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In the development of cell-based cancer therapies, quantitative mathematical

models of cellular interactions are instrumental in understanding treatment

efficacy. Efforts to validate and interpret mathematical models of cancer cell

growth and death hinge first on proposing a precise mathematical model, then

analyzing experimental data in the context of the chosen model. In this work, we

present the first application of the sparse identification of non-linear dynamics

(SINDy) algorithm to a real biological system in order discover cell-cell

interaction dynamics in in vitro experimental data, using chimeric antigen

receptor (CAR) T-cells and patient-derived glioblastoma cells. By combining

the techniques of latent variable analysis and SINDy, we infer key aspects of the

interaction dynamics of CAR T-cell populations and cancer. Importantly, we

show how the model terms can be interpreted biologically in relation to different

CAR T-cell functional responses, single or double CAR T-cell-cancer cell binding

models, and density-dependent growth dynamics in either of the CAR T-cell or

cancer cell populations. We show how this data-driven model-discovery based

approach provides unique insight into CAR T-cell dynamics when compared to

an established model-first approach. These results demonstrate the potential for

SINDy to improve the implementation and efficacy of CAR T-cell therapy in the

clinic through an improved understanding of CAR T-cell dynamics.

KEYWORDS

dynamical systems, latent variables, CAR T-cells, antigen binding, allee effect, SINDy,
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1 Introduction

Dynamical systems modeling is one of the most successfully

implemented methodologies throughout mathematical oncology

(1). Applications of these model first approaches have led to

important insights in fundamental cancer biology as well as the

planning and tracking of treatment response for patient cohorts (2–

9). Simultaneously, the last twenty years have seen explosive growth

in the study and application of data-driven methods. These data

first approaches, initially implemented as machine learning

methods for imaging and genomics analyses, have seen much

success (10, 11). However, such approaches are often limited to

classification problems and fall short when the intention is to

identify and validate mathematical models of the underlying

dynamics. Recent efforts by us and others have aimed to develop

methodologies that bridge these model first and data first

approaches (12–14).

In this work, we combine the methods of latent variable

discovery and sparse identification of nonlinear dynamics

(SINDy) (15–17) to analyze experimental in vitro cell killing assay

data for chimeric antigen receptor (CAR) T-cells and glioblastoma

cancer cells (18). This experimental data, featuring high temporal

resolution, offers a unique opportunity to conduct an in situ test of

the SINDy model discovery method. Interpretation of the

discovered SINDy model is conducted under the expectation of a

predator-prey interaction in which the cancer cells function as the

prey and the CAR T-cells the predator (19).

Predator-prey systems are a broad class of ordinary differential

equations (ODEs) that aim to characterize changes in populations

between two or more groups of organisms in which at least one

survives via predation on another. Originally applied to the study of

plant herbivory (20) and fishery monitoring (21) in the early 20th

century, predator-prey models have since become a workhorse of

ecology, evolutionary biology, and most recently mathematical

oncology (19, 22). Importantly, predator-prey models underpin

much of the computational modeling of CAR T-cell killing,

particularly in the context of in vitro cell killing assays (7, 23). An

important example of these is the CAR T-cell Response in GliOma

(CARRGO) model, a model that characterizes the in vitro

interactions between CAR T-cells and glioma cells (18). The

CARRGO model has shed light on the underlying biological

mechanisms of action (18, 23), has informed effective dosing

strategies for combination CAR T-cell and targeted radionuclide

therapy (24), and CAR T-cell therapy in combination with the anti-

inflammatory steroid Dexamethasone (25).

Despite the success of the CARRGO model, it is limited in the

scope of potential phenomena that it can capture in regards to the

precise interactions between the CAR T-cells and glioma cells. In

this work, we use the SINDy modeling framework to incorporate

important extensions to the CARRGO model. These extensions are:

predator growth that is dependent on the density of prey, also

known as a functional response (26, 27); individual predator and

prey growth that saturates at some maximum value (logistic

growth) (18), or has a population threshold below which collapse

occurs (the Allee effect) (28, 29); and predator-prey interactions in

which one or two CAR T-cells are bound to a single cancer cell at
Frontiers in Immunology 02
once, referred to as single or double binding, respectively (23, 30).

Other efforts of extending CAR T-cell modeling have looked at

fractional order derivatives (31) and stochastic dynamics (32) in the

context of CAR T-cell treatment for viral infections, specifically

coronaviruses. Our treatment focuses on integer order derivatives

and deterministic dynamics.

An ever-present challenge to quantitative biologists is fitting a

proposed model to experimental data, also known as parameter

estimation or model inference. On one hand, quantitative

biologists seek models that capture as much biological realism

and complexity as possible. On the other hand, increasing model

complexity increases the computational challenge to accurately,

confidently, and expediently determine model parameter values.

This approach is further complicated if a researcher chooses to

compare competing or complementary models (33, 34). An

alternative approach, examined in this paper, is to leverage

newly developed methods rooted in data science and machine

learning which identify the strength of individual mathematical

terms as candidates for an explanatory model. These methods are

often referred to as dynamic mode decomposition, symbolic

regression, or sparse identification.

Dynamic mode decomposition (DMD) is a data driven

technique that interrogates time-series data by performing a

singular value decomposition (SVD) on carefully structured

matrices of the given data (13, 35). In this formalism, the

orthonormal basis vectors generated by singular value

decomposition serve as linear generators of the system dynamics

such that forward prediction can be performed absent a known

underlying mathematical model. Alternatively, SINDy identifies the

specific mathematical terms that give rise to the observed dynamics

governed by ordinary and partial differential equation models (15).

SINDy achieves this by regressing experimental data onto a high-

dimensional library of candidate model terms, and it has proven

successful in climate modeling (36), fluid mechanics (37), and

control theory (38). Since the initial publication of SINDy, several

extensions have been studied, including: discovery of rational

ordinary differential equations (39, 40); robust implementation

with under-sampled data (41) or excessive noise (42); or

incorporation of physics informed neural networks when

particular symmetries are known to exist (43).

In its original and subsequent implementations, the CARRGO

model demonstrated valuable utility in quantifying CAR T-cell

killing dynamics when treating glioblastoma. Inferences of the

underlying biological dynamics were made by examining how

model parameter values changed along gradients of effector:target

(E:T) ratios or as a function of other combination therapy

concentrations. This is in direct contrast to the SINDy

methodology, where the discovery of different model terms

provides insight into the underlying biological dynamics as a

result of variation along the E:T gradient. Here we compare

these two modelling frameworks on the same data set to provide

further insight into the trade-offs of data first versus model

first approaches.

In this paper we utilize our experimental data to test these and

other aspects of the DMD and SINDy frameworks. In Section 2.2 we

introduce the families of models that are anticipated to be
frontiersin.org
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simultaneously biologically relevant and identifiable by SINDy, and

we introduce a new approach to performing SINDy-based model

inference. In Section 2.3.1 we present the latent variable analysis

based on DMD that is used to generate the time-series CAR T-cell

trajectories based on those of the cancer cells and the known

boundary values for the CAR T-cells. In Section 2.3.2 we

introduce the SINDy methodology in the particular context of

our application. Results of our approach are presented in Section

3 where we (1) highlight how the discovered models vary as a result

of different initial conditions in the cancer cell and CAR T-cell

populations and (2) examine how well the discovered models found

in this data first approach compare to a typical model first in

characterizing the experimental data. In Section 4 we demonstrate

how our results can guide experimental design to validate the

predictions made by the discovered models, and we elaborate on

some of the challenges encountered in this study.
2 Materials and methods

2.1 Experimental setup

The data analyzed in this study come from previously

conducted experiments whose procedures are described in Sahoo

et al. (18) and Brummer et al. (25), and summarized in Figure 1. The

primary brain tumor cell line studied (PBT128) was selected for its

endogenous high and relatively uniform expression of IL13Ra2
antigen (89.11% IL13Ra2+) (25). This cell line was derived from

glioblastoma tumor resection tissue as described in (44, 45). To

generate IL13Ra2-targeted CAR T-cell lines, healthy donor

CD62L+ naive and memory T-cells were lentivirally transduced

to express second-generation 4-1BB-containing CAR that utilizes
Frontiers in Immunology 03
the IL13 cytokine with an E12Y engineered mutation as the

IL13Ra2 targeting domain (46).

