.

After 24-36 hours, wash them with PBS three times, and then fix

them with 4% paraformaldehyde for 20 minutes. At room

temperature, permeate the plate with 0.5% Triton X-100 for 20

minutes, and then seal it with goat serum. We used BSG antibody

(1:100, Abbart, T59564), KIF20A antibody (1:200, Abbart,

PU602304), RNF24 antibody (1:1000, Abbart, PH9881) and

GM130 antibody (1:2000, Protentech, 11308-1-AP) to incubate

overnight. The labeled antibodies of different colors were

incubated at room temperature for 1 hour, and then re-stained

with DAPI. Finally, fluorescence microscope is used for imaging.
2.10 Cell proliferation assay

EdU assay: Inoculate SMMC-7721 cells with 1*104/well in 96-

well plate, and after 24 hours, Each well was incubated with 100 ul of

50 uM EdU (YF ® 594 Click-iT EdU imaging kit, UELANDY) for 2

hours, and then fixed with 4% paraformaldehyde for 30 minutes. Use

2 mg/ml glycine for another 5 minutes. After washing with PBS twice,

the cells were mixed with 1 × The Apollo staining solution was

incubated for 30 minutes. Discard the dye solution and wash twice
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with PBS containing 0.5% TritonX-100. Join 1 × Hoechest 33342 was

incubated at room temperature for 30 minutes. After washing with

PBS, observe the positive cells by fluorescence microscope.
2.11 Wound healing assay

Inoculate cells into six orifice plates and use 200 ml disposable
gun head forms wound line. When the cell grows to about 80% -

90%, draw lines on the cell surface. Wash the plate twice with PBS to

remove suspended cells. The wound closure images were taken at 0,

24 and 48 hours.
2.12 Transwell assay

Cells were inoculated into the upper cavity of 200ul serum-free

medium (1.5*104/well). Add 600ul of medium containing 10%

serum into the lower chamber. After 24 hours, the cells were

fixed and stained with crystal violet, and then the migrated cells

were counted under the inverted optical microscope.
2.13 Immune infiltration analysis and
immune function analysis

Correlations between signature genes and 22 immune cells were

analyzed using the CIBERSORT algorithm, while differences in the

abundance of immune cells between high and low risk groups were

analyzed to distinguish features between the two risk groups.
2.14 Immune escape and drug
sensitivity analysis

We evaluated the Tumor Immune Dysfunction and Exclusion

(TIDE) scores between the risk groups to determine whether there

were differences in the effects of immunotherapy between the risk

groups. The IC50 values of chemotherapeutic drugs were also

calculated by the “PRROPHIC” R package to assess the sensitivity

of the different risk groups to chemotherapeutic drugs.
2.15 Statistical analysis

R language (Version 4.1.2) and GraphPad Prism 8.0 are used for

statistical analysis. The t-test was used for two groups of analysis.

P<0.05 means statistically significant.
3 Results

3.1 WGCNA

We extracted 1659 GARGs from the GSEA database

(GOCC_GOLGI_APPARATUS). we used TCGA-LIHC data for
Frontiers in Immunology 04
differential module analysis by WGCNA algorithm to screen out

key genes closely related to HCC, and finally obtained four modules,

among which the Meblue module was the most correlated and

significantly different, so GARGs in the Meblue module was selected

for the subsequent analysis (Figure 1).
3.2 Differential expression and prognostic
of GARGs in TCGA-LIHC

First, using TCGA-LIHC data, we screened 50 normal liver

tissues and 374 HCC tissues for differentially expressed genes

(DEGs) (|logFC|>1, FDR<0.001), and obtained a total of 242

differentially expressed genes (62 down-regulated and 180 up-

regulated) (Table S1; Figures 2A, B). GO and KEGG enrichment

analyses were performed on these DEGs. the GO enrichment results

showed that GARGs were associated with Golgi apparatus

subcompartment, trans-Golgi network, Golgi lumen, Golgi stack

and cis-Golgi network. KEGG showed that DEGs were mainly

associated with Glycosphingolipid biosynthesis-lacto and neolacto

series, Glycosphingolipid biosynthesis-globo and isoglobo series,

Glycosaminoglycan biosynthesis-keratan sulfate and Sphingolipid

metabolism (Figures 2C, D). Then, 672 GARGs associated with

prognosis were screened using a one-way COX analysis (Table S2).
3.3 Screening for core genes

Based on the WGCNA algorithm, differential expression

analysis and prognostic analysis, three groups of genes were

obtained for screening, respectively, and we overlapped the three

to screen 30 GARGs for subsequent analysis (Figure 3A). We

extracted the expression data of these 30 genes from the

combined mRNA expression data of TCGA-LIHC, GSE76427

and GSE14520, and finally 21 genes were extracted (some genes

were not included in all three datasets at the same time) (Table S3).

