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Multifaceted involvements of
Paneth cells in various diseases
within intestine and systemically

Chenbin Cui1, Xinru Wang1, Lindeng Li1, Hongkui Wei1

and Jian Peng1,2*

1Department of Animal Nutrition and Feed Science, College of Animal Science and Technology,
Huazhong Agricultural University, Wuhan, China, 2The Cooperative Innovation Center for Sustainable
Pig Production, Wuhan, China
Serving as the guardians of small intestine, Paneth cells (PCs) play an important

role in intestinal homeostasis maintenance. Although PCs uniquely exist in

intestine under homeostasis, the dysfunction of PCs is involved in various

diseases not only in intestine but also in extraintestinal organs, suggesting the

systemic importance of PCs. The mechanisms under the participation of PCs in

these diseases are multiple as well. The involvements of PCs are mostly

characterized by limiting intestinal bacterial translocation in necrotizing

enterocolitis, liver disease, acute pancreatitis and graft-vs-host disease. Risk

genes in PCs render intestine susceptible to Crohn’s disease. In intestinal

infection, different pathogens induce varied responses in PCs, and toll-like

receptor ligands on bacterial surface trigger the degranulation of PCs. The

increased level of bile acid dramatically impairs PCs in obesity. PCs can inhibit

virus entry and promote intestinal regeneration to alleviate COVID-19. On the

contrary, abundant IL-17A in PCs aggravates multi-organ injury in ischemia/

reperfusion. The pro-angiogenic effect of PCs aggravates the severity of portal

hypertension. Therapeutic strategies targeting PCs mainly include PC protection,

PC-derived inflammatory cytokine elimination, and substituting AMP treatment.

In this review, we discuss the influence and importance of Paneth cells in both

intestinal and extraintestinal diseases as reported so far, as well as the potential

therapeutic strategies targeting PCs.

KEYWORDS

Paneth cell, Crohn’s disease, necrotizing enterocolitis, liver disease, acute pancreatitis,
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Introduction

Paneth cells (PCs) were first discovered by Gustav Schwalbe in 1872 (1) and named by

Josef Paneth in 1887 (2). Acting as a unique type of intestinal epithelial cells, PCs are

derived from adjacent intestinal stem cells (ISCs) and located at the base of epithelial crypt

region. In small intestine, the differentiation of PCs is conducted under the condition of
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Notch signaling off and Wnt signaling on in ISCs (3). PCs can be

identified by the presence of cytoplasmic abundant granules mainly

including antibacterial peptides (AMPs), interleukin (IL)-17A,

tumor necrosis factor (TNF)-a and CD95 ligand (4–6). There are

many identified AMPs such as a-defensin, lysozyme, and

regenerating islet-derived 3a (REG3a, REG3g in mice) in PCs.

PCs possess abundant endoplasmic reticulum (ER) and trans-Golgi

network to realize their highly secretory nature (7). As a key

component of intestinal innate immune, the functional PCs are of

great importance for intestinal homeostasis. Abundant AMPs

secreted by PCs control the balance of host-microbiota

interactions within small intestine (8). The defects in PCs or

AMP expression could lead to microbiota disorders and mucosal

penetration by intestinal bacteria (9, 10). In addition, PCs support

the functions of ISCs by providing several factors such as Wnt3a,

epidermal growth factor (EGF), and metabolites (11–13). PCs can

manipulate intestinal epithelial apoptosis by releasing CD95

ligand (14).

Considering that PCs maintain the health of intestine in

multiple manners, PC dysfunction is generally involved in

intestinal disorders and even diseases such as Crohn’s disease

(CD) and necrotizing enterocolitis (NEC) (15). The impaired

unfolded protein response (UPR) and autophagy turn PCs into

an origin of intestinal inflammation (16). Furthermore, the

mutations in several UPR- and autophagy-related genes in PCs

such as autophagy related 16 like 1 (ATG16L1) and X-box-binding

protein 1 (XBP1) are identified risk factors for CD (17).

Additionally, NEC pathogenesis is associated with intestinal

bacterial translocation (18).

Although the presence of PCs is mainly limited in small

intestine under intestinal homeostasis, PCs participate in the

pathogenesis of extraintestinal diseases in addition to intestinal

diseases. Large amounts of extraintestinal diseases such as liver

diseases, acute pancreatitis (AP) and graft-vs-host disease (GVHD)

involve the decreases in PC number and AMP expression (19–21).

PC defects result in visceral hypersensitivity that induced by the

expansion of intestinal Escherichia coli, implying the susceptibility

to diseases after PC disruption (22). Ischemia/reperfusion (IR)-

induced multi-organ injury is mediated by the IL-17A secreted by

PCs (6). Here we provide an overview of the influence and

importance of PCs on various diseases within intestine and other

bodily organs, as well as potential therapeutic strategies targeting

PCs in these diseases.
PCs in inflammatory bowel disease

Inflammatory bowel disease (IBD) is a severe intestinal disease

in the 21st century all over the world (23). IBD is divided into two

types, ulcerative colitis (UC) and CD (24). UC is a chronic and

continuous disease impacting the colon (25), whereas CD is a

transmural disease occurring anywhere in the gastrointestinal

tract (from mouth to anus) (26). PC abnormalities are observed

in 20%-50% of CD patients and are more prevalent in pediatric CD

patients than adult CD patients (27, 28). The presence of PC

abnormalities is used to forecast the recurrence of CD after
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surgery (29). Under healthy condition, mouse PCs are limited in

ileum, while human PCs normally exist in ileum as well as

sporadically in cecum and ascending colon (30). The decreased

expressions of a-defensins (HD5 and HD6) are observed in ileal

PCs of CD patients, which is attributed to the diminished Wnt

ligands (enhancers of AMP expression) in monocytes and partly in

ileum, highlighting the multiple regulations of PCs in CD (31).

