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pathogenesis of azoospermia
complicated with COVID-19
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Background: Although more recent evidence has indicated COVID-19 is prone

to azoospermia, the common molecular mechanism of its occurrence remains

to be elucidated. The aim of the present study is to further investigate the

mechanism of this complication.

Methods: To discover the common differentially expressed genes (DEGs) and

pathways of azoospermia and COVID-19, integrated weighted co-expression

network (WGCNA), multiple machine learning analyses, and single-cell RNA-

sequencing (scRNA-seq) were performed.

Results: Therefore, we screened two key network modules in the obstructive

azoospermia (OA) and non-obstructive azoospermia (NOA) samples. The

differentially expressed genes were mainly related to the immune system and

infectious virus diseases. We then used multiple machine learning methods to

detect biomarkers that differentiated OA from NOA. Enrichment analysis showed

that azoospermia patients and COVID-19 patients shared a common IL-17

signaling pathway. In addition, GLO1, GPR135, DYNLL2, and EPB41L3 were

identified as significant hub genes in these two diseases. Screening of two

different molecular subtypes revealed that azoospermia-related genes were

associated with clinicopathological characteristics of age, hospital-free-days,

ventilator-free-days, charlson score, and d-dimer of patients with COVID-19 (P <

0.05). Finally, we used the Xsum method to predict potential drugs and single-

cell sequencing data to further characterize whether azoospermia-related genes

could validate the biological patterns of impaired spermatogenesis in

cryptozoospermia patients.

Conclusion:Our study performs a comprehensive and integrated bioinformatics

analysis of azoospermia and COVID-19. These hub genes and common

pathways may provide new insights for further mechanism research.
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Introduction

Infertility affects 10-15% of couples worldwide, and nearly half

of these are due to male factors. Despite the high prevalence of male

infertility, approximately 70% of patients do not receive a timely

clinical diagnosis (1). This knowledge gap prevents clinicians from

counseling infertile men about causal treatment and transmission of

infertility to offspring. The latter aspect is of particular concern, as

low sperm counts and male infertility may be associated with an

additive risk for cardiovascular disease, cancer predisposition, and

even premature death (2). Viral genomes have been reported in the

semen of people infected with Ebola and Zika viruses, which have

not previously been identified as sexual transmission (3). The

transmembrane serine protease 2 (TMPRSS2) and angiotensin-

converting enzyme (ACE) were highly expressed in testicular

germ and somatic cells, suggesting that SARS-CoV-2 may be at

work in the gonads (4). Rastrelli et al. showed the development of

hypogonadotropic hypogonadism and infertility in patients with

active COVID-19 cases, demonstrating impaired adult Leydig cell

function, although whether an impairment is associated with viral

localization in the testis remains unclear (5). Li et al. pointed out

that the semen of 6 samples tested positive for COVID-19, with 4 of

these patients during the acute phase of infection and 2 at two and

three days after clinical recovery, respectively (6). More recently,

Gacci et al. demonstrated that sexually active young men in the age

range of 30 to 45 years recovering from COVID-19 are at

substantial risk of developing oligo-crypto-azoospermia (7). The

occurrence of several virus strains has been described in the male

reproductive system, particularly the testis. The mumps and HIV

virus can directly damage testicular structures, resulting in male

infertility (8, 9). Abnormal spermatogenesis has also been described

in hepatitis B virus, hepatitis C virus, or herpes simplex virus

infections (9).

However, little information about the relationship between

azoospermia and COVID-19 has been reported. Therefore,

further studies are warranted to explore the potential biomarkers

associated with azoospermia and the possible pathomechanisms

and common therapeutic targets between azoospermia and

COVID-19. We performed impaired spermatogenesis WGCNA

analysis, differential expression analysis, and machine learning

using public databases. WGCNA is a method widely used in

molecular biology to explore patterns of gene interactions among

multiple samples (10). It can be used to discover highly co-

expression gene sets networks, as well as possible biomarker

candidates or therapeutic targets based on the interconnection of

gene sets and association with clinical features (11). Additional

single-cell sequencing was also performed to confirm our findings.

scRNA-seq is a breakthrough approach that allows the clustering of

cells to explore the variances of gene expression across all groups

and differences in the cell cycle (12, 13). In this context, we used

support vector machine-recursive feature elimination (SVM-RFE)

and least absolute shrinkage and selection operator (LASSO)

classification models to discover features that might distinguish

impaired spermatogenesis from OA samples. Random forest (RF)

and logistic regression (LR) analyses were used to verify the

accuracy of the model. In addition, CIBERSORT was utilized to
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compare the immune cell infiltration between NOA and OA tissues,

as well as COVID-19 and COVID-19-ICU samples. All the samples

in COVID-19 cohorts were classified into two discrete groups,

based on the four azoospermia-related genes. Moreover, we

investigated the relationship between tissue-infiltrating immune

cells and diagnostic markers to better understand the cellular and

molecular immunological processes involved in the development of

impaired spermatogenesis. The highly dynamic process of

spermatogenesis is regulated by subtle interactions between the

somatic environment and the germline. Moreover, bulk RNA-seq

and scRNA-seq analyses of impaired human testicular tissue

allowed us to identify multiple distinct spermatogonia states

based on transcriptional profiles.
Materials and methods

Datasets

A flow chart that illustrates our research steps can be presented in

Figure 1. Three azoospermia RNA chip datasets (GSE145467,

GSE45885, and GSE9210), one COVID-19 RNA chip dataset

(GSE157103), and one cryptozoospermia single-cell RNA-

sequencing dataset (GSE153947) were downloaded from the NCBI

GEO database (http://www.ncbi.nlm.nih.gov/geo) (14–17). After

standardizing and excluding samples without complete

information, individual genes were further annotated by respective

platforms in the GSE145467 (10 NOA samples and 10 OA samples),

GSE45885 (27 NOA samples and 4 OA samples), GSE9210 (47 NOA

samples and 11 OA samples). As described previously, we

transformed the expression profiles of GEO datasets as TPMs,

which was the same as the microarray results (18). The “ComBat”