Then, the mutation status and copy number changes of these 21

genes were analyzed using TCGA database information

(Figures 3B–D).
3.4 Identification of GARGs
molecular subtypes

After combining the information of three data sets, based on the

expression amount of these 21 genes, we determined two different

HCC subtypes (C1 and C2) through consensus cluster analysis, and

the two subtypes can be well distinguished (Figures 4A, B). The

survival analysis shows that the survival rate of patients with C1 is

worse (Figure 4C), so we call cluster C1 “high-risk type” and cluster

C2 “low-risk type”. The expression of 21 GARGs was significantly

different in the two subtypes, and there were significant differences

in tumor stage, sex and age between the two subtypes

(P<0.05) (Figure 4D).

To further investigate the biological behavior between these two

isoforms, the differences between the two isoforms were analyzed
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1113455
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2023.1113455
using Gene Set Variation Analysis (GSVA) and the “limma”

package in 20 pathways, where the low-risk group was mainly

expressed in KEGG_ HEMATOPOIETIC_ CELL_ LINEAG,

KEGG_ COMPLEMENT_ AND_ COAGULATION_

CASCADES and KEGG_ NEUROACTIVE_ LIGAND_

RECEPTOR_ INTERACTION (Figure 4E). Meanwhile, the

immune cell infiltration between the two subtypes was analyzed

by the ssGSEA, and the results showed that cluster C2 had

significantly higher immune infiltration in Activated CD8 T cell,

Eosinophilna, Gamma delta T cell, MDSCna, Neutrophila,

Plasmacytoid dendritic cell, Regulatory T cell, T follicular helper

cell and Type 2 T helper cell. In contrast, immune infiltration was

higher in Activated dendritic cellna, CD56bright natural killer

cellna, Natural killer T cellna and Type 1 T helper cellna in

cluster C1 (Figure 4F).

To fur ther typ i fy the charac te r i s t i c s and tumor

microenvironment between the two subtypes, we evaluated

ImmuneScore, StromalScore, ESTIMATEScore and TumorPurity

between the two subtypes using the ESTIMATE method, which

showed that the high-risk group had higher tumor purity and lower

immune and stromal cell content (Figures 4G–J).
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3.5 Construction of a prognostic signature
based on GARGs

To further analyze the value of GARGs in the prognosis and

immune response of HCC, we constructed a prognostic signature of

HCC based on these 21 genes. First, 699 HCC samples were

randomly divided into two groups (training set (set1) and test set

(set2)) by 1:1, and the total samples were used as test set (set3). A

prognostic signature consisting of three GARGs was built by

LASSO-COX analysis in the training set (Figures 5A–C).

riskScore  =  BSG expression * 0:1756 

+  KIF20A expression* 0:2711 

+  RNF24 expression * 0:3953

The risk score was calculated for each patient according to the

formula. The median was used to divide the sample into high-risk

and low-risk groups, and in the training set, survival was

significantly lower in the high-risk group (p<0.001) (Figure 5D).

the ROC curve assessed the accuracy of the signature, with AUC

values of 0.702, 0.662, and 0.642 at 1, 2, and 3 years, respectively
B

C D

A

FIGURE 1

Weighted gene co-expression network analysis. (A) Clustering dendrogram of genes, with dissimilarity based on topological overlap, together with
assigned module colors. (B) Visual representation of the weight relationship of modular genes in an eigengene network. (C) Module-trait
associations: Each row corresponds to a module eigengene and the column to the tumor and normal. Each cell contains the corresponding
correlation and p-value. (D) Correlation graph of genes and tumors in the blue module.
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B

C D

A

FIGURE 2

Identification of differentially expressed GARGs in HCC. (A) The heatmap. (B) The volcano map. (C) Gene ontology (GO) analysis of differentially
expressed GARGs. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed GARGs.
B