Since PCs exhibit continuous AMP synthesis and release,

functional mitochondria in PCs are required to provide energy.

Recent studies have reported that active CD is associated with

mitochondrial abnormalities in PCs, thus impairing PC function

(32, 33). The importance of mitochondrial homeostasis in PCs is

further confirmed by the fact that the level of Prohibitin 1 (PHB1), a

major component protein of the inner mitochondrial membrane, is

down-regulated in the mucosal biopsies from CD patients (34), and

Phb1 deficiency in PCs triggers PC defects and spontaneous ileitis in

mice (35).

In addition to small intestine, PCs are occasionally observed at

other sites under pathological condition, such as stomach and

colon, and the phenomenon is called PC metaplasia (36). Both

UC and CD patients display the occurrence of abundant metaplastic

PC along the whole colon (30). It is generally accepted that

metaplastic PCs tend to protect the intestine from infections.

Metaplastic PCs secrete several AMPs into colonic lumen, such as

a-defensins, lysozyme, sPLA2 and intelectin-2 (ITLN2), which is

considered as a host defense response to IBD (37–40). The activities

of AMPs in colon are associated with the degree of intestinal injury

in IBD. Notably, colonic expression of HD5 is significantly higher in

CD than in UC, indicating that HD5 may be a potential biomarker

in IBD diagnosis, a complicated process with 30% misdiagnosis

(40). However, lysozyme derived from metaplastic PCs has been

proved to be detrimental to colon. Lysozyme-processed and non-

processed Ruminococcus gnavus (a CD-associated pathobiont)

induced distinct immune responses in colon (41). Pro-

inflammatory responses are triggered by Ruminococcus gnavus

after lysozyme processing, whereas the transfer of Ruminococcus

gnavus to Lyz1 knockout mice contributes to a type 2 immune

response promoting intestinal epithelial repair (41). Considering

that both CD and UC increase the risk of colorectal cancer (42),

experimental studies on the role of colonic metaplastic PCs in this

event should be conducted since PCs can secrete Wnt3a and EGF

that might promote cancerization in intestine.

There are many identified risk genes of CD in PCs such as

ATG16L1, NOD2, and XBP1 (16, 17). Most of these risk genes are

associated with the normality of autophagy and UPR, and

ATG16L1 has been the most well-studied target so far. CD

patients homozygous for the ATG16L1 risk allele exhibit granule

disruption and mitochondria degeneration in PCs (43). Besides,

ATG16L1 mutations also lead to ER stress in PCs as demonstrated

by the enhanced levels of GPR78 and pEIF2a (44). The mechanism

under elevated ER stress caused by ATG16L1 deficiency is the

impaired removal of IREa, an ER stress sensor (45). The protective

role of ATG16L1 is further validated by the increased susceptibility

to bacteria-induced inflammation in ATG16L1-mutated mice (46).

S. typhimurium-induced ER stress triggers ATG16L1-mediated

secretory autophagy, thus limiting bacterial penetration (47).
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ATG16L1 is recruited to the plasma membrane at the bacterial

entry site by NOD2 (48). In addition to autophagy, AMP expression

and lysozyme sorting are also regulated by NOD2, suggesting the

crucial role of NOD2 in the pathogenesis of CD (49, 50). In Caco-2

cells and the ileum of CD patients, the abnormality of NOD2 is

associated with the reduced expression of a-defensins, but not

lysozyme (50, 51). ATG16L1/XBP1 knockout mice develop higher

level of intestinal inflammation than mice with ATG16L1 or XBP1

deletion, pointing out the compensatory interaction between

autophagy and UPR (16). The loss of XBP1 and pEIF2a, two key

components of UPR, impairs PC homeostasis as well (52, 53). These

findings suggest that autophagy and UPR in PCs may be potential

therapeutic targets for CD.

CD is associated with the decreased expression of caspase-8 and

the increased occurrence of necroptosis in PCs (54, 55). PC

necroptosis leading to PC loss may be the reason for the reduced

AMP expression mentioned above in CD. The expression of mixed

lineage kinase domain-like protein (MLKL), the executor of

necroptosis, is positively correlated to disease activity of CD ileitis

(56). Abundant expression of receptor-interacting protein 3 (RIP3),

another key hub of necroptosis, is observed in PCs from both

humans and mice (55). Caspase-8-deleted PCs undergo necroptosis

in mice without any treatment, and necrostatin-1 (Nec-1, an

inhibitor of RIP1-mediated necroptosis) rescues the PC

necroptosis induced by TNF-a (55). CD patients with X-linked

inhibitor of apoptosis protein (XIAP) mutations display fewer PCs

than normal CD patients (57). In XIAP knockout mice, PC loss is

rescued by RIP3 si lencing and Nec-1 administrat ion

intraperitoneally, suggesting that PC necroptosis is the reason for

PC loss (57). In addition, ATG16L1 also suppresses necroptosis

through maintaining mitochondrial functions in TNF-a-treated
intestinal organoids (58). The elevated level of IFN-l is detected

in serum and inflamed ileum of CD patients, and it is mainly

located at ileal PCs. IFN-l treatment enhances MLKL expression,

thus rendering PCs sensitive to necroptosis (56). PC necroptosis not

only weakens the function of PCs, but also might trigger the release

of inflammatory medium such as ATP and mitochondrial DNA,

thus aggravating inflammation. Strategies to control PC necroptosis

may be developed to prevent CD ileitis.