package was used to reduce the influence of batch effects from non-

biological and technical biases among the different datasets (19). The

heterogeneity of the datasets before and after batch effect removal was

examined by the “PCA” package. Table 1 shows the clinical data of 3

patients with obstructive azoospermia and 3 patients with

cryptospermia for single-cell analysis, and Table 2 lists the clinical

data of patients with COVID-19. All the datasets were available from

the literature, and the ethics statements of these literature confirmed

that all patients provided written informed consent.
WGCNA-derived modular signature

The “WGCNA” R package to find modules of strongly

associated genes with the Weighted Gene Coexpression Network.

Primarily, soft-thresholding powers were determined using the

pickSoftThreshold function. Subsequently, establish a WGCNA

network. The minimum number of genes in a module is 46, soft-

thresholded power of 12, and a dendrogram cut height of 0.3.

Succeeding, WGCNA, which clusters genes into modules based on

correlations between gene expression patterns (10). To distinguish

modules, each module with a unique color identifier and gray

representation with the remaining mismatched genes. According

to the correlation coefficient of MTR analysis and the visualized
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expression trend of each module. Picked two modules

(MEturquoise and MEblue), on account of exhibiting the highest

positive/negative correlation and revealing gradually increasing or

decreasing expression trends.
Screening and verification of
diagnostic markers

We performed the LASSO, and SVM-RFE to screen for novel

azoospermia biomarkers. The “glmnet” and “e1071” packages in R

were utilized to implement the LASSO and SVM, respectively (20,

21). The three candidate genes were then figured out. This research

used the RF method in the “randomForest” package to validate

biomarkers using five-fold cross validation. Furthermore, LR and

RF were used as the cross validation set for providing an in-depth

assessment of the effectiveness of selected biomarkers (22, 23).
DEGs identification and ROC analysis

The “limma” R Package was employed to investigate the

differences between the COVID-19 and normal sample

subgroups, COVID-ICU and COVID-Non-ICU subgroups. After
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applying a filter (|logFC| > 2 and adjusted P < 0.05), we obtained

DEGs and displayed them by heatmap graph respectively. The

selected genes were used to identify biomarkers with high sensitivity

and specificity for azoospermia and COVID-19 diagnosis. The

receiver operator characteristic curves were plotted and the area

under the curve (AUC) was calculated separately to evaluate the

performance of each gene using the R packages “pROC”.

AUC > 0.75 indicated that the gene had a good diagnosis effect (24).
Signature selection methods

The upregulated genes and downregulated genes were handled

separately with the XSum method. Then, the change values were

sums of the reference/compound signatures relative to increased

query/disease genes (sum-up) and decreased query/disease genes

(sum-down). In brief, XSum is defined as the following equation:

XSum=sum-up−sum-down (25).
Functional and pathway enrichment

We explore the biological processes associated with genes in

these key modules. The Gene Ontology (GO) and Kyoto
FIGURE 1

Schematic representation of the bioinformatic analysis process in our present study. WGCNA, machine learning, and scRNA-sequencing data were
used to analyze and screen hub targets in azoospermia and COVID-19.
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Encyclopedia of Genes and Genomes (KEGG) analyses based on

DEGs were conducted by the “clusterProfiler” R package. Gene Set

Variation Analysis (GSVA), an unsupervised analysis method, is

non-parametric. It evaluated the enrichment of different signaling

pathways of genes in the modules with different samples (26). Gene

set variation analysis was performed using the “limma” and

“GSVA” packages. To identify signaling pathways differentially

activated in the modules. We performed Gene Set Enrichment

Analysis (GSEA) analysis with adjusted P < 0.05 using the

“clusterProfiler” R package (27).
Evaluation of immune cell infiltration

To evaluate the abundance of immune infiltrates, We

uploaded the gene expression matrix data to CIBERSORT

(https://cibersort.stanford.edu/) and obtained the immune cell

infiltration matrix (28). Then, we used the “corrplot” package

to draw a correlation heatmap to visualize the correlation

of 22 types of infiltrating immune cells. ssGSEA was performed

by the GSVA R package to analyze the infiltration of 24 immune
Frontiers in Immunology 04
cells of four screened genes (GLO1, DYNLL2, EPB41L3,

GPR135) (26).
Single-cell quality control, normalization,
and cell type annotation

The “SingleR” R package was utilized to annotate scRNA-seq

data automatically. Cells expressing 200 to 2500 genes were

identified, while those expressing<10% of mitochondrial genes

were retained. After 3000 hypervariable genes were identified

and analyzed, the number of main components was calculated to

annotate cell clusters that were then visualized using the “tSNE”

algorithm. The same dimensional reduction and clustering

approaches were applied to the spermatogonia subgroup of the

crypt and normal datasets. To enable an attempt to verify the

cluster identities without bias, we calculated the top marker

genes in each cluster using the “FindMarkers” algorithm and

tested with the MAST method for positive cluster marker

genes that were least expressed in 30% (P < 0.001) (29). The

marker genes were used with well-known cell type-specific
TABLE 1 Clinical data of patients with obstructive azoospermia and cryptospermia for single-cell analysis.