C D

A

FIGURE 3

Screening of major GARGs and their Copy Number Variation and Mutations. (A) DEGs, prognostic genes and Meblue module genes were intersected
by a Venn diagram. (B) The CNV variation frequency of GARGs in TCGA-LIHC. (C) The location of CNV alteration of GARGs on 23 chromosomes in
TCGA-LIHC. (D) Mutation frequency of GARGs in TCGA-LIHC.
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(Figure 5E). And as the risk score increased, the survival time

gradually decreased and the number of deaths gradually

increased (Figure 5F).
3.6 Validation of prognostic signature

We use the test set (set2) and the total data set (set3) to test the

accuracy of the model. Similarly, after calculating the risk score of

each sample, we can divide it into high and low risk groups

according to the median value. The results of KM survival

analysis showed that the survival rates of the high-risk groups in

set2 and set3 were lower (P<0.05) (Figures 6A, D). AUC values

assessed by ROC curve in set2 are 0.673, 0.636 and 0.627
Frontiers in Immunology 07
respectively in 1, 2 and 3 years (Figure 6B). AUC values assessed

by ROC curve in set3 are 0.689, 0.648 and 0.629 respectively in 1, 2

and 3 years (Figure 6E). In addition, the number of deaths gradually

increased with the increase of risk score (Figures 6C, F).

To further verify the accuracy of the signature, we use the data

of ICGC-LIRI-JP queue as external verification data to verify the

risk characteristics. Similarly, the cohort was divided into high-risk

group and low-risk group according to the median risk score. The

results showed that patients with higher risk also had worse survival

outcomes (P<0.05) (Figure 6G). AUC values assessed by ROC curve

in set3 are 0.776, 0.713 and 0.717 respectively in 1, 2 and 3 years

(Figure 6H). Similarly, as the risk score went up, the number of

deaths gradually increased (Figure 6I). Meanwhile, we used IMvigor

database to verify that there was a significant difference between the
B C

D E

F G

H I J

A

FIGURE 4

Identification of tumor subtypes based on the GARGs. (A) Two clusters were identified according to the best consensus matrix (k=2). (B) Principal
Component Analysis (PCA) demonstrates the degree of differentiation between the two subtypes. (C) The overall survival between the two subtypes.
(D) Comparison of GARGs expression and clinical characteristics between the two subtypes. (E) Gene Set Variation Analysis (GSVA) was performed
to analyze the differences between the two subtypes. (F) The immune cell infiltration between the two subtypes was analyzed by the ssGSEA.
(G) TumorPurity between the two subtypes. (H) ESTIMATEScore between the two subtypes. (I) ImmuneScore between the two subtypes.
(J) StromalScore between the two subtypes. *P<0.05, **P<0.01, ***P<0.001.
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B C

D E F

G H I

A

FIGURE 6

Distribution of survival analysis, ROC and risk scores and survival outcomes for the validation set. (A) Survival analysis between the high and low risk
groups in TCGA-test. (B) Receiver operating characteristic curve (ROC) of risk score in TCGA-test. (C) Distribution of risk scores and survival
outcomes in TCGA-test. (D) Survival analysis between the high and low risk groups in TCGA-sum. (E) Receiver operating characteristic curve (ROC)
of risk score in TCGA-sum. (F) Distribution of risk scores and survival outcomes in TCGA-sum. (G) Survival analysis between the high and low risk
groups in ICGC. (H) Receiver operating characteristic curve (ROC) of risk score in ICGC. (I) Distribution of risk scores and survival outcomes in ICGC.
B C

D E F

A

FIGURE 5

LASSO-COX regression to identify signature genes in the TCGA-Train set. (A) Forest plot of prognostic GARGs in the train set. (B) Cross-validation of
the LASSO regression. (C) Coefficient value of prognostic genes. (D) Survival analysis between the high and low risk groups. (E) Receiver operating
characteristic curve (ROC) of risk score. (F) Distribution of risk scores and survival outcomes.
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immunotherapy response group and the non-response group

(Figure S2).