CD can induce robust cell apoptosis in crypt regions of ileum

(59). Recent study has demonstrated that PCs acting as phagocytes

remove the apoptotic cells in intestinal crypts, avoiding the

occurrence of inflammation (60). Therefore, PC loss in CD may

weaken the engulfment and removal of apoptotic cells in crypts,

which requires further experimental demonstration. The

accumulation of apoptotic cells in crypts may also lead to

inflammation, thus impairing ISC niche and aggravating CD.

In addition to genetic factors, environmental risk factors such as

smoking, western diet and, alcohol play an important role in CD

pathogenesis (61). ATG16L1-mutated CD patients display more

abnormal PCs after smoking (62). The treatments of these

environmental risk factors in mice lead to PC dysfunction in

manners of microbiota alterations, ER stress induction and AMP

inhibition (63–65). Activating transcription factor 4 (ATF4) is

down-regulated in the inflamed intestine from CD and UC

patients (66). ATF4 is responsible for the uptake of glutamine
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promoting AMP expression, suggesting the importance of

alimentary supplementation in IBD (66). However, the

involvements of PCs in CD induced by environmental risk factors

are poorly understood and still requires further investigation in CD

patients. The detailed information about the association between

PCs and CD is provided by Wehkamp and Stange (67).
PCs in necrotizing enterocolitis

NEC is a common gastrointestinal disease with devastating

disorders and contributes to high morbidity and mortality in

preterm infants, and it is characterized by pneumatosis

intestinalis mediated by bacteria-derived gas (68). The

pathogenesis of NEC is attributed to intestinal injury and damage

that induced by bacterial permeation across the undeveloped

epithelial mucosa (18). The decrease or absence of PCs is

observed in inflamed intestine from NEC infants, indicating the

possibility that PC defects could allow bacterial invasion in NEC

(69–71). In addition, PC-derived EGF seems to be beneficial to

alleviate NEC since it can reduce intestinal autophagy and NEC

incidence in rats (72, 73). Dithizone (a selective destroyer of PCs)-

mediated PC loss in combination with acute Klebsiella pneumoniae

infection induces severe intestinal injury similar to human NEC in

immature mice (74). Notably, this method is only applied to

postnatal day 14-16 (P14-P16) mice rather than P5 and P28 mice.

The limitation may attribute to the fact that PC-dependent innate

immunity is essential for the immature intestine of P14-P16 mice

(75), highlighting the importance of PCs in preventing NEC. The

immature intestine of P5 mice without PCs is protected by cathelin-

related antimicrobial peptide (CRAMP), and P28 mice possess

mature small intestine (75). In this mouse NEC model, dithizone

and Klebsiella pneumoniae can be substituted with diphtheria toxin/

PC-DTR mice and other bacteria (Klebsiella Zea mays and Bacillus

cereus) respectively (18). PC deletion-induced NEC model

mice display the increased Enterobacteriaceae species

participating in human NEC development, as well as the

decreased Helicobacteraceae species in cecum (10).

Antibiotic is generally used to treat infection. However, the

prolonged antibiotic exposure to preterm infants elevates the NEC

incidence (76, 77). Subsequent study conducted with neonatal mice

has demonstrated that intraperitoneal antibiotic treatment after

birth (P1-P10) reduces PC number in crypts, and Klebsiella

pneumoniae infection at P14 triggers NEC-like intestinal injury in

mice after 10-day antibiotic treatment, suggesting the necessity to

control antibiotic use in newborns (78). Efforts to protect intestinal

PCs in infants must be conducted to prevent NEC attack.
PCs in intestinal infection

PCs residing in crypt bottoms are sensitive to intestinal

microorganisms mainly including bacteria, virus and parasite.

Intestinal bacteria directly stimulate the expression of AMPs via

toll-like receptor (TLR)-MyD88 axis (79). There are multiple TLR

ligands in microorganisms, and their abilities to trigger
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degranulation of PCs are different. Polyinosinic-polycytidylic acid

(TLR3 agonist) and CpG-oligodeoxynucleotide (TLR9 agonist)

treatments induce dramatic degranulation of PCs in mice, while

LPS (TLR4 agonist) and flagellin (TLR5 agonist)-induced

degranulation is dilatory and TNF-a-dependent (80). This

degranulation process of PCs also occurs in intestinal organoids

(81). Under infectious conditions, lysozyme secretion is achieved by

secretory autophagy, an alternative secretion approach, rather than

degranulation (47). Functional PCs are required for the

maintenance of intestinal health, and PC defects render intestine

susceptible to microorganism infections (57, 82, 83).

