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Kidney transplantation (KT) is an ultimate treatment of end-stage chronic kidney

disease, which can meet a lot of complications induced by immune system. With

under-controlled immunosuppression, the patient will obtain a good prognosis.

Otherwise, allograft disfunction will cause severe organ failure and even immune

collapse. Acute or chronic allograft dysfunction after KT is related to Th17, Treg,

and Th17/Treg to a certain extent. Elevated Th17 levels may lead to acute rejection

or chronic allograft dysfunction. Treg mainly plays a protective role on allografts by

regulating immune response. The imbalance of the two may further aggravate the

balance of immune response and damage the allograft. Controlling Th17 level,

improving Treg function and level, and adjusting Th17/Treg ratio may have positive

effects on longer allograft survival and better prognosis of receptors.
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Introduction

Kidney transplantation (KT), as the ultimate treatment of end-stage chronic kidney

disease (CKD) (1), same as other solid organ transplantation, can meet a lot of complications

induced by immune system. Once immunosuppression is under control, with allograft

functioning well, the patient will achieve a relatively high quality of life. Otherwise, allograft

disfunction will cause severe organ failure and even immune collapse.

The most valuable evaluation index after renal transplantation is renal function. Routine

assessment of graft function usually includes monitoring of serum creatinine levels and

screening for proteinuria. Sometimes, allograft biopsy may be required to clarify the

abnormality of kidney function. Various immune mechanisms may cause abnormal renal

function after renal transplantation. Acute or chronic rejection of allograft may be mediated

by T cells, and T-cell–mediated rejection (TCMR) remains a major obstacle to the long-term

survival of kidney transplant patients (1–3). It is reported that Th1/Th2 balance is thought to

be the main mechanism of rejection (4) However, certain immune events occurring after KT

cannot be explained by Th1/Th2 balance alone.
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Multiple functions of T cells had been approximately classified

into coordinators [i.e., T helper (Th) cells and regulatory T cells

(Tregs)] and effectors (i.e., cytotoxic T cells) (5, 6). Th17 cells were

first reported in the mechanism of autoimmune diseases, as the

additional subsets of Th1 and Th2, and its related cytokines also

play an important role in the occurrence of acute and chronic allograft

injury after organ transplantation (7, 8). Treg has been confirmed to

play a role in regulating tolerance and rejection in animal models of

solid organ transplantation (9). Signaling cells can induce T cell

differentiate from naïve T cell by secreting kinds of cytokines, a

correlation of different subtypes can also affect the procedure, and

multiple discovered or undiscovered mechanisms help to maintaining

the balance of T-cell–associated immunity. However, changes in the

proportions of T-cell subtypes can be observed in renal allograft

rejection (4, 10).

In this review, we will briefly describe the differentiation of Th17

and Treg and narrate the relevance between Th17 and Treg. Last, we

will discuss the relationship between renal allograft rejection and

Th17, Treg , Th17/Treg imbalance , and some possib le

immunosuppression treatment aimed at them.
Differentiation of Th17 and Treg

Th17

Th17 cells are T helper cells that express retinoic acid receptor-

related orphan receptor gt (RORgt) and secrete interleukin-17A (IL-

17A) and IL-17F cytokine. In the peripheral blood, Th17 was

discovered and owned its name because of IL-17, which is the

characteristic cytokine of it (11). IL-17 induces a powerful

proinflammatory response by st imulat ing secret ion of

proinflammatory molecules by combining ubiquitous IL-17

receptor on epithelial cells, endothelial cells, monocytes, and

macrophages (12).

IL-6 and transforming growth factor–b (TGF-b) are the critical

cytokines for Th17 differentiation, and there are three possible stages

of Th17 differentiation in mice: first, combined effect of TGF-b and

IL-6/IL-21 triggers differentiation of Th17 cells; then, IL-21 secreted

by Th17 cells and TGF-b induced amplification of Th17 cell

themselves; and, finally, IL-23 stabilizes Th17 cells (13).