Also, the results of the t-distributed Stochastic Neighbor

Embedding (t-SNE) and Principal Component Analysis (PCA)

analyses demonstrate the discriminative power of the signature

(Figure S3).
3.7 Expression validation and epigenetic
analysis of signature genes

At the RNA level, we verified the expression of the signature

genes in normal hepatocytes (7702) and hepatocellular carcinoma

cells (HCCLM3, MHCC97H, HepG2 and SMMC-7721) by q-PCR

assay (Figures 7A–C). In addition, we collected 20 pairs of HCC

tissues and their paraneoplastic tissues to detect the mRNA

expression of the signature genes (Figures 7D–F), and the primer

sequences are shown in Table 1. At the protein level, we detected the

difference in the expression of the signature genes in three pairs of

HCC tissues and paraneoplastic tissues by immunohistochemical

assay, and the results were consistent with the results at the RNA

level, and the signature genes were expressed in HCC tissues

higher (Figure 8).

Since the signature genes are closely linked to the function of

the Golgi apparatus, to further verify the localization of these genes,

we performed immunofluorescence experiments. We used the

Golgi apparatus marker gene GM130 as a control, and the results

showed that GM130 was localized in the cytoplasm and the

localization of the three signature genes were also predominantly

present in the cytoplasm, consistent with the results of our

analysis (Figure 9).

We analyzed the methylation levels and copy number variation of

the signature genes in LIHC using the GSCA database. The results

showed that the higher the expression of the three genes, the lower

the level of methylation. Meanwhile, the copy number variation and

survival of the signature genes were presented (Figure S4).
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3.8 Independent prognostic analysis and
construction of nomograms

We performed univariate and multivariate analyses of risk scores

and clinical data, which showed that clinical stage and risk scores

were significantly associated with patient prognosis (P<0.05) in both

univariate and multivariate analyses (Figures 10A, B). Then, we

presented the signature genes with clinical characteristics as heat

maps and found significant differences in Stage staging and gender

between high- and low-risk groups (P<0.05) (Figure 10C). To further

evaluate individual patients, we simplified the statistical prediction

signature with Nomograms (Figure 10D). calibration plots of survival

probabilities at 1, 2, and 3 years also showed good agreement between

bar graph predictions and actual observations (Figure 10E).
3.9 BSG expression was associated with
poor prognosis of HCC

We selected the signature gene BSG for the prognosis

experiment of HCC. First, we evaluated the expression level of

BSG in HCC cell lines. The results showed that BSG was highly

expressed in HCCLM3, SMMC-7721 and Huh7 than HL-7702

(normal liver cell) (Figures 11A, B). Next, we used SMMC-7721,

which has the highest level of BSG mRNA expression. Then, We

used Western blot to verify the knockdown efficiency

(Figures 11C, D).

To assess the effect of BSG on proliferation in HCC, we used

EdU assays in SMMC-7721. The results showed that after

interfering with the expression of BSG in SMMC7721 cell, the cell

proliferation rate in the si-BSG group was significantly lower than

that of si-NC group (Figures 12A, B). At the same time, the effect of

inhibiting BSG expression on the migration of HCC cells was

further analyzed. Transwell assay and wound healing assay

showed that inhibition the expression of BSG could significantly

inhibit the migration ability of HCC cells (Figures 12C–F).
B C

D E F

A

FIGURE 7

Validation of differential expression of 3 signature genes in cells and tissues by q-PCR. (A–C) Differential mRNA expression of 3 signature genes in
HL-7702, HCCLM3, MHCC-97H, HepG2 and SMMC-7721 cells. (D–F) Differential mRNA expression of 3 signature genes in HCC tissue and
paraneoplastic tissue (20 pairs). **<0.01, *** <0.001.
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3.10 Immune cell infiltration analysis

The CIBERSORT algorithm was used to calculate the immune

cell infiltration between the high and low risk groups, and the
Frontiers in Immunology 10
results showed that Plasma cells, T cells CD4 memory activated,

Macrophages M1 and Mast cells activated were significantly higher

in the high-risk group, while T cells CD4 memory resting, T cells

regulatory (Tregs) Dendritic cells activated, Mast cells resting and

Eosinophils were higher in the low-risk group (Table S4)

(Figure 13A). Also, we analyzed the correlation between the

signature genes and immune cells (Figure 13B).
3.11 Tumor microenvironment and
immunotherapy analysis

Similarly, we assessed the ImmuneScore, StromalScore,

ESTIMATEScore and TumorPurity levels between the two risk

groups using the ESTIMATE method, and the results showed that

the tumor purity was higher and the non-tumor components were

lower in the high-risk group (Figures 13C–F). To compare the

differences in immunotherapy between the two risk groups, we

analyzed the risk of immune escape between the two groups, and
FIGURE 8

Immunohistochemistry of 3 signature genes in three pairs of HCC tissues and paraneoplastic tissues.
TABLE 1 Primer sequences used for RT-qPCR.