Intestinal microorganisms have various effects on PCs,

highlighting the importance of host-microorganism interactions

in PC development. Enterotoxigenic Escherichia coli and Salmonella

typhimurium infections lead to the increases in PC number and

AMP expression (84, 85). The expansion of PC attributes to Wnt

signaling activation (84) mediated by Salmonella protein AvrA (86).

Listeria monocytogenes inhibits intestinal Notch signaling to

facilitate PC differentiation (87). In Clostridium difficile infection,

intestinal epithelial Stat5 signaling activates Wnt/b-catenin
signaling in ISCs, thus promoting PC differentiation and

intestinal regeneration (88). In human chronic gastritis induced

byHelicobacter pylori infection, a-defensins secreted by metaplastic

PCs in stomach have a bactericidal effect on Helicobacter pylori.

These findings suggest that bacterial infections lead to PC activation

rather than PC defects.

Compared with bacterial infections, viral infections tend to impair

PCs. Early simian immunodeficiency virus (SIV) is localized in close

proximity to PCs after infection (4). PCs express pro-inflammatory IL-

1b impairing intestinal epithelial barrier in response to SIV infection,

which precedes the IFN antiviral response, suggesting that PCs may

play an important role in amplifying intestinal inflammation (4).

Transmissible gastroenteritis virus-infected piglets exhibit PC

mitochondria damage that further impairs Notch signaling and ISC

functions (89). As for parasite, helminth infection doubles PC number

in mice (90), and Toxoplasma gondii infection results in PC

mitochondria damage and PC death depending on mTORC1

signaling (91). In consideration of the antibacterial and ISC-

supporting roles of PCs, targeting PCs may be a practical strategy to

alleviate viral and parasitic infections.
PCs in liver disease

Liver disease represents one of the major causes of human being

death in the world (92). The incidences of nonalcoholic fatty liver

disease (NAFLD) and alcohol-related liver disease (ALD) are

increasing these years, which results in the morbidity of liver

cirrhosis (LC) and even cancer (93–95). The mouse NAFLD

model is established with high-fat diet (HFD) treatment, and

NAFLD mice exhibit the down-regulated expression of AMPs

(19). The reduction of AMPs leads to the emergence of LPS-

positive cells in small intestinal mucosa and liver (19). PC

disruption induced by vitamin D deficiency increases the

abundance of ileal Helicobacter hepaticus (a known hepatic
Frontiers in Immunology 04
pathogen) and bacterial translocation, which worsens hepatic

steatosis and inflammation during HFD treatment (96). Oral

administration of DEFA5 reduces the abundance of Helicobacter

hepaticus in ileum and resolves hepatic steatosis and inflammation

(96). However, these results are insufficient to demonstrate the role

of PCs in NAFLD since vitamin D has extensive functions in vivo

and vitamin D deficiency can affect other organs in addition to

intestine. Contradictorily, PC deletion caused by dithizone alleviates

HFD-induced hepatic lipid accumulation by upregulating the

abundance of Bacteroides (97). Bacteroides promotes the

biosynthesis of L-methionine and tetrahydrofolate alleviating

hepatic steatosis (98, 99). These inverse results suggest that more

studies should be conducted to confirm the role of PCs in NAFLD.

Mouse alcoholic hepatitis (AH) model is established with

alcohol gavage, whereas the effect of alcohol on PCs is varied

among different parts of gastrointestinal tract. The patients with

massive alcohol stimulation display the enhanced expression of

HD5 and HD6 in metaplastic PCs as well as the activation of Wnt

signaling in antrum (100). Chronic alcohol treatment dramatically

boosts the number of PCs in the proximal small intestine (63).

However, this effect of alcohol is reversed in ileum since the reduced

PC granules and AMP expression are observed in the ileum from

alcohol-treated mice (101). In addition, AH patients exhibit the

elevated plasmatic REG3a level which is further boosted in AH

patients died within 30 days (102). REG3a secreted by PCs can

maintain intestinal barrier integrity, and its translocation to blood

indicates the changed intestinal permeability. Plasmatic REG3a
level is correlated with AH severity, hepatic bacterial translocation

and inflammation in AH patients, suggesting that REG3a could be

regarded as a potential biomarker of AH (102). The involvements of

PCs in AH are further confirmed by the facts that a-defensin
deficiency and zinc deprivation aggravates intestinal disorders and

hepatic inflammation in alcohol-treated mice.

LC is another relatively grievous liver disease. LC patients

exhibit the decreased expression of a-defensins and increased

plasmatic level of LPS (103). Notably, the a-defensin expression

is lower in decompensated LC patients than in compensated LC

patients (103). The abnormality of a-defensin leads to hepatic

bacterial translocation in LC patients (104). Similarly, hepatic

bacterial translocation and the reduced AMP expression are

observed in LC rats (105). Recent study has reported that PC

disruption is associated with the impaired production of hepatic

25-hydroxyl vitamin D in LCmice, and the loss of intestinal vitamin

D receptor aggravates the severity of LC (106). These studies

highlight the importance of intestine-liver axis in systematic

homeostasis maintenance. HD5 administration and fecal

microbiota transplantation mitigate the severe symptoms in LC

mice (106). In addition to these major liver diseases, the

involvements of PCs in liver are also verified by PC metaplasia in

uncommon cystadenomas of liver and extrahepatic bile ducts (107).