Cell killing experiments were conducted and monitored with an

xCELLigence cell analyzer system. Measurements of cancer cell

populations are reported every 15 minutes through changes in

electrical impedance as cancer cells adhere to microelectrode plates,

and are reported in units of Cell Index (CI), where 1 CI ≈ 10K cells

(47–49). Flow cytometry was used to count the non-adherent CAR T-

cells upon termination of the experiment. Measurements of CAR T-

cell populations are reported in units of CI for the purposes of

working in a common scale. We used the conversion factor of 1 CI ≈

10K cells. Cancer cells were seeded at 10K – 20K cells and left either

untreated or treated with only CAR T-cells, with treatments

occurring 24 hours after seeding and monitored for 6-8 days

(Figure 1). CAR T-cell treatments were performed with effector-to-

target ratios (E:T) of 1:4, 1:8, and 1:20. All experimental conditions

were conducted in duplicate.
2.2 Effective interaction models

Challenges to themodel first approach to systems biology are (1)

deciding on a sufficiently comprehensive model that captures all

pertinent phenomena and (2) fitting the selected model to available

data. Researchers are tasked with justifying their decisions in

selecting candidate models. Yet, a common feature of dynamical

systems models are the presence of ratios of polynomials. Such

terms in ODEs can be difficult for the convergence of optimization

algorithms to global solutions due to the possible existence of

multiple local solutions within the model parameter space (50). In

such instances researchers must either rely on high performance

computational methods, have collected a vast amount of
FIGURE 1

Diagram of experimental procedure highlighting use of microelectrode plates in an xCELLigence cell analyzer system and sample Cell Index (CI)
measurements for control and treatment groups (E:T = 1:4). This system utilizes real-time voltage measurements to determine CI values
representative of the adherent cancer cell population as a function of time. CAR T-cells are added following 24 hours of cancer cell expansion and
attachment. After 6-8 days of monitoring the cancer cell growth and death dynamics, cells are harvested and enumerated using flow cytometry.
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experimental data, or both. To address this problem, we utilize

binomial expansions of candidate model terms under the

assumptions of CAR T-cell treatment success and fast, irreversible

reaction kinetics. In the following sections we present the space of

possible models anticipated to characterize our experimental

system, and the steps necessary to reduce the complexity of these

candidate models.

The dynamical model that our experimental system is

anticipated to follow is defined generically as,

dx
dt

= Gx(x) − xBx(y) (1)

dy
dt

= Gy(y) + yR(x) − xBy(y) (2)

where Gx and Gy represent a growth-death model for the cancer

cells, x, and the CAR T-cells, y. Bx and By represent a binding

model for whether single or pairs of CAR T-cells attack individual

cancer cells, and R represents a model for the CAR T-cell

functional response. In the subsections below, we explore different

families of models representing the terms in the above equations.

Explicitly, we examine different types of (a) growth and death

models, (b) functional response models, and (c) CAR T-cell-

cancer cell binding models.

2.2.1 Growth and death
We consider three different growth-death models for both the

cancer cells and CAR T-cells. These are logistic growth, and the

weak and strong Allee effect models, presented as,

Gx(x) =

rxx 1 − x
Kx

� �
  Logistic growth                       (3)

rxx 1 − x
Kx

� �
1 + x

Ax

� �
Weak Allee effect (4)

rxx 1 − x
Kx

� �
x
Bx
− 1

� �
Strong Allee effect (5)

8>>>>><
>>>>>:

for Gx(x) , and similarly for Gy(y) . Here, rx is the net growth rate,

Kx is the population carrying capacity, Ax is a weak

parameterization of deviations from logistic growth, and Bx is the

threshold for population survival or death absent predation. All
Frontiers in Immunology 04
model parameters are assumed positive, with the added constraint

that Kx > Bx > 0. We anticipate similar growth models for the CAR

T-cells, Gy(y) , with allowance of different models for the different

cell types and model constants. Logistic growth is commonly

favored for its simplicity in experimental systems (18, 24, 25),

while there is growing evidence that Allee effects are required for

accurate characterization of low density cancer cell populations (28,

29, 51, 52) or as the result of directed movement (53), the latter of

which being an observable feature of CAR T-cell behavior using

bright field imaging (18, 25).

In Figure 2, graphs of population growth rates versus

population size and population size versus time are presented for

each growth model and for a variety of initial conditions. Parameter

values used were r = 0.75 hrs-1, K = 10 CI, A = 5 CI, and B = 5 CI.

Examination of the logistic growth model in Figure 2A and the

weak Allee effect in Figure 2B demonstrates similar population

saturation at the carrying capacity K = 10 CI, but a slight deviation

between how the models reach saturation. Specifically, the weak

Allee effect exhibits a reduced per capita growth rate at low

population densities compared to logistic growth. Examination of

Figure 2C demonstrates the crucial difference between the strong

Allee effect and either of the logistic growth or weak Allee effect

through the existence of a minimum population threshold, B, above

which the population will persist, and below which the population

will die off.

Due to the fact that SINDy produces discovered models in their

polynomial form without factoring, or grouping of terms together,

we must consider the un-factored polynomial form of each model.

To determine appropriate constraints on the model coefficients, we

will expand the growth models and factor by common monomials.

Doing so for Gx(x) and dropping the subscript gives the following,

Gx(x) =

rxx −
rx
Kx
x2 Logistic growth        (6)

rxx +
rx
Ax

− rx
Kx

� �
x2 − rx

KxAx
x3 Weak Allee effect (7)

−rxx +
rx
Kx

+ rx
Bx

� �
x2 − rx

KxBx
x3 Strong Allee effect (8)

8>>>><
>>>>:

and similarly for Gy(y) . Here we can see that the coefficients for x

and x2 can be positive or negative, but the coefficients for x3 must be
A B C

FIGURE 2

Conceptual graphs of population size (in cell index - CI) versus time (in hours - hrs) for the three growth models presented in Eqs. (3)-(5): logistic
growth (A) weak Allee effect (B) strong Allee effect (C). Model parameter values are: r = 0:75 hrs-1, K = 10 CI, A = 5 CI, and B = 5 CI. Colors
correspond to different initial cell populations, which are the same for each model presented (blue = 12 CI, orange = 8 CI, green = 4 CI, red = 1 CI).
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fixed as negative values, where we have absorbed the minus signs in

Eqs. (7)-(8) into rx/KxAx.

2.2.2 CAR T-cell-cancer cell binding
Cell binding models characterize the rates of formation and

disassociation of conjugate pairs of species, also referred to as

interaction molecules (Figure 3A). These models historically are

known as Hill-Langmuir functions for their originating studies in

hemoglobin formation (54) and gas adsorption on material surfaces

(55), yet perhaps are better known for their use in modeling enzyme

reaction kinetics, or Michaelis-Menten kinetics (56). The same

modeling principles have been extended to examine cell binding

in T-cell and cancer cell interactions (2, 23, 30). An important

challenge to the field of cancer immunotherapy modeling is

characterizing higher-order cell binding dynamics. That is, the

formation of conjugates that consist of multiple CAR T-cells

attacking single cancer cells (Figure 3A). These cancer cell-CAR
Frontiers in Immunology 05
T-cell conjugates are hypothesized to form as either a consequence

of increased effector to target ratios or as a result of increased

antigen density on target cells. As our experiment uses one single

cell line with a high and uniform antigen expression level of

IL13Ra2, we assume on average all cancer cells have

approximately the same antigen density. We thus focus our

attention to experimental variation in the effector to target ratios.

Following the work of Li et al. (30), we incorporate fast

irreversible single and double cell binding into our generic model

landscape. Here, fast binding implies that conjugate formation and

dissociation occur quickly enough to maintain equilibrium in the

conjugate populations, I1 and I2, such that dI1/dt = 0 and dI2/dt = 0.