Sample OA 1 OA 2 OA 3 Crypto 1 Crypto 2 Crypto 3

Age 31 33 55 39 25 36

Ejaculate volume (ml) 0.5 1.1 1.7 1.5 2.1 1.4

Total sperm count (millions) 0 0 0 <0.1 <0.1 <0.1

Sperm concentration (million/ml) 0 0 0 <0.1 <0.1 <0.1

FSH (u/l) 2 3.3 8.2 8.5 19.9 11.6

LH (u/l) 2.1 2 7.1 2.5 5.7 4.6

Total testosterone (nmol/l) 16.5 25.1 28.3 18.7 13.2 18.1

SHBG (nmol/l) 49 69 66 38 28 26

Free testosterone (pmol/l) 268 336 404 368 296 441

Prolactin (mu/l) 158 127 227 176 146 174

Estradiol (pmol/l) 61 104 201 71 63 84

DHT (nmol/l) 1.68 1.75 1.08 42.4 1.01 1.34

Testicular volume (ml) 17.5 21 21.5 8.5 14 7.5

Bergmann-kliesch score 9 8 8 1 0 4

Tubules with elongated spermatids 90 76 81 12 0 38

Tubules with round spermatids 2 3 6 3 0 4

Tubules with spermatocytes 5 17 10 3 0 26

Tubules with spermatogonia 1 0 1 2 0 1

Tubules sertoli cell only 0 0 0 80 95 26

Tubular shadows 1 3 2 0 5 5

Retrieval of sperm from the tese Yes Yes Yes Yes Yes Yes

Karyotype 46, XY 46, XY NA 46, XY 46, XY 46, XY
fro
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markers from the previous literature to subsequently assign their

module identities (30–33).
Single-cell signature explorer

The Single-Cell Signature Scorer was compiled for GNU Linux

and Microsoft©Windows™ 64 bits, and can be compiled for any

platform using cross-compilation by Go. https://academic.oup.com/

nar/article/47/21/e133/5531181.
Cell-cell communication analysis

CellphoneDB software (Version 2.1.2) was used for cell-cell

communication analysis using the “statistical analysis” method.

The threshold for ligands and receptors was required to be

expressed by at least 50% of all cells, and the maximum number

of iterations was set at 10,000. Interactions were considered

significant at P < 0.05.
Frontiers in Immunology 05
Pseudotime analysis

Single-cell pseudotime trajectories were generated using the

Monocle2 algorithm to reflect cell-state transitions (34). The

“differentialGeneTest” package was applied to calculate the DEGs

over the Pseudo-time among all cluster cell transitions. “DDRTree”

was used for dimensionality reduction and visualization, and the

“plot cell trajectory” function was performed to visualize the

differentiation trajectory of cells.
Statistical analysis

All statistical analyses and graphical visualization were

generated using the R software, (https://www.r-project.org,

v4.0.2). Correlations were calculated as Spearman’s rank-order

correlation coefficient unless stated otherwise, and pairwise

comparisons were tested using Wilcoxon rank-sum and Kruskal-

Wallis tests. pROC package was used to determine the ROC curves

and AUC values. All data points represent individual biological
TABLE 2 Clinical data of patients with COVID-19 for analysis of differential genes and common pathways.

Characteristics COVID cohort Normal cohort

(n=62) (n=12)

Age

≤65 35(56.4) 7(58.3)

>65 26(41.9) 5(41.7)

NA 1(1.7) 0

Gender

Male 62(100) 12(100)

ICU

Yes 33(53.2) 8(66.7)

No 29(46.8) 4(33.3)

Charlson score

≤5 53(85.4) 8(66.7)

>5 9(14.6) 4(33.3)

Mechanical ventilation

Yes 29(46.8) 5(41.7)

No 33(53.2) 7(58.3)

Ventilator free days

≤15 20(32.2) 2(16.7)

>15 42(67.8) 10(83.3)

Hospital free days

≤30 36(58.1) 3(25)

>30 26(41.9) 9(75)
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replicates, not technical replicates. A two‐tailed P‐value of <0.05

was considered statistically significant unless indicated otherwise.
Results

Data preprocessing and construction of
the weighted gene co-expression network

To explore and validate the potential regulatory pattern in

testicular samples from azoospermia patients, we combined the

microarray analysis of tissues obtained from azoospermia patients

and performed intra-omics normalization batch correction

(Figures 2A, B). The PCA result showed that the GSE9210 group,

GSE145467 group, and GSE45885 group had good reproducibility

and reproducibility (Figure 2C). Here, the soft-thresholding power

parameter was set to 12 to fulfill the scale-free topology model, in

which the red line (R2) was used to judge how well the model fits

the scale freeness (Figure 2D). Then, we observed 5 network

modules, whose connectivity was shown in a WGCNA cluster

dendrogram (Figure 2E). While the “grey” module contained the

unassigned genes identified as not co-expressed. The individual

genes corresponding to each module classification are listed in

Table S1. By comparing the OA datasets with the NOA datasets, the

composite summary preservation statistic, a statistic that

determined whether the genes in a reference module can be

explained by another process in the test network, was visualized.