The decreased AMP expression and enhanced bacterial

translocation occur in rats with acute liver failure as well (108).

These findings suggest that PCs can secrete AMPs limiting bacterial

translocation to alleviate liver diseases (Figure 1), highlighting a

potential role of PCs in the prevention of liver disease.
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PCs in acute pancreatitis

AP is a potentially lethal disease characterized by its

unpredictability and high incidence (109). The meta-analysis has

revealed that the global incidence of AP has increased in the late

20th and the early 21st century, particularly in North America and

Europe (110). AP patients exhibit the defects in PC number and AMP

expression, and similar phenomenon is observed in experimental AP

mice and rats (20, 111). In AP rats, intestinal microbiota disorders and

PC disruption may be the reasons for the compromised intestinal

epithelial barriers, and there is a negative correlation between

Escherichia-Shigella level and lysozyme expression (111).

Hypertriglyceridemia (HTG) is a common risk factor of AP, and it

results in approximately 10% incidence of AP attack (112). HTG

worsens the intestinal mucosa permeability and AMP expression in AP

rats. To examine the role of PCs in AP pathogenesis, dithizone is

utilized to disturb PCs in AP mice and rats. Dithizone-induced PC

disruption in AP rats triggers severe inflammation through several

mechanisms such as ER stress activation, intestinal microbiota

alteration and short-chain fatty acids reduction (113, 114). Long-

term (2 weeks) deletion of PCs by dithizone exacerbates the

inflammation in pancreas and ileum from AP mice, and it leads to

an increase in the pathogenic Helicobacter and a decrease in the

probiotic Blautia (20). Although TNF-a from dithizone-treated PCs

has been proved beneficial to intestinal cell proliferation, PCs

themselves seem to be more important to intestinal homeostasis in

AP. Notably, lysozyme administration mitigates the disorders in

pancreas, ileal mucosa and intestinal microbiota in AP mice with

dithizone treatment. After receiving transplant of feces from lysozyme-

treated mice, antibiotic-treated AP mice exhibit the improved

symptoms in pancreas and ileum, while transplant of feces from

dithizone-treated mice has a reverse effect on the symptoms,

suggesting the involvement of PCs in AP via intestinal microbiota

regulation (20). These studies suggest that stabilizing PCs and

microbiota could be a feasible strategy for the therapy of AP (Figure 1).
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PCs in graft-vs-host disease

After allogeneic hematopoietic stem cell transplantation,

GVHD is a frequent complication due to the immune reaction of

allogeneic T cells in transplant against host antigens (115). The

allogeneic T cells instinctively attack host intestinal cells, mainly

including ISC, goblet cells and PCs (115). The reduced PC number

in GVHD patients is correlated with clinical severity and nonrelapse

mortality (21). Similar to AH, the level of serum REG3a, a specific
GVHD biomarker, is boosted and also correlated with nonrelapse

mortality in GVHD patients, whereas the expression of REG3a in

small intestine is reduced (116). Therefore, whether there are

metaplastic PCs in other sites such as stomach and colon of

GVHD patients should be examined in the future work. The

patients with severe GVHD (stage 2-4) display lower expression

of a-defensins and REG3a in small intestine, while higher

expression of them in large intestine, compared to mild GVHD

patients (stage 0-1) (117). In GVHD, recipient single nucleotide

polymorphisms (SNPs) in DEFA5 (gene for HD5) are involved in

GVHD pathogenesis. It is identified that DEFA5 rs4415345G and

rs4610776A can effectively prevent GVHD stage 2-4 (118). DEFA5

rs4415345G elevates the abundance of intestinal Odoribacter

splanchnicus (a butyric acid-producing bacterium), which may

decrease the incidence of GVHD stage 2-4 (119). Odoribacter

splanchnicus can inhibit the production of inflammatory

cytokines (120), suggesting the fact that DEFA5 rs4415345G

possesses strong anti-inflammatory activity. GVHD mice exhibit

the decreases in AMP expression and fecal cryptdin-1 level (121,

122). The reduced a-diversity and abundance of Escherichia coli are
observed in GVHD mice (121, 122). In addition, the level of

Escherichia coli is enhanced in MLN and liver from GVHD mice,

and antibiotic treatment significantly alleviates the severity of

GVHD (122) (Figure 1).

In view of the crucial role of PCs in GVHD, treatments targeting

PCs may be effective methods to attenuate GVHD severity. This
FIGURE 1

Paneth cells in systemic diseases involving bacterial translocation. Paneth cells are impaired in systemic diseases such as liver disease, acute
pancreatitis, and graft-vs-host disease. Paneth cell disruption results in mucosal penetration by intestinal bacteria. The bacterial translocation to
systemic organs aggravates the disease severity eventually.
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hypothesis is confirmed by direct REG3g or cryptdin-4

supplementation and IL-22 treatment (in a REG3g-dependant
manner) (116, 123). R-Spondin1, a Wnt signaling agonist, can

promote PC differentiation to relieve GVHD (123). A decrease in

glucagon-like peptide 2 (GLP-2) derived from intestinal L cells is

observed in GVHD patients and mice, and teduglutide (a GLP-2

agonist) treatment facilitates PC regeneration, thus benefiting AMP

expression and microbiota control against GVHD (124). In contrast

to the enhanced level of IFN-l inducing PC necroptosis in IBD,

IFN-l in GVHD has no effect on PCs, suggesting the ambiguous

role of IFN-l on PCs under different conditions (125). The novel

therapeutic strategies on PCs or AMPs could be effectively applied

in GVHD treatment.
PCs in diabetes

Diabetes serves as a widespread danger to public health, and the

morbidity of diabetes is dramatically ascending all over the world.