While irreversible means that all conjugate formation leads to

death, or k(1)−1 = 0 and k(2)−1 = 0. These assumptions are consistent

with the conditions of relatively higher effector to target ratios, or

high antigen densities on target cells. They also imply that a mixture

of conjugates and dissociates may exist, but that the dynamics
A B

C

FIGURE 3

(A) Compartmental model for single and double CAR T-cell-cancer cell binding. Expressions for how rate constants (k(j)i ) contribute to the growth or
death of the cancer cell and CAR T-cell populations are presented in Eqs. (9)-(14). See (30) for further development and analysis of the cell binding
model. (B) Graphs of binding rate versus CAR T-cell population for the single binding, double binding, and effective double binding models in Eqs.
(9)-(12), (16), and (18). Model parameters for antigen bindings are: a = 20 CI-2 hrs-2 and h = 16 CI-1 hrs-1 for single binding; a = 20 CI-2 hrs-2, b = 5
CI-3 hrs-2, h = 16 CI-1 hrs-1, and k = 2 CI-2 hrs-1 for double binding; and a = 20 CI-2 hrs-2, b = 2:75 CI-3 hrs-2, h = 16 CI-1 hrs-1, and k = 2 CI-2 hrs-1 for
effective double binding. These parameter values were chosen to highlight how well the effective double binding model can approximate both the
single and double binding models at low CAR T-cell population values, y < 1 CI. Note that since the original double binding model in this scenario is
concave-up, the effective double binding model parameters should be chosen to match concavity. This requirement sets a positivity constraint on
the quadratic term in Eqs. (16) and (18). (C) Graphs of CAR T-cell response rates versus cancer cell population for different functional response
models. Model parameters for functional responses are: p = 6=5 CI-1 hrs-1 for Type I; p =CI-1 and g = 5 CI for Types II and III. Note overlap of Types I
and II functional responses for x < 1 CI, and distinct differences in concavity between Types II (negative) and III (positive) for x < 2 CI. These
characteristics correspond to Type I and Type II functional responses being indistinguishable at low cancer cell populations, and Type II and Type III
being differentiated by fast-then-slow response rates (Type II) versus slow-then-fast response rates (Type III).
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happen such that the conjugate populations are fixed and do not

change with time. Furthermore, we only consider the higher-order

binding scenario of two CAR T-cells to one cancer cell. Solving for

the contributions to the cancer and CAR T-cell populations due to

binding dynamics results in,
(9)

(10)

(11)

(12)
Bx(y) =

ay
h Single Binding

ay+by2

h+ky Double Binding

8<
:

By(y) =

cy
h Single Binding

cy+dy2

h+ky Double Binding

8<
:

where the constants a, b, c, and d are defined in terms of the association

rate constants, k(1)1 and k(2)1 , and the death rate constants k(1)2 , k(1)3 , k(2)2 ,

k(2)3 ; k(2)4 ,  and k(2)5 from Figure 3A as follows,
(13)
(14)
Finally, the constant h is the sum of the single conjugate death rates,

h = k(1)2 + k(1)3 , and the constant k is simply a renaming of the double

conjugate association rate, k(2)1 . As the variable renaming is

admittedly complicated, the constants a, b, c, and d are defined to

quickly identify end states of conjugate formation and have been

located next to their corresponding interaction products

in Figure 3A.

The per-cancer cell binding models are graphed in Figure 3B.

Model parameter values used for the single and double cell binding

models in Eqs. (9)-(18) are: a = 20 CI-2 hrs-2, and h = 16 CI-1 hrs-1

for single binding; and a = 20 CI-2 hrs-2, b = 5 CI-3 hrs-2, h = 16 CI-1

hrs-1, and k = 2 CI-2 hrs-1 for double binding. We highlight that we

are restricting ourselves to scenarios where increases in the CAR T-

cell population during a given trial leads to increases in the

likelihood of double binding, which results in super-linear

increase of per-cancer cell binding. This restriction enforces

concavity of the effective double cell binding model which we

explore next. It is possible for the double binding model to

exhibit a sub-linear increase in per-cancer cell antigen binding as
Frontiers in Immunology 06
the CAR T-cell population increases, and an overall decrease in

cancer cell killing. However, this scenario does not agree with our

experimental data of increased killing with increased effector-to-

target ratios.

Importantly, the rational forms of the binding rates typically

complicate determination of parameter values in conventional

dynamical modeling. To reduce model complexity, we take

advantage of potential differences between the rates of conjugate

association and conjugate death that can give rise to simplifications.

If the product of the CAR T-cell population and the rate of forming

double conjugates, ky, is small compared to the sum of the rates of

single conjugate deaths, h, then ky/h < 1, and we can again perform

a binomial expansion in the cell binding denominators. A second

way of interpreting this condition is to require the number of CAR

T-cells to remain small compared to the ratio of the rate of double

conjugate formation to the sum of the rates of single conjugate

deaths, y < h/k. Performing the binomial expansion and truncating

again at O(y2) results in the following effective models of cell

binding,

Bx(y)  =

ay
h Effective Single Binding

ay
h + (bh−ak)y2

h2 Effective Double Binding

8<
:

Bx(y)  =

cy
h Effective Single Binding

cy
h + (dh−ck)y2

h2 Effective Double Binding

8<
:

Here the effective double conjugate antigen binding model takes

the form of the exact single conjugate binding model plus a

correction due to double conjugate formation. Eqs. (16) and (18)

are graphed in Figure 3B, using the parameter values of a = 20 CI-2

hrs-2, b = 2.75 CI-3 hrs-2, h = 16 CI-1 hrs-1, and k = 2 CI-2 hrs-1.

These values are chosen to demonstrate that the effective double

binding model can accurately approximate both the exact single and

double binding models for small CAR T-cell populations, y < 1CI.

Importantly, we note that if the parameter values b or d are

sufficiently small, corresponding to low double conjugate CAR T-

cell or cancer cell death rates, then the quadratic terms in Eqs. (16)

and (18) will be negative, and the concavity of the effective double

binding model deviate significantly from the exact model. This

phenomenological consideration of the effective models sets an

important constraint on the positivity of the coefficients for the

quadratic terms in Eqs. (16) and (18), which we will revisit in

Section 2.3.

2.2.3 Functional response
We next consider the first three types of functional response

models that characterize how the CAR T-cells respond, or

expand, in the presence of cancer cells. These models are

defined as,

R(x) =

px  Type I 
px
g+x   Type II 

px2

g2+x2      Type III 

8>>><
>>>:

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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where p is the predator response, or CAR T-cell response rate, and g

is the prey population density threshold at which predator behavior

changes (e.g. fast-to-slow or slow-to-fast rates of killing). Functional

responses model changes in predator hunting due to the prey

density, generally defined with respect to some prey population

threshold, here denoted as g. The population dependence on

predator hunting behavior can also be interpreted as a handling

time for distinguishing between time spent seeking prey, or

recognizing cancer cells, and time spent consuming and attacking

prey (19, 26, 27).

The three types of functional responses are graphed in

Figure 3C. In a Type I functional response, the predator response

is constant for all prey population sizes. The interpretation of this

response is that there are no differences in time or cost between all

predator functions (searching and capture). In a Type II functional

response the predator response is linear at low prey density

(mirroring a Type I behavior) yet saturates at high prey density.

Finally, in a Type III functional response the predator response is

low at low prey densities, reflecting the potential for cancer cells to

escape immune surveillance, yet again saturates at high prey

densities, with a linear response at intermediate prey densities.

As with the binding rate models, the rational forms of Types II

and III functional responses present challenges to model discovery

methods. Thus, we assume a significant level of effectiveness in CAR

T-cell treatment such that the cancer cell population remains

relatively low with respect to the functional response threshold,

that is x < g, or x/g < 1. CAR T-cell effectiveness is demonstrated in

Figure 1, where the control cancer cell population is shown to

achieve a maximum population of approximately 6.5 CI, while the

treatment population of E:T = 1:4 reaches a maximum population

of approximately 2 CI. The approximation condition permits the

use of a binomial expansion about x = 0 on the denominators for

the Types II and III functional responses, resulting in,

R(x) =

px Type I 

px
g 1 − x

g +
x2

g2 +o
∞

j=3
( − 1)j

x
g

� �j
 !

Type II 

px2

g2 1 − x2

g2 +
x4

g4 +o
∞

j=3
( − 1)j

x2

g2

� �j
 !