Combination of TGF-b and IL-21 has been shown to be sufficient

to induce the differentiation of human Th17 cells from immature T

cells; meanwhile, IL-1b and IL-6 are important for enhancing the

differentiation and memory expansion of Th17 cells (14). Tumor

necrosis factor-a (TNF-a) plays an accessory role in Th17

differentiation (15). Signal transducer and activator of transcription

3 (STAT3) plays a key role in positive regulation the differentiation of

Th17. After being activated by cytokines such as IL-6, IL-21, IL-23,

TNF-a, and TGF-b, STAT3 can upregulate RORgt and promote the

differentiation of Th17 (16).

Four distinct mechanisms are described in inhibiting Th17

differentiation: IL-13 can decrease the production of IL-17 by

stimulating Th17 cells to produce IL-10, which results in the

downregulation of IL-6 (17); IL-27 and IFN-g through STAT1

activation (12, 18); IL-2 and IL-4 through STAT5 activation (19);
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and the inhibition of RORgt by Foxp3 (20). Few STAT family

members are involved in regulation of Th17 differentiation

mediated through some cytokines (16, 18). IL-27, IL-13, and IFN-g
are responsible for inhibiting Th17 development in a STAT1-

dependent manner (16, 18, 21, 22). IL-2 also participates in

negative regulation of Th17 differentiation through STAT5 (19).

Th17 cells are involved in a variety of autoimmune diseases,

including psoriasis, rheumatoid arthritis, inflammatory bowel disease,

and multiple sclerosis (23, 24). Meanwhile, Th17 cells can also defend

extracellular pathogens, including fungi and bacteria, colonizing the

mucosal surface (25). It has been reported that Th17 deficiency can be

associated with fungi co-infection, immunoparalysis development,

and increased mortality (26–28).
Tregs

Tregs, either originating from the thymus [natural (n)Treg] or

induced peripherally by antigen exposure and cytokines [induced (i)

Treg], are CD25+ CD4+ Foxp3+ T cells, continuously expressing

cytotoxic T-lymphocyte–associated protein-4 or CD152 and

glucocorticoid-inducible tumor necrosis factor receptor (29, 30).

Tregs character is t ica l ly express Foxp3 and are major

immunoregulatory cells with an ability to suppress exaggerated pro-

inflammatory action of effector T cells (i.e., activated Th1, Th2, Th3,

Th9, Th17, and cytotoxic T cells) (31).

Tregs function by producing the inhibitory cytokines IL-10 and

TGF-b (32, 33), interfering with T-cell survival through IL-2

depletion (34), and secreting molecules that directly eliminate

effector cells and inhibit antigen-presenting cell maturation and

functionality (34, 35). It means that Tregs may show an

antagonistic effect against Th17 in an immune response

dysregulation individual. TGF-b also plays an important role in the

differentiation of Tregs through the induction of STAT5 transcription

factor (36). Then, IL-2, through the induction of transcription factor

STAT5, and retinoic acid further enhanced the differentiation toward

Treg subset (37). In turn, STAT5 will enhance Foxp3 expression.

Whereas, retinoic acid can promote TGF-b signaling and Foxp3

promoter activity and can inhibit Th17 differentiation by blocking

IL-6 signaling simultaneously (38). IL-10 also plays a part in

promoting differentiation of Tregs (39).

It is worth mentioning that, although knockdown of Foxp3 can

significantly inhibit Treg function, because Foxp3 is induced upon

TCR stimulation, it is possible that Foxp3 expression is not an ideal

marker for human Tregs (40). Several lines of evidence suggest that

the combination of CD4 and CD25 and the low expression of CD127

identify a subset of peripheral blood T cells, which are highly

suppressive in functional assays and are the highest expression of

FoxP3, suggesting that the IL-7 receptor (CD127) may be a better

biomarker for human Treg (41).
Th17/Treg

Because it has been described that Foxp3 can inhibit RORgt
function that turns out to reduce Th17 cell differentiation (20),
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substantiating the balance between Foxp3 and RORgt is therefore a