Gene Sequence (5’-3’)

GAPDH F: GGAGCGAGATCCCTCCAAAAT

R: GCTGTTGTCATACTTCTCATGG

BSG F: GCCGGTCAGAGCTACACATT

R: GATGATGGCCTGGTCGGAG

KIF20A F: AGTCACAGCATCTTCTCAATCAG

R: TTCAACCGTTCACCACTCTTC

RNF24 F: GGCTAAGACATCAAGCACACA

R: TCTGTGGAAGGCGTGCTTAC
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the results showed that the high-risk group had less risk of immune

escape and might respond better to immunotherapy (Figure 13G).

We also performed an analysis of risk score versus drug sensitivity,

and the results showed that the high-risk group was more sensitive to

Gemcitabine, Sorafenib and Sunitinib and may have better treatment

outcomes. Correlation analysis showed that the higher the risk score,

the higher the sensitivity to these three drugs (Figures 14A–F).
4 Discussion

HCC is one of the most common malignancies worldwide and

its morbidity and mortality are on the rise (18, 19). Surgery remains

the most successful treatment modality available, but most HCC

usually occurs in the setting of cirrhosis, where the postoperative

residual liver has poor hepatic function while still maintaining a

tumor-prone microenvironmental state. The possibility of cure

exists through radiofrequency ablation and liver transplantation,

but requires diagnosis and intervention at a sufficiently early stage.

In this context, the advent of immune checkpoint inhibitors (ICIs),

tyrosine kinase inhibitors (TKIs) and monoclonal antibodies has

expanded the therapeutic field for HCC. Immunotherapy is

currently a major hotspot in the treatment of HCC, and

understanding the interplay between oncogenic pathways and

immune responses is essential to improve current and future

therapeutic outcomes.
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The pathogenic role of organelles in tumors has received

increasing attention, and the Golgi apparatus complex is a highly

dynamic organelle that is considered the “heart” of intracellular

transport. In the last decade, a growing number of studies have

reported structural alterations of the Golgi apparatus associated

with diseases, dysregulation and infection. These include stress

responses (20), cancer (21) and various infections. The

mammalian GA is the center of glycosylation and changes in GA

structure will lead to reordering of glycosyltransferases, resulting in

specific glycosylation epitopes that lead to tumorigenesis and

development (22). In addition, GA membrane dynamics are

triggered by the actin cytoskeleton and associated unconventional

myosin (23). In many cases, upregulation of GA associated myosin

motility is associated with aggressive cancers (24, 25). Meanwhile,

myosin 18 is able to coordinate directly with GA morphology by

interacting with Golgi phosphorylated protein 3 (GOLPH3), and

their linkage triggers Golgi proliferation (26). In turn, the

synergistic GOLPH3-myosin 18a relationship is necessary for

DNA damage to induce Golgi fragmentation, which itself is a

prerequisite for most mutations and cancers (27).

Due to the important role of the GA in tumor development, this

study utilized bioinformatics analysis techniques based on the study

of GARGs to identify two distinct molecular subtypes that exhibit

significantly different immune cell infiltration and survival

outcomes by comprehensive mining of publicly available HCC

transcriptional data. Meanwhile, a risk score signature consisting
FIGURE 9

Golgi apparatus marker gene GM130 was used as a reference. Immunofluorescence experiments determined the localization of the signature genes
in SMMC-7721 cell.
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B

C D

A

FIGURE 11

Evaluate the expression level of BSG in HCC cell line, and then verify the intervention efficiency. (A) Compared with HL-7702(normal liver cell), BSG is
generally highly expressed in tumor cells and has the highest expression in SMMC7721. (B) Differential protein expression of BSG between hepatocytes
and hepatoma cells. (C) Verification of intervention efficiency through western blot. (D) The expression of BSG protein was significantly reduced in
SMMC-7721 cells after the intervention of BSG expression. **P value<0.01; ***P value<0.001; ns, Not Significant.
B