Type III 

8>>>>>>>><
>>>>>>>>:

Further assuming that contributions to the functional response

models of O(x3=g3) or greater are negligible, we terminate the

expansions atO(x2=g2) to arrive at the following effective functional

response models,

R(x) =

px Type I 

px
g − px2

g2 Type II 

px2

g2 Type III     

8>>><
>>>:

It is important to highlight that the leading order term for the

expansion for a Type II functional response is indistinguishable

from a Type I functional response. This feature is reflected by the

overlap in the graphs of the Type I and Type II responses presented

in Figure 3, where the cancer cell population is small, x ∈ ½0, 1�CI,
compared to the value of g = 5 CI. As the cancer cell population

(22)

(23)

(24)

(25)

(26)

(27)
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increases, the density dependence of the CAR T-cells starts to take

effect as demonstrated by the parabolic contribution of the Type II

response. In contrast to this, the expansions for functional

responses of Types II and III are significantly unique from one

another. Specifically, only expansions for Type II can lead to odd-

powered terms in x, and although both expansions can express

similar even-powered terms, they come with different concavities.

That is, at small cancer populations the Type II functional response

is characterized as a concave down parabola, while the Type III

functional response is characterized as a concave up parabola. This

difference regarding the positivity of the terms that are of second-

order dependence in x corresponds to the different density

dependent behaviors of the CAR T-cells at small cancer cell

populations, specifically that Type II is a fast-to-slow response

rate while Type III is a slow-to-fast response rate.

By performing the approximations used to derive Eqs. (26)-

(27), and using truncated terms, we have reduced the complexity of

the functional response terms. This step will simplify the process of

model discovery. However, since this step assumes that the prey

population remains small compared to the functional response

threshold, the number of terms needed in Eqs. (23)-(24) for

accurate characterization of the system dynamics may vary as a

result of experimental variation in the effector to target ratio of the

CAR T-cells and the cancer cells. This variation in the effector to

target ratio may also influence the structure of other interaction

terms, specifically those pertaining to the single or paired

binding dynamics.

2.2.4 Landscape of effective models
To gain a broader perspective of the overall form of our ODE

models, we substitute the effective models for functional responses

and antigen binding into Eqs. (1)-(2), arriving at,

dx
dt

= Gx(x) − ~axy − ~bxy2 (28)

dy
dt

= Gy(y) ± axy ± bx2y − ~cxy2 (29)

where G again represents any of the potential growth-death

models under consideration, ~a = a=h and ~b = (bh − ak)=h2 are

redefined constants (both assumed to be positive) for the

coefficients of the effective single and double binding models for

the cancer cells , axy = (p=g − c=h)xy and represents the

combination of first order terms for CAR T-cell response and

single binding, bx2y = (p=g2)xy and represents the potential

second order term from the CAR T-cell response, and ~cxy2 =

((dh − ck)=h2)xy2 represents the effective double binding model

for the CAR T-cells. We have explicitly used ± notation to indicate

that we do not know a priori the signs for the xy and x2y terms in

Eq. (29), as these are determined by the relative contributions of

Type I and first order Type II-like CAR T-cell responses and single

antigen binding for the xy term, and whether or not second order

Type II or first order Type III CAR T-cell response is occurring for

the x2y term. The benefit of the approach demonstrates the

presence and/or sign conventions of the various model

coefficients that we determine using the SINDy model discovery
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algorithm can be directly interpreted in terms of different

underlying biological phenomena.
2.3 Model discovery

Our implementation of the model discovery techniques of

dynamic mode decomposition and sparse identification of non-

linear dynamics (SINDy) is performed in two stages. First is latent

variable analysis, the extraction of the latent variable representing

the CAR T-cell population from the time-varying cancer cell

population. The second step is implementation of SINDy,

whereupon the functional terms of the underlying models

describing the dynamical system are determined.

2.3.1 Latent variable analysis
Despite having only measured the initial and final CAR T-cell

populations, we can utilize latent variable analysis to infer the

hidden CAR T-cell dynamics from the cancer cell dynamics. We

do this using the delay coordinate embedding of Taken’s Theorem

to reconstruct the attractor of the system that is known to exist in

more dimensions than those measured (13, 15, 57). The first step in

this approach is to assemble a Hankel matrix, H, by stacking

delayed time-series of the cancer cell measurements x(t) as follows,

H =

x(t1) x(t2) x(t3) ⋯ x(tN−(m−1)t )

x(t1+t ) x(t2+t ) x(t3+t ) ⋯ x(tN−(m−2)t )

x(t1+2t ) x(t2+3t ) x(t3+4t ) ⋯ x(tN−(m−3)t )

⋮ ⋮ ⋮ ⋱ ⋮

x(t1+(m−1)t ) x(t2+(m−2)t ) x(t3+(m−3)t ) ⋯ x(tN )

2
666666664

3
777777775

(30)

where t , known as the embedding delay, represents the size of the

time-delay we use, and m, known as the embedding dimension,

represents both the number of rows that we assemble in the Hankel

matrix and, importantly, the number of anticipated latent variables

we expect to find.

To minimize the effects of experimental noise on the results

of Taken’s Theorem, we splined our cancer cell trajectories and

re-sampled at the same experimental sampling rate of one

measurement per 15 minutes. The function smooth.spline

from the programming language R was used to perform the

splining. This function uses cubic splines to approximate

trajectories, with a penalty term to control for trajectory

curvature. The number of knots used to spline each trajectory

were determined by inspection, and are recorded in the analysis

code ava i lab le a t ht tps : / /g i thub. com/a lexbbrummer/

CART_SINDy. Further details on the splining methods used

are available in (57).

To determine optimal values for t and m, we can use two

separate formulae to inform the decisions (58). The optimal time

delay is determined by the value of t which minimizes the mutual

information between measurements. This is done by dividing the

interval ½xmin, xmax� into j equally sized partitions, and calculating

the probability Pk that a measurement of the time series is in the kth

partition, and the probability Ph,k that a measurement xi is in the hth
Frontiers in Immunology 08
partition while the neighboring measurement xi+t is in the kth

partition. Mutual information is given by

I(t) = o
j

h=1
o
j

k=1

− Ph,k(t) log  
Ph,k(t)
PhPk

: (31)

The optimal time-delay to use for a given time series is selected by

finding the value of t which results in the first minimum value in mutual

information, or arg  min jtfI(t)g. A graph ofmutual information versus

time delay is presented in Supplemental Figure S1A. For our cancer cell

time series data, this optimal time delay value was found to be t = 1.

To determine the embedding dimension, m, we calculate the

number of false nearest neighbors to a given measurement as the time

series is embedded in successively greater dimensional spaces. This

calculation is done to ensure that the attractor constructed from the

latent variables remains smooth upon embedding. We perform the

calculation iteratively by starting with a point p(i) in an m

-dimensional embedding, and identifying a neighboring point p(j)

such that the distance between and p(j) is less than a constant value

typically chosen as the standard deviation of the data. Next, the

normalized distance between the points p(i) and p(j) in the m + 1

-dimensional embedding is calculated using the following expression,

Ri =
x(ti+mt ) − x(tj+mt )
�� ��

jjp(i) − p(j)jj (32)

Ri is calculated across the entire time series and iteratively for greater

embeddings, m = 1, 2, 3,…. False nearest neighbors are identified

when Ri > Rthreshold , where Rthreshhold = 10 has been identified as

satisfactory for most datasets (58). The ideal embedding dimension

m is finally determined as that which results in a negligible fraction of

false nearest neighbors. In Supplementary Figure S1B we present the

calculated fraction of false nearest neighbors versus embedding the

dimension. For our dataset, we identified m = 2 as the ideal

embedding dimension, indicating the existence of one latent

variable that we interpret as representing the CAR T-cell population.

Using values of t = 1 for the time delay and m = 2 for the

embedding dimension results in the following form of the Hankel

matrix,

H =
x(t1) x(t2) x(t3) ⋯ x(tN−1)

x(t2) x(t3) x(t4) ⋯ x(tN )

" #
(33)

To extract the latent variable that represents the CAR T-cell time

series, we perform a singular value decomposition of the Hankel

matrix, H = USV* (13, 15). Here, the columns of V represent scaled

and standardized versions of both the original data in the first column,

and approximations of the latent data in the subsequent columns. As

our experimental procedure measured the initial and final CAR T-cell

populations, our final step was to re-scale and offset the latent CAR T-

cell variable extracted from the second column of V . We note that

latent variable analysis is conducted on each trial for each

experimental condition separately. In Figure 4 we present the

measured cancer cells and CAR T-cells in addition to the discovered

latent CAR T-cell time series for each effector to target ratio

considered for the first of the two duplicate trials. In the
frontiersin.org
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Supplemental Material Figure S2 we present the results of the latent

variable analysis for the second of the two duplicate trials.