very important factor in the Th17/Treg balance. Although TGF-b can

induce the development of both Tregs and Th17 cell from naïve T

cells, Foxp3, induced by TGF-b as well, inhibits Th17 cell

differentiation by inhibiting RORgt function when other

inflammatory factors are absent (20). TGF-b–induced Foxp3

expression is inhibited by IL-6 (42), IL-21 (43), and IL-23 (20). IL-6

acts as proinflammatory cytokine in T cells by promoting Th17

differentiation and inhibiting Treg differentiation to regulate the

balance between Th17 and Treg (18). Figure 1 shows some

important mechanisms in the differentiation process of Treg and

Th17, as well as the interaction between Th17 and Treg.

Because Th17 and Tregs play the opposite roles in the immune

response and maintain a medium stage of immune activation,

which is neither hyperactivation of immune response nor

immunosuppression, Th17/Treg imbalance may produce a marked

effect in immune dysfunction.
Relationship between Th17,
Treg, and KT

Th17 and KT

In allograft rejection and dysfunction, it is important to identify

the main causes of graft rejection due to the complexity and diversity

of mechanisms. Th17 is now known to play a role in both acute

allograft rejection and chronic allograft dysfunction.

Some studies have suggested that causes such as ischemia/

reperfusion that occurs during transplantation, as well as collagen

exposure (Col V), may promote the differentiation of naïve T cells

into Th17 under conditions of low levels of TGF-b1 and high levels of

IL-6. In addition, Col V is more expressed in bronchial and alveolar
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tissues. It is assumed that Th17 anti–Col V cell-mediated immunity

may be related to graft rejection in lung transplantation (44).

IL-17, an important cytokine secreted by Th17, was found to have

increased local expression in graft rejection. In addition, increased

infiltration of Th17 cells was significantly associated with incomplete

recovery, recurrent TCMR, steroid-resistant rejection, and lower graft

survival after rejection (45). Several hypotheses have been proposed.

The secretion of IL-17 by Th17 plays a role in the recruitment of

neutrophils (46). At the same time, renal epithelial cells exposed to IL-

17 produce inflammatory mediators and stimulate the early

alloimmune response (47). Th17 cells can also further drive the

alloimmune response by promoting lymphoid regeneration (7).

Thus, it is assumed that Th17 cells induce a stronger and more

durable alloimmune response and result in severe graft tissue damage.

IL-17 induces IL-6, IL-8, monocyte chemoattractant protein-1

(MCP-1), and complement component C3 through the src/mitogen-

activated protein kinase pathway (48). In addition, IL-17 exerts its

effects through the synergistic interaction with cd40 ligand and the

activation of nuclear factor–kB (49).

In the heart transplantation model, antagonism of the IL-17

network (through expression of the IL-17R-immunoglobulin fusion

protein) reduced the production of an intra-graft inflammatory

cytokine (i.e., IFN-g) and prolonged graft survival (50).

Studies have found that the Th17 levels in patients who develop

CKD after KT are higher than that in patients with normal renal

function who undergone KT. In addition, Th17 levels in patients with

CKD who have not undergone KT are also lower than those after KT,

suggesting that immune response is the cause of the development of

CKD after transplantation (45, 51). Retrospective studies have found

that the increase in the proportion of Th17 cells is consistent with the

increase in the rate of graft failure (52). In addition, Th17 infiltration

of allograft has a certain indicator effect on transplantation prognosis

and anti-rejection response (53).
FIGURE 1

The figure shows some important mechanisms in the differentiation process of Treg and Th17, as well as the interaction between them. TGF-b plays an
important role in the differentiation of Treg and Th17. IL-21 and IL-6 could inhibit the differentiation of Treg while promoting the differentiation of Th17.
IL-10 secreted by Treg can inhibit the effect of IL-6. Treg regulates Th17 differentiation through the inhibitory effect of Foxp3 on RORgt, and the
inhibitory effect of Foxp3 on RORgt is inhibited by IL-6. Treg, regulatory T cells; Th17, T helper cells 17; TGF-b, transforming growth factor–b; IL-21,
interleukin-21; IL-6, interleukin-6; IL-10, interleukin-10; Foxp3, forkhead box protein 3; RORgt, receptor-related orphan receptor gt.
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Treg and KT