Diabetes is associated with insufficient insulin secretion and insulin

resistance (126). Increasing evidence has demonstrated that diabetic

patients are susceptible to intestinal pathogen infections (127–129).

However, the alterations of PC-derived AMPs in diabetic mice are

different in several studies. On one hand, streptozotocin (STZ)-

induced diabetes impairs AMP expression in both proximal and

distal small intestine, thus leading to the increased bacterial burden

and lowered bactericidal activity in intestine (130). The deficiency

of endogenous insulin may inhibit AMP expression in diabetic mice

since exogenous insulin treatment restores AMP expression (130).

On the other hand, STZ-treated mice display enhanced mRNA and

protein levels of lysozyme, which attributes to the impaired signal

transduction of Notch1/NICD in the small intestine (131). PC

number is boosted in small intestine from diabetic mice, and the

mechanisms involve the inactivation of Notch/Hes1 signal pathway

in ISCs and the activation of insulin receptor-A isoform in PCs

(130–132). Further investigation has revealed that the number of

Lgr5 positive ISCs is increased in STZ-induced diabetic mice, and

Lgr5 positive ISCs isolated from diabetic mice can differentiate into

larger proportion of PC lineage compared to those isolated from

control mice (133). In addition, insulin resistance induced by S961,

an effective antagonist of insulin receptor, impairs AMP expression

and granule integrity in PCs, thus leading to the enhanced intestinal

permeability and the occurrence of low-degree inflammation (134).

Although diabetes involves PCs, the role of PCs in diabetes is still

indistinct and requires massive investigation in clinical trials and

mice with PC deletion or AMP treatment.
PCs in obesity

Obesity has become a worldwide epidemic during the last few

decades. The current prevalence of obesity in America is 18.5%

among youth and 39.6% among adults (135), and that in Europe is

15.3% to 25.6% among youth (136). Obese people tend to exhibit

PC abnormality (64, 137). HFD-induced obesity triggers PC defects,

microbiota composition alterations and low-grade intestinal
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inflammation in mice, and the alterations of PCs and microbiota

occur prior to intestinal inflammation (138).

PCs possess abundant ER and high protein biosynthesis activity

to support their highly secretory nature, and PCs are susceptible to

ER stress triggered by the accumulation of misfolded or unfolded

proteins in ER (139). ER stress can induce UPR activation

facilitating the restoration of ER homeostasis. Obese people

display the reduced protein levels of HD5 and lysozyme and the

elevated gene expression of them (137). Notably, the activated UPR

and ER stress are present in the jejunal PCs from obese people, and

UPR activation is negatively correlated with lysozyme level,

suggesting that the impaired protein biosynthesis of AMPs is the

reason for the discordance between AMP protein level and mRNA

expression (137).

Bile acid plays an important role in HFD-induced PC defects.

HFD treatment enhances the level of bile acid, and bile acid can

bind to G protein-coupled bile acid receptor (TGR5) highly

expressed on the membrane of PCs (140). The elevated bile acid

induce ER stress to impair PC functions and AMP expression,

which can be rescued by pretreatment with ER stress inhibitor

4PBA or bile acid binder cholestyramine (140). Certain bacteria,

such as Clostridium spp., are major sources of deoxycholic acid

(DCA) and lithocholic acid (LCA) that are enriched in the ileum of

western diet or HFD-treated mice (64, 140). Clostridium-mediated

DCA production activates farnesoid X receptor (FXR) pathways in

PCs and myeloid cells, which leads to PC defects (64).

Plasma neurotensin (NT), an enteroendocrine cell-derived

hormone, is also involved in HFD-induced PC defects since NT

deficiency alleviates the impaired PC function in HFD-treated mice

(141). NT binding to NT receptor 1 (NTR1) activates PKCt/l to

inhibit the nuclear translocation of p65, thus impairing AMP

expression. Besides, the deletion of intestinal epithelial insulin

receptor decreases the elevated AMP mRNA expression induced

by HFD treatment, but it has no effect on the number of lysozyme

positive cells in jejunum (142). These findings suggest the impaired

function of PC under obese condition (Figure 2). HD5 treatment

reduces circulating cholesterol and fatty acids in obese mice (143),

implying the feasibility that utilizes AMP as a complemental

method for obesity therapy.
PCs in ischemia reperfusion

IR is a serious condition of prolonged inadequate organic blood

supply and subsequent sudden restoration of blood flow, and IR

causes catastrophic and deadly injury to many organs such as

intestine, liver and kidney (144, 145). Approximately 30% deaths

of ischemic patients attribute to IR injury (146). UPR activation and

PC apoptosis induced by ER stress are observed during intestinal IR

injury in humans and rats, and PC disruption by dithizone further

exacerbates intestinal epithelial permeability and inflammation in

the intestine of IR rats (147). IR injury dramatically induces PC

degranulation, and IL-17A in PC granules is responsible for multi-

organ injury during IR. IL-17A neutralization or PC deletion

protects organs from inflammation and injury induced by IR (6,

148). The detrimental role of PC-derived IL-17A in IR is achieved
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by macrophage-mediated transportation (149). PC hyperplasia

induced by TLR9 deletion worsens multi-organ inflammation and

injury after IR in an IL-17A-dependant manner (150, 151). As

expected, intravenous treatment of IL-17A neutralizing antibody

effectively alleviates IR-induced severe inflammation and injury in

TLR9 knockout mice (150). The expression of tyrosine hydroxylase,

a key enzyme of norepinephrine (NE) synthesis, is detected in

human and mouse PC. NE release is driven by IL-17A in PCs (152).