2.3.2 Sparse identification of non-linear dynamics
SINDy is a data-driven methodology that discovers dynamical

systems models through symbolic regression (13, 15). From a

conceptual perspective, SINDy allows for the transformation of an

analytical, first-order, non-linear dynamical systemsmodel, expressed as

d
dt

x(t) = f (x(t)) (34)

to a linearized matrix-model, expressed as

_X = Q(X)X (35)

where _X are numerical time-derivatives of our measured data,Q(X)
is a library of candidate functions that may describe the data and is

evaluated on the measured data, and X consists of the coefficients

for the model terms from Q(X) that describe the time-varying data
_X. The objective of SINDy is to identify the sparsest version of X,
where sparsity is defined as the compromise between fewest number

of non-zero terms with the greatest level of accuracy. In the context

of our measurements for populations of cancer cells, x(t), and CAR
Frontiers in Immunology 09
T-cells, y(t), and the anticipated models for cell growth and

interactions, _X takes the following form,

_X =

_xT (t1)

_xT (t2)

⋮

_xT (tN )

2
666664

3
777775 =

_x(t1) _y(t1)

_x(t2) _y(t2)

⋮ ⋮

_x(tN ) _y(tN )

2
666664

3
777775 (36)

And Q(X) is expressed as,

Q(X) =

j j j
X X2 X3

j j j

2
664

3
775 (37)

Q(X) =

x(t1) y(t1) x(t1)
2 x(t1)y(t1) y(t1)

2 x(t1)
3 x(t1)

2y(t1) x(t1)y(t1)
2 y(t1)

3

x(t2) y(t2) x(t2)
2 x(t2)y(t2) y(t2)

2 x(t2)
3 x(t2)

2y(t2) x(t2)y(t2)
2 y(t1)

3

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

x(tN ) y(tN ) x(tN )
2 x(tN )y(tN ) y(tN )

2 x(tN )
3 x(tN )

2y(tN ) x(tN )y(tN )
2 y(t1)

3

2
666664

3
777775 (38)

By solving the matrix-inverse problem in Eq. (35), we can find

the column vectors X that determine the coefficients for the model

terms x that form the non-linear dynamical system best describing
A B

D E F

C

FIGURE 4

(A-C) Latent variable analysis results for first of two experimental replicates each E:T ratio examined. Presented are the cancer cell index
measurements from the xCELLigence machine in red, overlaid with the splined measurements for the cancer cells in black; the two endpoint
measurements for the CAR T-cell levels enumerated by flow cytometry in black, with the CAR T-cell population trajectory as determined by latent
variable analysis in yellow, overlaid with the splined CAR T-cell trajectory in blue. Note that despite the CAR T-cell populations being measured with
flow cytometry, we have converted levels to units of Cell Index for ease of comparison with the cancer cells, using a conversion factor of 1 CI ≈
10,000 cells. (D-F) Predicted trajectories of discovered models compared to splined measurements of cancer cells and CAR T-cells for same data
presented in (A-C). Splined cancer cell and CAR T-cell measurements are in black and blue, respectively. Predicted trajectories for cancer cells are
the red dot-dashed lines, while the CAR T-cells are the purple dot-dashed lines. To examine stability of SINDy-discovered models, both simulations
and forward predictions are presented to show steady-state behavior. Note that the best fits between predictions and measurements occur in the
high E:T scenario, where assumptions made regarding treatment success and low cancer cell populations in determining model candidate terms are
best adhered. As the E:T ratios get smaller, increasing deviation between discovered model predictions and splined measurements can be
qualitatively observed. This is likely due to weakening of assumptions of treatment success and low cancer cell populations associated with the low
E:T conditions. See Supplemental Material Figure S2 for equivalent latent variable analysis results and SINDy-predicted trajectories for the second set
of experimental replicates.
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the measured data. To construct _X and Q(X) from our duplicate

trial experiments, the data from the repeated trials is stacked row-

wise. Thus, only a single model will be discovered to explain all data

for a given set of experimental conditions (e.g. effector-to-target

ratios). Having repeat measurements is an important aspect for

SINDy to converge on an accurate model, thus performing SINDy

on averages of experimental trials undermines performance. For

experimental conditions that have an abundance of experimental

replicates, an AI-inspired division of data into training and testing

sets can be conducted (59).

Once _X and Q(X) have been constructed, a simple least-squares

algorithm for solving Eq. (35) will result in a dense coefficient vector

X, thus we enforce sparsity of the coefficient vector X through the

method of sparse relaxed regularized regression (SR3) (60), where

we seek optimization of the expression,

min
X,W

1
2
jj _X −Q(X) jj2 + lR(W) +

1
2n

jjX −W jj2 (39)

whereW is the relaxed coefficient matrix that approximatesX, R(W) is

the regularization ofW , and n and l are hyper parameters that control

how preciselyW approximatesX and the strength of the regularization,

respectively. For our problem, we chose to regularize under the ‘ 1-

norm with n = 1� 10−5. To determine the value of l, we followed the
approach taken in (39) in which we repeat the analysis for a range of l
values from l ∈ ½10−8, 101� to calculate Pareto fronts between the root-
mean-squared error between the measured and subsequently predicted

values of X and the number of active terms from our library. In

Supplementary Figure S3 we present Pareto fronts for each of the

experimental conditions for the varying effector to target ratios.

As discussed in Section 2.2, there are a variety of constraints we can

expect for possible coefficients based on expected signs, or the absence

of particular terms. An extension to SINDy allows for the incorporation

of these constraints to ensure spurious terms are not discovered (61).

To make clear the constraints that were imposed, we can re-

write Eq. (35) symbolically and in terms of the coefficients xi,j as,

_x = x1,1x + x1,2y + x1,3x
2 + x1,4xy + x1,5y

2 + x1,6x
3 + x1,7x

2y

+ x1,8xy
2 + x1,9y

3 (40)

_y = x2,1x + x2,2y + x2,3x
2 + x2,4xy + x2,5y

2 + x2,6x
3 + x2,7x

2y

+ x2,8xy
2 + x2,9y

3 (41)

Then, the constraints that are imposed as per the anticipated

effective models from Section 2.2 are,

x1,2 = 0       x1,4 < 0       x1,5 = 0       x1,6 < 0 (42)

x1,7 = 0       x1,8 < 0       x1,9 = 0       x2,1 = 0 (43)

x2,3 = 0       x2,6 = 0       x2,8 < 0       x2,9 < 0 (44)

while the other 6 coefficients in xi,j are left to freely vary.

Implementation of SINDy SR3 with constraints was

performed using PySindy, a package designed for a wide

array of implementations of the SINDy algorithm for spatio-
Frontiers in Immunology 10
temporal model discovery written in the programming

language Python (16, 17). Included in the Supplemental

Material are the associated datasets and Jupyter notebooks

used for this study.

Finally, we highlight that the implementation of SINDy which

we are relying on is designed specifically for explicit ordinary

differential equations. An extension of SINDy exists for

discovering ODEs with ratios of polynomials (39, 40), however

this variation requires a significantly greater volume of data than

that which we could collect. This is the underlying motivation

behind our efforts to derive the effective models, thereby converting

them into explicit ODEs and making effective usage of the volume

of experimental data available by the study methods most usable for

model discovery.
3 Results

3.1 Discovered models and simulated
comparison

Upon implementing SINDy on the CAR T-cell cancer cell killing

data and performing the Pareto front analysis described in Section

2.3, we identified three distinct models describing the experimental

data. Model selection is presented in Supplementary Figure S3, where

we present the tradeoffs between model complexity, represented by

the number of activated library terms, and either the threshold l or

the root-mean-squared-error between the measured data and

simulated data for each identified model. Our examination of the

Pareto fronts found models with eight terms for E:T of 1:4, and 1:8,

and a six termmodel for an E:T of 1:20. Below we summarize each of

these models and in relation to how well they predict the measured

data in Figure 4. We synthesize the coefficients and associated model

categories for growth in Table 1 and for the CAR T-cell functional

response and cell binding in Table 2.