Modules ‘turquoise’ and ‘blue’ were found to be the most stable

across samples (Figure 2F). The highest correlation in the module-

trait relationship was found between the turquoise module (r = 0.61,

P=2e-12) and the blue module (r = -0.56, P=2e-10; Figure 2G),

which were selected for the subsequent analyses. The gene

expression profile for each module in individuals of each group

was shown (Figure 2H).
Functional analysis of critical
module genes

To further investigate the pathways involved in all differential

KO functional categories, KEGG pathway enrichment analysis was

performed separately for the KO functional categories enriched in

turquoise and blue modules (Figure 3A). The “Complement and

coagulation cascades,” “IL-17 signaling pathway,” and

“Coronavirus disease − COVID−19” pathways were enriched in

the turquoise module. By contrast, the “Glucagon signaling

pathway” was significantly enriched in the blue module. Cross-

examination of GO terms revealed that a substantial number of

DEGs associated with the extracellular process were enriched for

biological functions such as antigen processing and presentation

(Figure 3B). A direct comparison of NOA versus OA performed by

GSVA analysis identified “SPERMATOGENESIS” and

“APICAL_JUNCTION” targets as the top enriched hallmarks

(Figure 3C). In addition, gene set enrichment analysis also

revealed significant coronavirus disease pathway changes in key

modules of the azoospermia (Figure 3D).
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Feature selection to identify azoospermia-
related genes

Next, two different algorithms were used to select the most

significant biomarkers for classifying NOA and OA patients. First,

we performed lasso logistic regression models to identify 11

potential biomarkers from the turquoise and blue module genes

(Figure 4A). Second, the SVM-RFE algorithm was performed and a

set of 12 critical biomarkers was selected (Figure 4B; Table S2). A

total of 19 azoospermia-related genes were identified by combining

the biomarkers selected by LASSO and SVM-RFE, of which 4 genes

were selected simultaneously by both algorithms (Figure 4C). In the

test set, two established machine-learning methods were applied to

5-fold cross-validation and their performance was evaluated on the

basis of AUC scores (Figure 4D). Strikingly, we found that the

expression profiles of four genes could accurately classify patients

with azoospermia. Logistic regression and random forest, achieved

a high AUC of 0.970 and 0.963 on the independent test set,

respectively (Figure 4E). Then, correlation analysis was performed

to investigate the association between these four genes and

azoospermia. The expression levels of GPR135 in azoospermia

tissues positively correlated with the levels of “DYNLL2” and

“EPB41L3” and negatively correlated with GLO1 expression

(Figure 4F). Also, the location of the selected biomarkers on

chromosomes was downloaded from the Ref-seq database

annotation, as shown in Figure 4G.
Validation of DEGs in the
COVID-19 dataset

In GSE157103, we identified 4501 differentially expressed genes

between hospitalized patients with COVID-19 and those without

COVID-19 (62 and 12, respectively) (Figure 5A), including 3120

up-regulated genes and 159 down-regulated genes (Table S3).

Additionally, a total of 62 samples were analyzed, including 33

from patients with COVID-19 in ICU and 29 were obtained from

patients with COVID-19 who were not in ICU (Figure 5B; Table

S4). Then generated gene lists were combined to retain only the

overlapping genes. The expression levels of three DEGs were

detected in GSE9210, GSE145467, GSE45885, and GSE157105

datasets. Comparing the expression levels of corresponding genes

in NOA tissues and OA tissues, it can be concluded that GLO1

expression was up-regulated, while GPR135, DYNLL2, and

EPB41L3 gene expression was down-regulated (Figures 5C–E). In

the COVID-19 database, the expression of four genes was up-

regulated in the treatment group (Figures 5F, G, P < 0.05). ROC

curves were used to evaluate the expression of the above four genes

among the azoospermia and COVID-19 samples. The AUC

combines both sensitivity and specificity to authenticate the

predictive validity of diagnostic coding. Of these, GPR135

exhibited the highest diagnostic performance in azoospermia

samples (AUC = 0.972). The diagnostic performances of the other

genes were measured as follows: GLO1 (AUC = 0.937), DYNLL2

(AUC = 0.964), and EPB41L3 (AUC = 0.947) (Figure 5H). These

above-mentioned genes could be considered candidate diagnostic
frontiersin.org
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biomarkers for azoospermia. The diagnostic efficacy of these

azoospermia-related genes was also verified in the COVID-19

dataset. DYNLL2 had high accuracy for the diagnosis of COVID-

19 (AUC = 0.832), and EPB41L3 had certain accuracy for the
Frontiers in Immunology 07
diagnosis of COVID-19-ICU (AUC = 0.796) (Figures 5I, J).