NE activates intestinal macrophages and Kupffer cells to damage

multiple organs after IR, and the block of a-adrenergic receptor

significantly alleviates IR-induced injury in mice (152). The

modulation of PC-derived IL-17A and NE could have

therapeutic value for the treatment of IR-mediated systemic

complications (Figure 3).
PCs in COVID-19

COVID-19 caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) has rapidly risen to a threatening

and lethal epidemic worldwide (153). Although COVID-19 is a

respiratory disease characterized by cough and severe pneumonia,

gastrointestinal dysbiosis such as diarrhea and abdominal pain
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also occurs in COVID-19 patients (154, 155). SARS-CoV-2

infection inhibits ZO-3 and claudin-1 expression to impair

intestinal epithelial integrity (156). PCs express certain genes

related to SARS-CoV-2 entry, such as angiotensin-converting

enzyme 2 (ACE2) and serine protease transmembrane protease

2 (TMPRSS2), thus rendering PCs susceptible to SARS-CoV-2

infection (157). SARS-CoV-2 mainly targets enterocytes and PCs

in the intestine (156). SARS-CoV-2 infection increases PC number

in the small intestine of rhesus macaques at 7-10 dpi (158). PCs

exhibit the activated gene expression of factors related to cell

cytoskeleton organization and epithelial cell differentiation at 3-7

dpi, which may contribute to the enhanced expressions of ZO-1

and claudin-1 at 10 dpi, suggesting the important role of PCs in

intestinal epithelial repair during SARS-CoV-2 infection (158)

(Figure 4). However, PC-mediated epithelial repair leads to rectal

viral shedding accelerating viral transmission (158). In addition,

aging PCs disturb intestinal ISC functions, thus indirectly

impairing the differentiation of M cells (159). This may explain

why the olds are more susceptible to COVID-19 than the

youths (160).

HD5 plays a critical role in the inhibition of SARS-CoV-2

infection (Figure 4). As the most abundant a-defensin secreted by

PCs, HD5 can bind to the ligand-binding domain of ACE2 with a
FIGURE 2

Paneth cells in obesity. Paneth cell disruption in obese individual is under multiple control. NT derived from enteroendocrine cells inhibits AMP
expression through inducing PKCt/l that suppresses the translocation of NF-kB into nucleus. The elevated bile acid provided by Clostridium spp. binds
to TGR5 to induce ER stress in Paneth cells. In addition, bile acid activates FXR in Paneth cells and myeloid cells, which results in Paneth cell defects.
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high affinity (161). In Caco-2 cells, HD5 pretreatment decreases

SARS-CoV-2 binding to ACE2, suggesting the competition for

ACE2 between HD5 and SARS-CoV-2 (161). It is worth noting

that HD5 has no protective effect on SARS-CoV-2 infection when

provided post-infection or as precursor form (162). These studies

suggest the beneficial role of PCs in COVID-19. More information

about the effect of AMPs (from PCs or not) on SARS-CoV-2 is

recently discussed by Ali et al. in detail (163).
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PCs in portal hypertension

Portal hypertension (PH) is associated with the increased portal

pressure induced by elevated resistance of blood stream (164).

Blocking intestinal angiogenesis has a beneficial effect on the

alleviation of PH (165). The reduced intestinal angiogenesis and

PC number in GF mice imply a potential association between PCs

and PH (166). PC deletion by dithizone dramatically decreases the
FIGURE 3

Paneth cells in ischemia/reperfusion. Ischemia/reperfusion triggers robust degranulation in Paneth cells. IL-17A release from Paneth cells directly
leads to inflammation and injury of organs such as small intestine, liver and kidney. Furthermore, IL-17A in Paneth cells promotes the expression of
NE. NE binds to its receptor on macrophages and Kupffer cells to induce tissue inflammation and injury.
FIGURE 4

Paneth cells in COVID-19. In Paneth cells, SARS-CoV-2 infection triggers the expression of genes related to inflammation and epithelial repair, and it
enhances the number of Paneth cells at later stage. In enterocytes, SARS-CoV-2 infection leads to the conversion from degradation to regeneration
over time. Notably, Paneth cell-derived HD5 binds to ACE2 to prevent SARS-CoV-2 infection.
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angiogenesis in small intestinal homeostasis (167). Mouse PH

model is established with partial portal vein ligation (PPVL).