3.1.1 High E:T discovered model
For the E:T = 1:4 data, the SINDy-discovered model takes the

following form,

dx
dt

= 0:121x + 0:061x2 − 0:018x3 − 0:593xy2 (45)

dy
dt

= 0:191y − 0:351y2 + 0:035xy − 0:009x2y (46)

Factoring the terms related to single-species growth, we arrive at,

(47)
(48)
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From Eqs. (47)-(48) we can interpret the discovered types of

growth models and interactions. For cancer cell growth in Eq.

(47), the observable structure indicates a weak Allee effect, with a

growth rate of r = 0:121 hrs-1, a carrying capacity of K = 4:792

CI, and an Allee constant of A = 1:421 CI. For the CAR T-cells we

find a logistic growth model with growth rate r = 0:191 hrs-1 and

carrying capacity K = 0:544 CI. From the coefficients of a =

0:051 CI-1 hrs-1 on xy and b = −0:009 CI-2 hrs-1 on x2y for the

CAR T-cells, we can infer a Type II functional response as the

signs are positive and negative, respectively. Finally, the presence

of an xy2 term in the cancer cells with a coefficient of ~b = 0:063CI-

2 hrs-1 indicates the occurrence of double binding, notably in the

absence of both the xy term in the cancer cells and the xy2 term in

the CAR T-cells.

3.1.2 Medium E:T discovered model
The SINDy-discovered model for the E:T = 1:8 data takes the

following form,

dx
dt

= 0:237x + 0:04x2 − 0:012x3 − 0:626xy (49)

dy
dt

= 0:112y − 0:358y2 + 0:051xy − 0:009x2y (50)

Factoring the terms related to single-species growth, we arrive at,

(51)
(52)
The model discovered for medium E:T is largely similar to that at

high E:T. A weak Allee effect in growth is observed for the cancer

cells, with growth rate r = 0:237 hrs-1, carrying capacity K =

6:413 CI, and Allee constant A = 3:08 CI, while a logistic growth

is observed for the CAR T-cells with growth rate r = 0:112 hrs-1

and carrying capacity K = 0:313 CI. We also observe a Type II

CAR T-cell functional response, again indicated from the sign of

the coefficients of a = 0:051 CI-1 hrs-1 and b = −0:01 CI-2 hrs-1 on

the xy and xy2 terms being positive and negative, respectively.

Unlike the high E:T scenario however, here we find evidence only
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of single binding from the sole presence of an xy term in the

cancer cells with a coefficient of ~a = −0:626 CI-1 hrs-1.

3.1.3 Low E:T discovered model
Finally, for the E:T = 1:20 data the discovered model is,

dx
dt

= 0:150x − 0:012x2 − 0:545xy (53)

dy
dt

= −0:002xy + 0:005x2y − 0:063xy2 (54)

Factoring the terms related to single-species growth, we arrive

at,

(55)
(56)
In this scenario we find significantly different growth and

interaction models. The cancer cells show logistic growth, with

growth rate r = 0:15 hrs-1 and carrying capacity K = 12:5 CI,

while the CAR T-cells have no growth model. This time, as the

signs for the coefficients of a = −0:002 CI-1 hrs-1 and b = 0:005

CI-2 hrs-1 on the xy and x2y terms for the CAR T-cells are now

negative and positive, respectively, we infer a Type III functional

response. Interestingly, we find a mixture of indicators for both

single binding and double binding. This comes from the presence

of only the xy term in the cancer cell model with a coefficient of

ã = −0:545 CI-1 hrs-1, and of an xy2 term in the CAR T-cell model

with a coefficient of ~c = −0:063 CI-2 hrs-1.

All three E:T ratios of 1:4, 1:8, and 1:20 resulted in discovered

models that accurately characterized the data, with root-mean-

squared-errors of 0.02, 0.195, and 0.359, respectively. We

highlight the discovery of consistent growth models of a weak

Allee effect for the cancer cells and logistic growth for the CAR T-

cells for the E:T ratios of 1:4 and 1:8. Importantly, the growth rates

and carrying capacity for these scenarios were found to be

comparable across E:T ratios. Interestingly, we observe a Type II
TABLE 1 Coefficients for discovered growth model terms across all effector to target ratios.

E:T Growth of
cancer cells (x)

Growth
rate rx
(hrs-1)

Carrying
capacity Kx

(CI)

Allee con-
stants Ax,Bx

(CI)

Growth of
CAR T-cells (y)

Growth rate
ry (hrs-1)

Carrying
capacity Ky

(CI)

Allee con-
stants Ay,By

(CI)

1:4 Weak Allee 0.121 4.792 1.421 Logistic 0.191 0.544 –1

1:8 Weak Allee 0.237 6.413 3.08 Logistic 0.112 0.313 –

1:20 Logistic 0.15 12.5 – – – – –
1 – indicates term not discovered.
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functional response in the CAR T-cells functional response for

both E:T = 1:4 and 1:8, and a transition to Type III for E:T = 1:20.

Similarly, our discovered models indicate a transition from double

to single binding as the E:T ratio changed from 1:4 to 1:8, and a

model with mixed single and double binding terms was discovered

for the E:T = 1:20.
3.2 Comparison with CARRGO model

We compared the data first model discovery methodology of

SINDy against the CARRGO model, a traditional model first

approach originally used to analyze and interpret the CAR T-cell

killing dynamics (18, 25). The CARRGO model is defined as,
(57)
(58)
where we have expressed the parameter variables of the

CARRGO model in terms of those used in the SINDy model for

ease of comparison. From here we can see that the CARRGO model

assumes logistic growth in the cancer cells, single binding between

the cancer cells and CAR T-cells, a Type I functional response in the

CAR T-cells, and exponential CAR T-cell death.

In Figure 5 are graphs of the best-fit versions of both the

CARRGO model and SINDy discovered models for each E:T ratio.

These fits were performed using the Levenberg-Marquadt

optimization (LMO) algorithm, which requires initial guesses and

bounds for each model parameter value. For the CARRGO model

published parameter values were used for the starting guesses, while

for the SINDy discovered models the discovered parameter values

served as the guesses. Upper and lower bounds on the LMO search

space were set at 80% and 120% of the originally identified parameter

values, respectively, and are listed in the Supplemental Tables. In

Table 3 we present the model-fitting statistics for the reduced chi-

squared, ~c2, Akaike information criteria (AIC), and Bayesian
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information criteria (BIC) methods, as well as the parameters

determined by LMO. Importantly, we note that fits were performed

on data points representing averages and ranges for the two

experimental trials at each E:T ratio from only the measured data.

We find that across the three statistical tests considered, the

CARRGO model performs slightly better than the SINDy

discovered models at E:T = 1:4 and E:T = 1:20, whereas the

SINDy discovered model for E:T = 1:8 performed better than the

CARRGO model (Table 3). Interestingly, the CARRGO model

predictions for the CAR T-cell trajectories fail to intercept the

final CAR T-cell values, whereas the SINDy discovered models do.

This result highlights a key difference between these two

approaches, particularly that the SINDy approach required

generating a time-series trajectory for the CAR T-cells that

enforced interception with the final CAR T-cell measurement.

Alternatively, traditional optimization methods like LMO weight

each data point by the range of measurement uncertainty, allowing

for the possibility of significant deviation from the final CAR T-cell

measurements as long as such deviations can be compensated with

better fitting elsewhere amongst the data.

Another essential difference between the CARRGO and SINDy

predictions regarding the CAR T-cell trajectories is the CAR T-cell

response at the high E:T ratio of E:T = 1:4. Specifically, the

CARRGO model predicts that the CAR T-cells reach a maximum

population exceeding the maximum population of cancer cells. This

result has significant translational implications for CAR T-cell

therapy related to patient immune response that we address in

the discussion section.

Despite the noted differences, the overall similarities between

the CARRGO and SINDy models is demonstrated by the order of

magnitude agreement in most shared parameter values,

specifically the cancer cell growth rate rx , the cancer cell

carrying capacity Kx , and the CAR T-cell functional response

coefficient a for the specific scenarios of E:T = 1:4 and E:T = 1:8

(Table 3). Taken together, these results demonstrate significant

value in the SINDy methodology when compared to established

procedures for parameter estimation.
3.3 Model stability

An important question in performing model discovery for

dynamical systems is in relation to the overall stability.

Automating the task of examining stability for every discovered
TABLE 2 Coefficients for discovered interaction model terms across all effector to target ratios.