Treg is considered as an important part in inhibiting activated T-

cell function and regulating immunity. The main mechanisms are

separated into two types: contact-dependent mechanisms that are

dependent on the intercellular receptor and ligand contact, and

contact-independent mechanisms that function on the secretion of

cytokines (54). It is generally assumed that Tregs act by direct contact

with cells, mediated by other active cells or by IFN-g (55). In vitro,

Tregs have the ability to inhibit the proliferation and cytokine

production of responsive (CD4+ CD25− and CD8+) T cells and

downregulate the responses of CD8+ T cells, NK cells, and CD4+ cells

to specific antigens (56, 57). In vivo, it can play a role in preventing

graft rejection (58).

On the basis of the effects of Th1, Th2, and Th17 on the rejection

and dysfunction of solid transplanted organs, and the inhibitory effect

of Treg on the above cells and their related immune responses, it can

be assumed that the increase of Treg level has a certain protective

effect on the transplanted organs.

Although the specific mechanism of Treg in promoting human

organ transplantation tolerance in terms is unclear, Treg level has an

obvious correlation with allograft survival rate (59), and cardiac

transplantation related study has found that the local and total Treg

and iTreg level is negatively related to the incidence of allograft

rejection present (60), prompting that Treg may play a positive role in

graft tolerance. In addition, some studies have found that FOXP3

gene hypomethylation may be used as a marker of the percentage of

infiltrated Treg in the graft to predict the incidence of rejection events

after the suppression of solid organs (61).
Th17/Treg and KT

As mentioned above, because the changes in the Th17 and Treg

levels are related to the occurrence of renal rejection after KT, and on

the basis of the interaction between Th17 and Treg, the ratio of local

infiltration of Th17/Treg and the balance of Th17/Treg are also

theoretically related to transplant organ rejection.

It has been suggested that kidney perfusate–derived extracellular

vesicles (KP-EVs) released in allografts may signal the degree of

ischemic stress and are considered playing an important role in the

development of anti-donor immunity (62, 63). In vitro studies

confirmed that stimulation of peripheral blood monocytes in this

KP-EV environment resulted in a significant reduction in the

proportion of Tregs, accompanied by an increase in the Th17/Treg

ratio. The expression of miR-218-5p KP-EV increased in allograft of

patients with chronic graft rejection. MiR-218-5p KP-EV may

participate in the immune process and become a key regulator of

T-cell activation through molecular processes, and its expression may

be related to the change of Th17/Treg ratio (64).

Some studies have indicated that the imbalance of T-cell subtype

proportion is related to the occurrence of CKD in patients after renal

transplantation. Compared with normal and mild functional decline

individuals, patients with significantly decreased renal function after

KT have higher Th17 local infiltration and lower Treg local

infiltration of allograft (10). Study has also confirmed that a higher
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Th17/Treg rate of infiltration in allografts is significantly correlated

with decreased allograft function and more grievous interstitial and

tubular injury (65).
Immunosuppression treatment aimed
at Th17, Treg, and Th17/Treg

Th17-related immunosuppression treatment

T cells are inhibited by a combination of tacrolimus (Tac),

mycophenolate, and steroids. In addition, induction therapy with

the anti-CD25 monoclonal antibody Basiliximab can also inhibit the

proliferation of t cells (66). Even if the short-term use of

immunosuppressive therapy can avoid most short-term allograft

rejection after KT, the long-term prognosis improvement is not

ideal (67), suggesting that the current immunosuppressive therapy

still has some limitations. Local infiltration of Th17 may lead to

chronic allograft dysfunction, and some Th17-inhibiting drugs may

be helpful for treatment.

Mammalian target of rapamycin (mTOR) plays an important role

in T-cell differentiation, and inhibitors that limit its effect may be

beneficial to patients after transplantation. Sirolimus (SRL) has been

shown to reduce Th17 levels in patients after renal transplantation.