Hassan et al. firstly reported that portal pressure and

portosystemic shunts are weakened in PC-deleted mice after

PPVL (168). PC disruption weakens intestinal and mesenteric

angiogenesis in PPVL mice, which attributes to the reduced

expression of angiogenic genes (168). Furthermore, intestinal

microbial signals are responsible for the induction of angiogenic

factors derived from PCs, thus promoting the angiogenesis

of endothelial cells (168). In addition to angiogenesis,

lymphangiogenesis is also supported by PCs (169). During PPVL,

PCs secrete lymphangiogenic factors to facilitate intestinal and

mesenteric lymphangiogenesis in response to intestinal microbial

signals (169). These findings suggest that PC could be a potential

target for therapeutic interventions of PH.
Therapeutic strategies targeting PCs
in various diseases

As mentioned above, PC defects are involved in many diseases

within intestine and systemically, which worsens the severity of

diseases. However, PC performance can be different in these

diseases (Figure 5), suggesting that the therapeutic strategies should

be also flexible. Therapeutic strategies targeting PCs mainly include

three aspects: PC protection, PC-derived inflammatory cytokine

elimination, and substituting AMP treatment.

PC protection is aimed to restore PC homeostasis affected by

many factors such as mitochondrial abnormalities, ER stress, and

cell death. Mitochondrial abnormalities are observed in PCs of CD

patients (33). Mito-Tempo (a mitochondrial-targeted antioxidant)

treatment improves the inflammatory response, metabolism,
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apoptotic, and epithelial barrier function in the ileal biopsies from

CD patients (33). ER stress in PCs is generally induced in many

diseases, which leads to the abnormality of PCs (170). Efforts to

inhibit ER stress could be conducted to alleviate disease severity. In

obese individuals, bile acid is also an alternative target due to its

ability to trigger ER stress in PCs (140). Excessive ER stress can

induce PC apoptosis (171), thus lessening the number of PCs.

Besides, several risk factors in CD, such as IFN-l and ATG16L1, are

able to induce PC necroptosis (56, 58). Uncontrolled cell death of

PCs not only leads to the loss of PCs directly, but also induces the

occurrence of intestinal inflammation. Therefore, methods to

preserve the functional PCs could be an effective therapy, such as

the administration of drug inhibiting necroptosis and alleviating

ER stress.

Although PCs play an important role in intestinal homeostasis,

the functional PCs seem to be detrimental to health in some cases.

IL-17A and IL-1b are two pro-inflammatory cytokines in the

granules of PCs. IR triggers the degranulation of PCs and the

subsequent release of IL-17A responsible for multi-organ injury (6,

148). IL-17A neutralization or PC deletion effectively attenuates IR-

induced injury (148), suggesting the feasibility of blocking the

production of IL-17A in IR. In SIV infection, IL-1b production in

PCs is rapidly conducted, and it is prior to AMP expression in PCs

and type 1 IFN response in intestinal mucosa, suggesting that PC-

derived IL-1b may be the key origin of inflammation (4). The

presences of activated IL-1b and caspase-1 (a key component of

pyroptosis) is also observed in PCs after irradiation (172). However,

whether IL-1b neutralization or PC pyroptosis inhibition could

weaken the amplification of intestinal inflammation in these

diseases still remains unclear.

Since PCs can regulate the composition of intestinal microbiota via

AMPs, these diseases impairing PCs generally accompany with the

disorders in microbiota. For example, the abundances of pathogenic

bacteria Ruminococcus gnavus and adherent-invasive Escherichia coli

are elevated in ileal lumen from CD patients (41, 173), and the

increased pathogenic bacteria Helicobacter and the reduced probiotic

bacteria Blautia are observed in the ileocecum of AP mice (20). To

improve the disordered microbiota and disease severity, fecal

microbiota transplantation has been proved feasible according to the

results from research on AP mice (20). PC disruption in combination

of microbiota disorders results in bacterial translocation aggravating

the severity of NEC, AH and AP (68, 101, 112). In most diseases

involving PC disruption, PC-derived AMP treatment significantly

alleviates the symptoms of diseases, suggesting the importance of

PC-derived AMPs in controlling intestinal microbiota. Furthermore,

utilization of antibiotic to destroy the intestinal microbiota is another

effective strategy on GVHD treatment (122). However, antibiotic is not

applicable to NEC since antibiotic-induced PC disruption renders

intestine susceptible to NEC attack in newborns (78).
Conclusion

PCs are known as the guardians of the small intestine. In this

paper, we introduce the multifaceted involvements of PCs in

intestinal and extraintestinal diseases. Large amounts of systemic
FIGURE 5

Differences in PC performance in various diseases. Paneth cells
exhibit different responses to diseases. The most characteristic
features of Paneth cells under different pathological conditions are
summarized in the figure.
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diseases such as CD, NEC and COVID-19, are associated with PC

disruption. PCs are involved in these diseases via various

mechanisms. PCs possess numerous risk genes related to CD,

such as ATG16L1 and XBP1. In addition, PC-mediated limitation

of intestinal bacterial translocation is of importance for the

prevention or alleviation of diseases. However, the role of PCs in

IR is different from other diseases. The presence of PC-derived IL-

17A aggravates the multi-organ injury induced by IR, and the

removal of IL-17A or PCs has a protective effect in IR. In COVID-

19, PCs can inhibit the entry of virus and promote intestinal

regeneration to resist SARS-CoV-2 infection. Except for IR, AMP

treatment has a beneficial effect on all diseases involving PCs. All in

all, strategies to stabilize PCs could be developed to effectively

intervene these diseases within intestine and systemically.
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