E:T Response
of CAR T-

cells

Type I & II response a
(CI-1 hrs-1)

Type II & III response b
(CI-2 hrs-1)

Cancer cell-CAR T-cell
binding

Single binding ã
(CI-1 hrs-1)

Double binding ~b
(CI-2 hrs-1)

Double binding ~c
(CI-2 hrs-1)

1:4 Type II 0.035 –0.009 Double –1 0.593 –

1:8 Type II 0.051 –0.009 Single 0.626 – –

1:20 Type III –0.002 0.005 Mixed 0.545 – 0.063
1 – indicates term not discovered.
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model is challenging given the combination of symbolic

computation with floating point coefficients. However, by

predicting forward in time for each of the models and

experimental replicates we can qualitatively characterize the

stability (see Figure 4).

For the E:T = 1:4 scenario, both the data and model indicate

complete cancer cell death, with the model accurately maintaining a

cancer cell population of zero. We note that in several of the

alternate discovered models produced by SINDy, the cancer cell

population would become negative in the forward predicted regime.
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This unrealistic result can be used as an aide in ruling out

alternative models.

For the E:T = 1:8 and 1:20 scenarios, both the data and models

indicate cancer cell-CAR T-cell coexistence, with the forward

predictions reaching non-oscillatory steady states. Despite the

discovered models being the ones with the best accuracy, they all

struggle to match the observed oscillatory frequency, particularly in

the E:T = 1:20 scenario. These results demonstrate the capability of

SINDy to discover models with variability in solution stability, a

core feature of nonlinear dynamical systems.
TABLE 3 Fitting statistics for CARRGO and SINDy models and comparison of shared parameters.

Model –E:T ~c2 AIC BIC Cancer growth
rate r (hrs-1)

Cancer carrying
capacity Kx (CI)

Cancer killing
ã (CI-1 hrs-1)

CAR T response
a (CI-1 hrs-1)

CARRGO –1:4 13.6 1380 1400 0.471 3.70 0.555 0.0318

SINDy –1:4 23.0 1660 1700 0.116 4.78 –1 0.0327

CARRGO –1:8 0.919 -39.6 -18.3 0.361 6.82 1.26 0.015

SINDy –1:8 0.401 -474 -440 0.190 7.06 0.588 0.0436

CARRGO –1:20 3.14 609 631 0.206 7.69 1.81 0.0195

SINDy –1:20 3.55 674 700 0.123 11.1 0.540 -0.0024
Fitting statistics considered are the reduced chi-squared, ~c2, the Akaike information criteria (AIC) and Bayesian information criteria (BIC). Of note are the scores indicating a better fit for the
CARRGO model at E:T = 1:4 and 1:20, despite differences in the endpoint CAR T-cell population predictions in Figure 5. Furthermore, we observe generally favorable agreement between
parameter estimates, suggesting the data first approach of SINDy as a viable alternative to traditional model first parameter inference methods.
1 – indicates term not discovered.
FIGURE 5

Predictions of cell trajectories for E:T ratios of 1:4, 1:8, and 1:20 from CARRGO model (blue) and SINDy model (red). Model fits for both CARRGO
and SINDy were performed using Levenberg-Marquadt Optimization (LMO) on data aggregated across experimental replicates. Initial LMO
parameter value guesses were determined by parameter values from SINDy or from published CARRGO model values. Data points represent the
mean of all experimental replicates, while error bars represent the ranges across replicates. Of note are the differences in CARRGO and SINDy model
predictions for the final CAR T-cell values compared to measurements, and the notable difference in when the maximum CAR T-cell population is
reached between CARRGO and SINDy models. Note that experimental measurements have been down-sampled to 25% to allow for visualization.
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3.4 Parameter identifiability

To better understand the rarity of the discovered models and

their respective coefficients, we examined histograms for the

coefficients of each of the model terms along the Pareto fronts for

each E:T ratio, presented in Supplementary Figure S4. This

approach allows us to qualitatively assess parameter identifiability

by seeing the extent to which variability in coefficient values exists,

and at the expense of prediction accuracy. For most active terms

encountered, the coefficients corresponding to the selected models

based on the Pareto front analysis were the most commonly

occurring values until deactivation (elimination from discovered

models). However, in a few situations we see that the coefficient

values corresponding to the greatest model accuracy were relatively

rare, and varied significantly as increasingly more terms were

removed. This occurs in the coefficients for the x and xy2 terms

in the cancer cells for the E:T = 1:4 scenario in Supplementary

Figure S4A, and the x and xy terms in the cancer cells for both the

E:T = 1:8 and 1:20 scenarios in Supplementary Figures S4B, C.

These terms were shown to be the final remaining active terms in

discovered model, suggesting that they are capable of capturing the

greatest extent of variation in our cancer cell-CAR T-cell killing

data. Of note once again is that amongst these dominant interaction

terms we see a transition from those indicative of double binding at

high E:T ratios to single binding at medium and low E:T ratios.
4 Discussion

We examined in vitro experimental CAR T-cell killing assay

data for a human-derived glioblastoma cell line (Figure 1). From

our results we infer transitions in the phenomenological killing

behavior of the CAR T-cells as a consequence of varying their initial

concentration compared to the cancer cells. Our discovered models

predict that at high effector to target ratios (E:T = 1:4) the CAR T-

cell levels respond according to a Type II functional response in

which they survive and/or expand faster at low density, and slower

at high density, and they predominantly form double binding

conjugates with cancer cells prior to cell killing. At medium E:T

ratios of E:T = 1:8 our discovered model again predicts the CAR T-

cells undergoing a Type II functional response, but now forming

only singly bound conjugates prior to cell killing. At low E:T ratios

of E:T = 1:20 our discovered model predicts the CAR T-cells shift to

a Type III functional response, in which they survive and/or expand

slower at low density, and faster at high density. In this final

scenario we find a mixture of single and double conjugate

formation occurring. Finally, our discovered models predict the

growth strategies of the cancer cells as being a weak Allee effect at

high and medium E:T ratios, and logistic at low E:T ratios, while the

cancer cells are predicted to follow logistic growth for high and

medium E:T ratios. Model coefficients used to deduce these results

are found in Tables 1 and 2, and model simulations and forward

predictions are shown in Figure 4.

A crucial result of this work is the comparison between the data

first approach of SINDy to the traditional model first approach of
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CARRGO. Despite the discovered SINDy models having more

degrees of freedom (i.e. mathematical terms) than the CARRGO

model, both models were found to perform comparably as indicated

in Figure 5 and Table 3. Yet, there are key differences regarding the

interpretation of these two approaches. Traditional model first

approaches like the CARRGO model assume a strict individual

model that may exhibit variation in its coefficients or model

parameters to reflect variation in the underlying biology or

experimental conditions. On the other hand, one of the strengths

of the data first approach of SINDy is that these coefficient

variations can be shifted onto discovery of altogether different

model terms. As we show, these different terms can have direct

interpretations related to the underlying biology and dynamics. For

example in (18), variation in the CAR T-cell response due to

changes in the experimental E:T ratio could only be indicated

through variation in the coefficients of the Type I functional

response term, or the value of a in Eq. (58). Specifically, increases

in a were interpreted as a high CAR T-cell response rate, or CAR T-

cell expansion, and decreases in a were interpreted as a low

response rate, or as CAR T-cell exhaustion. Whereas the SINDy

model predicts entirely different CAR T-cell functional response

terms, providing greater interpretation of these transitions in the

CAR T dynamics and biology. Specifically, a Type II functional

response at high and medium E:T, or a fast-to-slow CAR T-cell

response rate, and a Type III functional response at low E:T, or a

slow-to-fast CAR T-cell response that is again suggestive

of exhaustion.
4.1 Interpreting discovered coefficients

We demonstrate the value of the effective model parameters for

inferring underlying biology by considering the high E:T model

presented in Eqs. (47)-(48). In this scenario, a Type II functional

response in the CAR T-cells is deduced from the negative sign on b ,
corresponding to the concave down parabolic nature of the CAR T-

cell functional response with fast proliferation at low cancer cell

density and slow proliferation at high cancer cell density (Figure 3).

The implication that cancer cell killing is induced by double binding

of CAR T-cells to cancer cells comes from multiple terms. The most

direct indicator is ~b ≠ 0, where ~b = (bh − ak)=k2 with bh=k

representing the rate of cancer cell death from double conjugates,

and a=k the rate of cancer cell death from single conjugates.