Treatment with SRL instead of Tac can effectively control Th17

levels (68).

1a,25-Dihydroxyvitamin D3 combined with Tac can also play a

role in regulating Th17 levels. It has been reported that the

combination of the two can significantly inhibit peripheral Th17

and reduce IL-17 and IL-22 levels (69).
Treg in post-transplantation treatment

The role of Treg in the recovery of patients after KT may mainly

lie in several points, promote the recovery of ischemia-reperfusion of

transplanted kidney (54), negatively regulate a series of pro-

inflammatory factors produced by effector T cells (70), and adjust

the level of donor-specific antibodies to regulate humoral

immunity (71).

Although part of the immune treatment medicine may play a role

in immunosuppression, the limitation is that they may inhibit Treg

level (72–75). Therefore, improving the level of Treg in the human

body is a kind of auxiliary treatment idea, and achieving this goal

means that there are two main methods: (1) Promote Treg

proliferation and differentiation endogenously; (2) extract Treg and

proliferate in vitro and back transfusion.

To promote the proliferation and differentiation of Treg, several

drugs have attracted the attention of researchers. In addition to

inhibiting Th17 proliferation, mTOR inhibitors can also promote

the proliferation and differentiation of Treg (76). The use of

alenzumab has also been shown to lead to the production/

expansion of Treg (77). Erythropoietin can inhibit the proliferation

of other effector T cells while preserving the proliferation of Treg (78).

Finally, low-dose recombinant IL-2 is considered as a potential means

to enlarge Treg (79).
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At present, a series of trials are being conducted for adoptive Treg

transplantation in renal transplantation patients. The main technical

difficulties lie in how to perform stable and effective amplification

after extraction, how to enhance the stability of in vitro induced Treg

effect, and how to produce specificity for alloantigens during

amplification, so as to finally achieve reliable therapeutic effect (54).
Treatment regulation of Th17/Treg

The changes in Th17 and Treg levels and the imbalance of the two

subtypes are related to the allograft dysfunction after KT (10, 65).

Adjusting the level of one subtype alone may aggravate the imbalance

of the ratio. Therefore, regulating the ratio of the two may also become

the research direction of immunosuppression therapy. Currently, there

are limited studies on Th17/Treg ratio after renal transplantation as a

therapeutic target. However, studies have found that thymoglobulin

induction therapy is beneficial to change the ratio of T effector and

Treg (80, 81). In vivo studies have shown that bortezomib can increase

the number of Tregs, can significantly reduce the proportion of Th17

cells, and can also improve renal function and graft survival (82). In

rats after KT under carbamylated erythropoietin (CEPO) treatment, it

was found that CEPO significantly extended the survival time of the

allograft, and flow cytometry showed that Th17/Treg ratio decreased

significantly (83). These results indicate that effective treatment can

prolong the survival time of kidney grafts, accompanied by the

improvement of Th17/Treg ratio.

In recent years, mesenchymal stem cells (MSCs) have attracted

more and more attention in the treatment of autoimmune diseases,

especially systemic lipus erythematosus (SLE). This therapy can

promote the proliferation of Th2 and Tregs; inhibit the activities of

Th1, Th17, and B cells; improve the Th17/Treg ratio; and finally

improve the signs and symptoms of refractory SLE (84). From the

mechanistic point of view, although this kind of cell therapy in

patients after transplantation still needs further study support, we

can consider MSCs as a potential development direction.
Conclusions

Acute or chronic allograft dysfunction after KT is related to Th17,

Treg, and Th17/Treg to a certain extent. Elevated Th17 levels may
Frontiers in Immunology 05
lead to acute rejection or chronic allograft dysfunction. Treg mainly

plays a protective role on allografts by regulating immune response.

The imbalance of the two may further aggravate the balance of

immune response and damage the allograft. Controlling Th17 level,

improving Treg function and level, and adjusting Th17/Treg ratio

may have positive effects on longer allograft survival and better

prognosis of receptors.
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