According to these four azoospermia-related genes, GSVA

enrichment analyses were performed (Figures 5K–N). GSVA

pathway analysis showed that the differentially expressed genes in
A B

D E

F

G

H

C

FIGURE 2

Key modules identified by WGCNA. (A) PCA plot before batch correction of gene expression profile in azoospermia dataset. (B) PCA result after z-
score normalization. (C) Principal component analysis of different groups. (D) On the left panel, the x‐axis shows the soft power threshold and the y‐
axis presents the scale-free topology. On the right panel, the x-axis indicates the soft power threshold and the y-axis indicates mean connectivity.
(E) The cluster dendrogram of the WGCNA. (F) The preservation median rank and z-summary scores of each module. (G) Module-region
associations. Each column represents a sample and each row represents a consensus module eigengene. Each sample contains the corresponding
correlation coefficient and P-value. Each panel was color-coded by correlation according to the accompanying legend. (H) Heatmap representation
for clustering of differentially expressed genes.
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COVID-19 patients were also mainly involved in the IL-17

signaling pathway, which was consistent with the Figure 3A key

module enrichment analysis results of azoospermia patients

(Figures 5K, M, N). Meanwhile, we also found that the

azoospermia-related genes were positively correlated with the

hospital free days of COVID-19 patients (P < 0.05), suggesting

that they may also be associated with the prognosis of COVID-19

(Figures 5O–R).
Frontiers in Immunology 08
The characteristics of azoospermia-related
subtypes in COVID-19

To explore the relationship between the expression of the

azoospermia-related genes and COVID-19 subtypes, we

performed the consensus cluster analysis to classify patients with

COVID-19. By applying the K-means clustering algorithm, the

intra-group correlation was the highest and the inter-group
A B

DC

FIGURE 3

Biological processes and pathways in the azoospermia modules were significantly associated with COVID-19. (A) KO salient functional categories
that were significantly enriched in the turquoise module were shown in green, while those that are significantly enriched in the blue module were
shown in red. (B) Circos plot showing relationships between GO terms and the module genes. Log2 fold changes (FC) of gene expression are
represented by colored squares. (C) Differences between NOA subject and control subject GSVA pathway scores were determined (n= 84 and 25
samples from 109 patients, respectively). The t-value obtained by a linear mixed model. (D) GSEA of representative KEGG signaling pathways.
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correlation was lowest when k = 2. The results indicated that the 62

patients with COVID-19 were divided into two clusters (cluster A, n

= 25; cluster B, n =37) based on the 4 DEGs (Figure 6A). The gene

expression profile (GEP) and corresponding clinicopathological

parameters, including the degree of hospital free days, ventilator

free days, mechanical ventilation, charlson score, ICU, and age,

were presented in a heatmap (Figure 6B). To investigate the effect of

azoospermia-associated genes on the immune microenvironment of

COVID-19, we evaluated the infiltrating immune levels of every

COVID-19 sample between the two subtypes using the

CIBERSORT algorithm (Table S5). Our study indicated that

cluster B showed higher infiltration fractions of T cells follicular

helper and neutrophils (Figure 6C). Screening of two different

molecular subtypes revealed that azoospermia-related genes were

associated with clinicopathological characteristics of COVID-19

(Figures 6D–K). We observed a higher number of hospital free

days and ventilator free days among patients with cluster A.
Frontiers in Immunology 09
However, the age and d-dimer of cluster B were higher than

those of cluster A (P < 0.05). Information of the KO functional

categories enriched in Group A (Normal vs COVID-19) or Group B

(COVID-ICU vs COVID-Non-ICU) was also separately conducted

using KEGG pathway enrichment. The “Cell growth and death” and

“Immune system” pathway including Apoptosis, B cell receptor

signaling pathway, and NOD-like receptor signaling pathway,

exhibited higher relative abundance in the enrichment of

COVID-Non-ICU compared to that of COVID-ICU. In contrast,

the “T cell receptor signaling” and “Th17 cell differentiation”

pathways were significantly enriched in COVID-ICU (Figure 6L).

To determine the biological functional categories between the

two groups, we performed GO enrichment analysis to identify

the potential function diversities. Remarkably, we detected

that plenty of RNA-related pathways were enriched in COVID-

ICU and neutrophil-associated pathways in COVID-Non-

ICU (Figure 6M).
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FIGURE 4

Screening and validation of the diagnostic indicators for azoospermia. (A) LASSO and (B) SVM-RFE algorithms were selected for feature selection in
the discovery cohort. (C) Venn diagram showing the overlapping markers in the two comparisons indicated. (D) Schematic representation of
predictors construction and feature selection by 5-fold internal cross validation across the test set. (E) The ROC curves of the two models are based
on their AUC. (F) Correlations among GLO1, DYNLL2, EPB41L3, and GPR135 expression levels in azoospermia tissues. (G) The alterations of CNV
locations in azoospermia-related genes on 23 chromosomes.
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FIGURE 5

Validation of DEGs in GSE157103. (A) Heatmap clustering of candidate genes with markedly expression patterns in COVID-19 compared to normal
samples. Green denotes COVID-19 samples, whereas red denotes normal samples. Adjusted P-value < 0.05 and |log2FC| > 2 were considered
significant. Venn diagram showing the number of overlapping markers. P values were calculated with the use of Wald tests. (B) Heatmap clustering
of candidate genes with substantial expression patterns in COVID-ICU compared to COVID-Non-ICU samples. Expression levels of four DEGs in
azoospermia (C–E) and COVID-19 datasets (F, G). P values were set as: *P < 0.05; **P < 0.01; ***P < 0.001. ROC plots of the specifically co-
expressed hub genes in azoospermia (H), COVID-19 (I), and COVID-19-ICU (J) patients. The enriched item in GSVA analysis (K, GLO1; L, GPR135;
M, DYNLL2; N, EPB41L3). (O–R). Correlation analysis between four azoospermia-related genes and hospital free days.
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Immunological infiltration analysis in the
azoospermia dataset