Supporting indicators come from the positive sign on a = p=g −

c=h, suggesting that the CAR T-cell death rate from single conjugate

formation, c=h is small compared to the leading order CAR T-cell

response rate, p=g. Further evidence is in the inactivation of the xy

term in the _x(t) equation with coefficient ~a. Here, ~a = a=h is the rate

of cancer cell death from single conjugate formation, whose absence

suggests that double binding formation is predominantly

responsible for cancer cell death.

A similar analysis of model coefficients for the low and medium

E:T ratio scenarios predicts a transition in the interactions between

the CAR T-cells and cancer cells. Specifically, our approach predicts

that the CAR T-cells form double conjugate pairs with high E:T
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ratios, then switch to single conjugate pairs at medium and low E:

T ratios. Similarly, our results predict a transition in the functional

response, indicating Type II functional responses in the CAR T-

cells for high E:T ratios and Type III responses in the low E:T

ratios. These transitions in detected model terms are

phenomenologically consistent with the interactions being

dependent on CAR T-cell density, and highlight the hypothesis

generating strength of data first model discovery techniques.

Namely, the prediction of CAR T-cell killing dynamics being

dependent on the relative abundance of CAR T-cells compared to

cancer cells. We next present several opportunities for

experimental testing of these model predictions.
4.2 Challenges and limitations

A challenge to the implementation of SINDy is data sparsity.

Despite having high temporal resolution of the cancer cell

trajectories (1 measurement per 15 minutes), the CAR T-cell

populations consisted of only the initial and final measurements.

To resolve sparsity in the CAR T-cell levels, we used latent variable

analysis to extract the CAR T-cell trajectory from an approximation

to the attractor of the dynamical system as determined by the cancer

cell trajectory. We note that in determining the dimensionality of

the latent variable subspace, we selected an embedding dimension

of m = 2 despite the appearance of further benefit in using an

embedding dimension of m = 3, as indicated in Supplementary

Figure 2B. This choice was made due to our experimental

limitations in only having flow cytometry data for the CAR T-

cells at the initial and final time points, and no further data with

which to constrain any additional latent variables. The existence of a

second latent variable, as suggested by the third embedding

dimension, could be due to single or double binding conjugates if

the reaction rates are sufficiently slow, or, alternatively, a

biochemical secretion that is modulating the cancer cell and CAR

T-cell interactions. Future experimental and modeling efforts may

further illuminate the nature of this third state variable, which we

discuss in the Future directions section.

One potential limitation with latent variable analysis is that the

trajectories retrieved through Taken’s Theorem are not guaranteed

to be unique, but rather will be diffeomorphic to the true latent

variable. That is, subject to topological stretching or skewing, which

translates to variation in discovered model coefficients. This effect

can be seen in Bakarji et al. (62), where the coefficients of the latent

variables discovered for the two-state, predator-prey model are not

in precise agreement to those used in the original simulation.

However, it is important to note that the model terms discovered

by SINDy with this methodology are biologically insightful, even

though the coefficients multiplying the discovered model terms on

latent variables may be subject to variation. Importantly, we provide

further experimental information for the latent CAR-T cell variable

through bounding of the initial and final CAR-T cell trajectory with

direct measurements. Likewise, we only discover terms which are

structurally identifiable through model inversion, minimizing the
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potential for diffeomorphic skewing of CAR-T cell trajectories to be

discovered from Taken’s Theorem.

A second challenge is that our data in total consists of two trials

for each effector-to-target ratio. While there exist SINDy

implementations designed to discover models with ratios of

polynomials, the approaches require prohibitively many

experimental trials to ensure accuracy (39, 40). To resolve sparsity

in the number of experimental trials, we derived effective

interaction models of cancer cell and CAR T-cell dynamics from

model ODE terms with ratios of the polynomials using binomial

approximations. These effective interaction models allowed for the

identification of multiple constraints on the library function space

used in SINDy, and guided our inferential analysis of the

discovered models.
4.3 Future directions and clinical
applications

To validate the hypothesized binding and functional response

dynamics, we propose two potential experiments. Both experiments

rely on similar initial conditions as those conducted for this study, but

in one we propose the use of bright field microscopy and live cell

imaging to visually inspect CAR T-cell dynamics at different points in

time and for the different E:T ratios. By tracking in real-time the

growth, motility, and interactions of the different cells present, this

approach ought to aide in distinguishing different cell phenotypes by

identifying occurrences of single and double binding types as well as the

different functional responses (63). The second experiment would be to

conduct endpoint analyses using flow cytometry to determine the

population of CAR T-cells throughout the trajectory. This experiment

would test the different CAR T-cell predictions from the CARRGO

model and the SINDymodels, most notably the predicted time to reach

maximum CAR T-cell populations (Figure 5). Furthermore, targeted

staining can provide information on the number of CAR T-cell

generations and the ratio of helper T-cells (CD4+) to cytotoxic, killer

T-cells (CD8+). These metrics may better inform the number of true

effector cells responsible for killing cancer cells, allowing for more

accurate characterization of the CAR T-cell response. These

experiments additionally serve to test the validity of our latent

variable analysis, which uses the cancer cell trajectory to predict the

CAR T-cell trajectory as presented in Figure 4. Future experiments will

also extend this analysis to include other CAR designs, including

evaluating the impact of costimulatory signaling, CAR affinity and

target density on modeling of CAR T-cell killing dynamics.

These and other experiments are essential for introducing additional

elements and agents present in the tumor microenvironment and for

extending this work to in vivo applications. Currently, our

implementation of SINDy is on a highly controlled experimental

system in order to isolate the interaction dynamics between the CAR

T-cells and the glioma cells and to validate the SINDymethodology. An

important challenge to overcome is extending the SINDy framework to

incorporate additional aspects of in vivo systems. To achieve this,

intermediate experiments to conduct are killing assays in two- and
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three-dimensional in vitro tissue model systems that mimic the tumor

microenvironment (64). The proposed experiments are crucial for

adapting use of the SINDy framework for clinical applications.

The clinical relevance of the data first framework is in the domain

of precision medicine. The approach naturally caters to in situ

monitoring of patient response to therapy and forecasting future

trajectories. An open question in this field is determining the

sufficient number of early measurements necessary for accurate

forecasting, and quantifying the extent of reliable forward

prediction. This type of application falls under the field of control

theory, in which real-time measurements for systems such as

navigation, fluid dynamics and disease monitoring can inform

model-based interventions (15). Control theory has been identified

as a key tool in achieving optimized individual treatment outcomes,

yet challenges are ever-present in parsimonious model selection. The

SINDy methodology may help streamline and simplify the model

selection process, while simultaneously incorporating control theory

methods for treatment optimization. As an example related to the

experiments considered here, one could envision a therapeutic

intervention to administer more CAR T-cells in the low E:T ratio

of 1:20 as soon as the Type III functional response and single binding

dynamics are predicted in a patient. This intervention would serve to

push the dynamics of the patients immune response into the double

biding and Type II response regime, thereby improving

therapeutic efficacy.
5 Conclusions

In this work we present the first, to our knowledge, application of

the sparse identification of non-linear dynamics (SINDy) methodology

to a real biological system. We used SINDy with highly time-resolved

experimental data to discover biological mechanisms underlying CAR

T-cell-cancer cell killing dynamics. Our implementation highlights the

hypothesis generating potential of data-driven model discovery and

illuminates challenges for future extensions and applications. To

overcome challenges related to data limitation, we utilized latent

variable analysis to construct the trajectory of the CAR T-cells, and

we implemented binomial expansions to simplify specific model terms.

Our results predict key mechanisms and transitions in the interaction

dynamics between the CAR T-cells and cancer cells under different

experimental conditions that may be encountered in the application of

these therapies in human patients. Specifically, we identified transitions

from double CAR T-cell binding to single CAR T-cell binding, and

from fast-to-slow CAR T-cell responses (Type II) to slow-to-fast

responses (Type III). Both transitions occur as a result of decreasing

the relative abundances of CAR T-cells to cancer cells (initial E:T

ratios). Importantly, these results demonstrate the potential for data

first model discovery methods to provide deeper insight into the

underlying dynamics and biology than model first approaches, and

offer a new avenue for integrating predictive modeling into precision

medicine and cancer therapy by an improved mechanistic

understanding of cancer progression and efficacy of CAR T-

cell therapy.
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