C

D E

A

FIGURE 10

Independent prognostic analysis and Construction and validation of the Nomograms. (A) Univariate cox regression analysis for the TCGA cohort.
(B) Multivariate cox regression analysis for the TCGA cohort. (C) The correlations between the GARGs and clinicopathologic characters of the high-
risk group and low-risk group were shown as a heatmap. (D) Construction of the Nomograms. (E) The calibration curves displayed the accuracy of
the nomogram in the 1-, 2- and 3 years.
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of three GARGs was constructed using these key GARGs to predict

the prognosis and immunotherapy response in HCC patients. The

C2 cluster and low risk score groups in this study exhibited

abundant immune cell infiltration and more non-tumor cell

components, along with lower tumor purity, characteristics that

corresponded to better survival outcomes. Meanwhile, the high-risk

group exhibited a lower risk of immune escape and higher

sensitivity to immunotherapeutic agents, findings that provide

new perspectives for improving patient prognosis and risk-

stratified treatment strategies by considering TME characteristics

and transcriptomics.

Among the three genes that constitute the prognostic signature,

RNF24 is considered as one of the risk factors for human oral

squamous cell carcinoma (28). Moreover, RNF24 expression is

more than 2-fold upregulated in esophageal adenocarcinoma

patients compared to normal subjects (29). BSG (CD147) is a

multifunctional protein involved in cancer cell survival and controls

lactate transport mainly through interaction with monocarboxylate

transporter proteins (MCT) such as MCT1 (30). It was shown that

CD147 receptor is essential for TFF3-mediated signaling that

regulates colorectal cancer progression (31). In addition, CD147 is

able to promote collective invasion of hepatocellular carcinoma cells

through upregulation of histone B expression (32). kIF20A (kinesin
Frontiers in Immunology 13
family member 20A), was shown to promote proliferation and

metastasis of bladder cancer cells, and bladder cancer patients with

high expression of KIF20A had poorer tumor differentiation and

poorer prognosis (33). Moreover, overexpression of KIF20A can

promote tumor proliferation and invasion in renal clear cell

carcinoma and is associated with poor clinical outcome (34). In our

study, a nomogram was constructed to calculate a score representing

the OS of HCC patients through a risk scoring system composed of

these three genes. The calibration plots showed that the signature had

a better fitting curve, better clinical application than the traditional

staging system, and was able to predict the prognosis of HCC patients

more individually. These three GARGs have been studied and

identified to have regulatory roles in tumors, thus providing higher

value for our signature to predict prognosis and immunotherapeutic

response in hepatocellular carcinoma.
5 Conclusion

In summary, we have systematically explored for the first time

the value of GARGs in the prognosis and immunotherapy of

patients with HCC, providing a new direction and therapeutic

target for the treatment of HCC.
B

C D

A

E F

FIGURE 12

The expression level of BSG is related to the poor prognosis of HCC. (A, B) EdU assay showed that the cell proliferation rate of si-BSG group was
significantly lower than that of si-NC group. (C, D) Transwell assay showed that inhibiting the expression of BSG could significantly inhibit the
migration ability of HCC cells. (E, F) The wound healing assay showed that the migration ability of HCC cells were significantly inhibited after the
intervention of BSG expression. **<0.01, *** <0.001.
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FIGURE 14

Drug sensitivity analysis. (A–C) Comparison of the Gemcitabine, Sorafenib and Sunitinib (IC50) between the two groups. (D–F) The relationship
between risk score and Gemcitabine, Sorafenib and Sunitinib (IC50) sensitivity.
B
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A

FIGURE 13

Immune infiltration and tumor microenvironment analysis between high-risk and low-risk groups. (A) The CIBERSORT algorithm was used to
calculate the immune cell infiltration between the high and low risk groups. (B) The correlation between the signature genes and immune cells.
(C) TumorPurity between the two risk groups. (D) ESTIMATEScore between the two risk groups. (E) ImmuneScore between the two risk groups.
(F) StromalScore between the two risk groups. (G) Comparison of the scores of TIDE between the high and low risk group. *<0.05; ns, Not Significant.
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