We then investigated the degree of immune infiltration in OA

and NOA patients and found that immune cells were generally
Frontiers in Immunology 11
enriched in the treatment group compared with the control group

(Figure 7A), and T helper cells, which are closely related to IL-17

signaling, were enriched in the treatment group (Figure 7B, P <

0.05). To further investigate the potential relationship between the

above differential genes and the differential immunoscores, we
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FIGURE 6

Clinicopathological and immune characteristics of COVID-19 subtypes based on azoospermia-related genes. (A) The consensus clustering matrix of
62 samples in the GSE157103 cohort (k = 2). (B) Heatmap of the clinicopathologic features classified by these DEGs. (C) The infiltrating scores of 22
immune cells in the two clusters. Associations between the two clusters and clinicopathological characteristics (D). Age, (E) Hospital free days,
(F) Ventilator free days, (G) Charlson score, (H) Fibrinogen, (I) D-dimer, (J) Procalcitonin, (K) Lactated. (L) KO salient functional categories that were
significantly enriched in COVID-Non-ICU were shown in green (Group A), while those that were significantly enriched in COVID-ICU were shown in
red (Group B). (M) The right shows the GO enrichment analysis of DEGs between COVID-19 and normal samples, while the left shows the GO
enrichment analysis of DEGs between COVID-ICU and COVID-Non-ICU samples.
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performed a correlation analysis of the CIBERSORT enrichment

scores of these genes. The results indicated that the score of “GLO1”

was significantly negative correlated with the CIBERSORT scores of

“Th1 cells” (R > 0, P < 0.01), and the immune expression pattern of

GLO1 in azoospermia patients was opposite to that of the other

three genes (Figure 7C). On the other hand, we used the ssGSEA
Frontiers in Immunology 12
method to calculate the infiltrating immune cell types in patients

with azoospermia and COVID-19. The total ssGSEA score (the sum

of absolute scores across 22 leukocyte components) was remarkably

higher in the samples with COVID-19 than those in the

azoospermia, including activated CD4 T cells, activated CD8 T

cells, macrophages, and T helper cells (Figure 7D; Table S6). Using
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FIGURE 7

Correlation between infiltrating immune cells and diagnostic markers. (A) Relative percent of 22 immune cells in the control and treat group. (B) The
infiltrating scores of 22 immune cells in the control and treatment group. (C) Correlation analysis of different immune cell scores estimated by
CIBERSORT. (D) Microenvironmental immune cell profiling of azoospermia and COVID-19. (E) Results of overall best-hit practice approach-based
computational predictions as query signature. Top-ranked five compounds with the highest reversal potency scores were illustrated in the panel.
(F–I) Correlation between infiltrating immune cells and GLO1, GPR135, DYNLL2, and EPB41L3. The size of the dots indicates the degree of
correlation between genes and immune cells and is proportional to the correlation strength. The color panel of the dots indicates the range of P-
value. (J–M) Correlations between four DEGs and activated CD4 T cells.
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the compromising parameter (topN=500) and the optimal method

(XSum), the pairwise similarity scores of all compounds were

obtained (lower scores correspond to higher reversal potency and

better therapeutic potential for application). Notably, Cmap

analysis found STOCK1N. 35874, the enrichment score was -1.0,

which could be used as a potential therapeutic target for NOA

(Figure 7E). According to the results of immune correlation analysis

between OA and NOA samples, GLO1 showed a positive

correlation with T helper cells (P < 0.001), but it displayed a

negative correlation with activated CD4 T cells (P < 0.001)

(Figure 7F). While the remaining three genes had opposite

associations with activated CD4 T cells and T helper cells as

GLO1 (Figures 7G–I). The correlation analysis between the four

DEGs and activated CD4 T cells was shown in Figures 7J–M.
Single-cell dimension reduction clustering
and cellular changes in somatic and germ
cell compartments

To determine whether azoospermia-related genes and IL-17

signaling pathway were compatible in cryptozoospermia. The

molecular changes were characterized in depth by scRNA-seq

analysis of crypto and normal testicular biopsies (n = 3 each) to

assess the similarities and differences in the two sets of groups. After

quality control filtering, data from 15,532 and 13,134 cells,

respectively, were ultimately included in the analyses of normal

and cryptozoospermia samples (Table S7). To verify the accuracy of

cell annotation, we checked the expression of acknowledged cell-

specific markers within each cell cluster that was annotated directly

by the “SingleR” R package (Figures 8A, B). The relative expressions

of four azoospermia-related genes were shown in Figure 8C. GLO1

expression was mainly concentrated in the crypto group, while the

remaining three genes were mainly expressed in the control group,

which is consistent with the immune infiltration of NOA disease.

The development of cryptozoospermia cells is a dynamic process.

The use of the Monocle2 algorithm to speculate about the possible

developmental trajectories of cryptozoospermia cells revealed that

the trajectory began with undifferentiated spermatogonia cells and

ended with late spermatids cells (Figure 8D). We found deviations

in the developmental trajectories of pachytene cells and diplotene

cells located at branch point 1. In addition, we explored the dynamic

change of azoospermia-related genes during germ cell development

(Branch point 1, Figure 8E).

Next, we sought to detect azoospermia-associated changes of

gene expression in germ and somatic cells. The SCENIC analysis

discovered the evenly distributed germ cell populations along with

similarly expressed azoospermia related genes in normal and

cryptozoospermia samples, while significant differences were

observed between immune cells and perivascular cells (Figure 8F).

We observed most germ cell clusters belong to normal tissue, of

which five types have been assigned to known cell types, consisting

of pachytene, meiotic divisions, late spermatids, early spermatids,

and diplotene cells. On the contrary, somatic cell clusters were

specifically enriched in perivascular cells, macrophages, immune

cells, fibrotic peritubular myoid cells, and endothelial cells present
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in crypto samples (Figure 8G). The relative proportion of subsets

and average cell number for each sample were shown in the middle

panel. The panel of heatmap revealing the RNA expression of four

marker genes was found in Figure 8G. To investigate the interaction

between spermatogonia and their microenvironment, CellphoneDB

was used. In the crypto dataset, we identified significant ligand-

receptor interactions. Considering the azoospermia-related genes

were not differentially expressed in diplotene and pachytene but

differentially expressed in immune cells, we explored the ligand-

receptor pair relationship between immune cells and them. As

shown in Figure 8H, TNF, CCL3, HLA-C, CRTAM, and TIGIT

secreted by immune cells interact with receptors expressed on both

diplotene and pachytene cells. These ligand-receptor pairs might be

involved in the immune pathway and spermatogenesis. However,

no ligand-receptor pair directly related to IL-17 signaling was

found. Furthermore, we investigated the relationship between the

cell types and biological processes and found that the IL-17

signaling pathway and coronavirus disease enriched in a

subgroup of crypto, while the male meiosis and spermatogenesis

process narrowly distributed in the crypto subgroup (Figure 8I).
Discussion

In this study, we identified four genes, GLO1, GPR135,

DYNLL2, and EPB41L3 that were strongly associated with

azoospermia and COVID-19. We performed this analysis using

weighted co-expression networks, machine learning, and

differential expression analysis of existing azoospermia datasets.

ROC curve analysis then revealed that these genes were capable of

accurately diagnosing azoospermia/COVID-19 and our findings

show that their expression may be related to T helper cells. In

addition, azoospermia-related genes shared IL-17 signaling

pathway in both diseases by enrichment analysis were also

observed. Then, two distinct molecular subtypes of COVID-19

were identified based on four azoospermia-related genes. Patients

with cluster A had fewer T cells follicular helper and worse

clinicopathological features than patients with cluster B. Finally,

we used a novel Xsum method to predict drug therapeutic targets

based on the expression of four key genes in azoospermia patients.

To uncover additional biomarkers and novel molecular pathways

associated with azoospermia progression, we analyzed GEO bulk

data (GSE9210, GSE145467, and GSE45885) and GSE153947 (used

as a single-cell validation dataset). These four genes were then

screened using two machine learning algorithms with unique

properties (lasso regression and support vector machine), and

further validated using logistic regression and random forest

algorithms. GLO1 is the enzyme that catalyzes the glutathione-

dependent detoxification of the compound methylglyoxal (MG),

thereby protecting against cellular injury and necrosis. It is

commonly overexpressed in numerous human malignancies as a

newly identified survival strategy by providing an additional

safeguard through the enhancement of GLO1 detoxification (35).

GLO1 inhibitors have been investigated for their effects on

dicarbonyl stress in various pathologies, including atherosclerosis

(36), diabetes and its vascular complications (37), osteoporosis (38),
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FIGURE 8

Exploration of transcriptional and cellular alterations in crypto and normal testicular tissues. (A) t-distributed stochastic neighbor embedding (t-SNE)
plot of the integrated crypto and normal datasets. (B) scRNA-seq data from the crypto and normal samples. Each cell type denotes a different color.
(C) Feature plots of four azoospermia-related genes. (D) Pseudotime analysis discovered the developmental trajectories of crypto samples.
(E) Heatmap showing azoospermia-related genes involved in germ cell differentiation (Branch point1). (F) Violin plots visualizing the expression levels
of candidate marker genes for each cell type. (G) Three-layered structure of potential cell marker genes for each cell cluster and sample. Mean
expression values of known lineage markers (top panel); Relative proportion of subsets and average cell number for each sample (middle panel);
Relative expression profiles of four marker genes correlated with each cell subpopulation (bottom panel). Mean expression levels were scaled by
mean centering and converted to a log 2 scale. (H) Summary of ligand-receptor interaction analysis between the immune cells and the rest of the
cell types in the crypto tissues. The P-value was indicated by the size of the corresponding circle. The color gradient scale indicates the degree of
interaction. (I) The distribution of eight biological processes in GSE153947.
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anxiety-linked behavior (39), and age-related decline in heart

function (40). Zhang et al. reported that follicle-stimulating

hormone and total testosterone-dependent upregulation of GLO1

maintains porcine Sertoli cell viability by controlling the

argpyrimidine- and hydroimidazolone-mediated NF-kB pathway

(41). On the other hand, Motawa et al. suggested that MG may

functionally inactivate the COVID-19 proteome and that GLO1

inhibitors may possess antiviral activity against COVID-19 (36).

The results of our study indicated that the mRNA expression of

GLO1 was higher in NOA samples compared to OA samples.

Moreover, the expression level of GLO1 was also found to be

higher in COVID-19 patients than in normal individuals. G-

protein-coupled receptors (GPCRs) are key mediators of signal

transduction pathways and attractive targets for pharmacological

therapeutics. GPR135, a GPCR, has received limited research

attention, and its involvement in azoospermia and COVID-19

remains unclear. Previous studies have shown that GPR135

activators can suppress tumor activation and are associated with

affective disorders (42). Our findings indicate that GPR135 has high

diagnostic accuracy in azoospermia samples and a positive

correlation with the length of hospital-free days in COVID-19

patients. However, further research is required to elucidate its

specific mechanism of action.

Of the remaining two genes, members of the LC8 family of

dynein light chain isoforms (DYNLL1 and DYNLL2) are

ubiquitous, highly conserved eukaryotic homodimer proteins in

addition to dynein and myosin 5a motor proteins, with numerous

(still incomplete) proteins involved in diverse cellular processes

(43). DYNLL2 has been identified as a novel prognostic biomarker

for ischemic stroke and osteosarcoma, but its role in azoospermia

and COVID-19 has not been revealed (44, 45). Our study

demonstrated a positive correlation between DYNLL2 and T

helper cells, as well as an association with the IL-17 signaling

pathway in azoospermia and COVID-19. Additionally, DYNLL2

exhibited a high diagnostic value as determined by the ROC in both

conditions. DAL-1, also known as EPB41L3, plays a critical role in

cytoskeleton-related processes and interacts with various protein

molecules via its FERM, SAB, and CT domains. Loss of DAL-1

expression, often caused by abnormal DNA methylation and/or

LOH, is commonly observed in cancer (46). Nevertheless,

additional studies are necessary to investigate whether EPB41L3/

DAL-1 can serve as a reliable diagnostic biomarker with high

sensitivity and specificity for azoospermia and COVID-19.

EPB41L3 confers supportive and resilient to animal cell

membranes and facilitates the assembly of several multimeric

protein complexes. It also plays important roles in tumor

suppression, and cell proliferation regulation, and is highly

enriched in the testis, suggesting that it has a previously

undiscovered function in reproduction (47). Our findings

revealed that the mRNA expression of EPB41L3 was lower in

NOA samples when compared to OA samples. Conversely, in

patients with COVID-19, the expression level of EPB41L3 was

higher than that observed in normal individuals. More recent

studies seem to support an effect of COVID-19 infection on male

sex steroid hormones, namely an increase in plasma LH levels and a

significant decrease in FSH and testosterone levels (48). Of these,
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one out of four patients with healed COVID-19 (11/43, 25.5%) were

diagnosed with oligo-, crypto-, or azoospermia, a percentage

significantly exceeding that reported in the general population

(approximately 1% for azoospermia (49); 3% for oligozoospermia

(50)). Surprisingly, all azoospermia cases reported unimpaired prior

fertility status (one had three children, two had two children, and

five had one child). Most importantly, semen concentration was

associated with febrile episodes during and after meiosis, with mean

reductions of 32.6% and 35%, respectively (51). Particularly, one-

quarter of the sample who have recovered from COVID-19 exhibit

signs of male genital tract inflammation and oligo-, crypto-, and

azoospermia, which strictly correlate with disease severity. This

would not only provide valuable information about the biology of

human reproduction but may also reveal the possible mechanisms

behind the observed association between male infertility and

COVID-19 (4). Four azoospermia-related genes emerged in our

study that has not been reported to be related to the IL-17 signaling

pathway so far in the literature, and further investigations

are needed.

In this work, we performed a detailed study of human male

germ cell developmental defects using scRNA-seq to examine

whether azoospermia-related genes have a relationship with

cryptozoospermia. These observations led us to decipher target

genes and mechanisms for understanding the etiology of infertility.

In addition, the receptor-ligand interactions operating the interplay

between germ cells and their microenvironment were explored.

Interestingly, the same state was found in both the crypto and

normal groups. Although the total amount of spermatogonia

remained the same, the states of the two groups presented

different proportions. Based on the scRNA-seq data, we identified

some biological progress that was enriched in specific cells.

Compared with the normal group, the cryptozoospermia group

(Fibrotic peritubular myoid cells, Perivascular cells, PMCs, Immune

cells, and Macrophages) was mainly gathered in the process of IL-17

signaling pathway and coronavirus infection, while the normal

group (Diplotene and Pachytene) was mainly concentrated in the

process of male meiosis and spermatogenesis. This phenomenon

was consistent with the previous study (7). These studies may pave

the way for understanding the link between COVID-19 and

male infertility.

However, this study also has some methodological limitations

due to the relatively small effect size: (1) The potential biomarkers

and pathways found in this research need to be further verified to

provide clinical trial evidence for targeted therapy; (2) The accuracy

of azoospermia/COVID-19 assessment and prediction could be

enhanced by increasing the number of sample size; (3) The

analysis of protein expression level of marker genes can provide

significant evidence. However, executing validation experiments is

problematic due to the lack of appropriate normal testis samples in

our laboratory. We intend to collect testis tissue to further

understand how the marker genes affect azoospermia in the

future. Additionally, incorporating functional studies and

experimental validations, such as gene knockout or knockdown

experiments, could further elucidate the biological relevance of our

identified biomarkers. Future studies will continue to elucidate the

underlying mechanism in azoospermia and COVID-19 patients.
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