
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Rajeev Nema,
Icahn School of Medicine at Mount Sinai,
United States

REVIEWED BY

Xiaocong Pang,
Peking University, China
Rohit Saluja,
All India Institute of Medical Sciences,
Bibinagar, India

*CORRESPONDENCE

Changhua Zhang

zhchangh@mail.sysu.edu.cn

Mingyu Huo

mingyu9318@163.com

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 06 December 2022

ACCEPTED 16 June 2023
PUBLISHED 29 June 2023

CITATION

Zhao Z, Mak TK, Shi Y, Huang H, Huo M
and Zhang C (2023) The DNA damage
repair-related lncRNAs signature predicts
the prognosis and immunotherapy
response in gastric cancer.
Front. Immunol. 14:1117255.
doi: 10.3389/fimmu.2023.1117255

COPYRIGHT

© 2023 Zhao, Mak, Shi, Huang, Huo and
Zhang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 29 June 2023

DOI 10.3389/fimmu.2023.1117255
The DNA damage repair-related
lncRNAs signature predicts the
prognosis and immunotherapy
response in gastric cancer

Zidan Zhao1†, Tsz Kin Mak1†, Yuntao Shi1†, Huaping Huang1,
Mingyu Huo1,2* and Changhua Zhang1,2*

1Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China,
2Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of
Sun Yat-sen University, Shenzhen, Guangdong, China
Background: Gastric cancer (GC) is one of the most prevalent cancers, and it has

unsatisfactory overall treatment outcomes. DNA damage repair (DDR) is a

complicated process for signal transduction that causes cancer. lncRNAs can

influence the formation and incidence of cancers by influencing DDR-related

mRNAs/miRNAs. A DDR-related lncRNA prognostic model is urgently needed to

improve treatment strategies.

Methods: The data of GC samples were obtained from The Cancer Genome

Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. A total of 588

mRNAs involved in DDR were selected from MSigDB, 62 differentially

expressed mRNAs from TCGA-STAD were obtained, and 137 lncRNAs were

correlated with these mRNAs. Univariate Cox regression and least absolute

shrinkage and selection operator (LASSO) regression analyses were used to

develop a DDR-related lncRNA prognostic model. Based on the risk model,

the differentially expressed gene signature A/B in the low-risk and high-risk

groups of TCGA-STAD was identified for further validation.

Results: The prognosis model of 5 genes (AC145285.6, MAGI2-AS3, AL590705.3,

AC007405.3, and LINC00106) was constructed and classified into two risk

groups. We found that GC patients with a low-risk score had a better OS than

those with a high-risk score. We found that the high-risk group tended to have

higher TME scores. We also found that patients in the high-risk group had a

higher proportion of resting CD4 T cells, monocytes, M2 macrophages, resting

dendritic cells, and resting mast cells, whereas the low-risk subgroup had a

greater abundance of activated CD4 T cells, follicular helper T cells, M0

macrophages, and M1 macrophages. We observed significant differences in the

T-cell exclusion score, T-cell dysfunction, MSI, and TMB between the two risk

groups. In addition, we found that patients treated with immunotherapy in the

low-RS score group had a longer survival and a better prognosis than those in the

high-RS score group.
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Conclusion: The prognostic model has a significant role in the TME,

clinicopathological characteristics, prognosis, MSI, and drug sensitivity. We also

discovered that patients treated with immunotherapy in the low-RS score group

had a better prognosis. This work provides a foundation for improving the

prognosis and response to immunotherapy among patients with GC.
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Introduction

Gastric cancer (GC) is one of the most prevalent cancers

worldwide; it ranks fourth in incidence (5.6%) and fifth in

morbidity (7%) among all cancers (1). Early GC can be resected

endoscopically, and advanced GC is treated with standard D2

radical surgery, adjuvant/neoadjuvant chemotherapy, targeted

therapy, and immunotherapy; however, the overall treatment

outcome of GC remains unsatisfactory due to the difficulty in

detecting early GC and the high incidence of distant metastases

in advanced GC (2). Therefore, more effective diagnostic,

prognostic, and therapeutic sensitivity biomarkers are desired.

DNA damage repair (DDR) is a complicated process for signal

transduction that plays a significant part in ensuring genomic

stability. DNA damage may be caused by both external and

endogenous hazardous chemicals (such as heavy metals, ionizing

radiation, and oxygen radicals) (3). Both nitrite and Helicobacter

pylori have been identified as risk factors for GC. The formation of

nitrous acid or N-nitrosamine in the stomach by nitrite and

infection with Helicobacter pylori can induce DNA damage in

gastric epithelial cells (4), leading to activation of proto-oncogenes

or inactivation of tumor suppressor genes. To protect genomic

integrity, cells have evolved a remarkable DDR system. Previous

studies have identified DDR mechanisms, including direct reverse

repair, base excision repair, nucleotide excision repair, mismatch

repair, and homologous recombination (HR)/nonhomologous end

joining (NHEJ) double-strand break (DSB) repair (5). More than

500 related proteins are engaged in DDR-related pathways.

According to previous research, BRCA2, ATM, RAD51, and ATR

mutations in the DRR pathway are prevalent in GC and are strongly

associated with overall survival (OS) (6–8). Additionally, the DDR-

related pathway is crucial for regulating the treatment response of

cancer (9), suggesting that DRR-related genes have a significant role

as diagnostic, prognostic, and therapeutic biomarkers for GC.

Long noncoding RNAs (lncRNAs) are key regulators at the

transcriptional and posttranscriptional levels of the genome and are

dysregulated in a variety of malignant tumors, making them useful

as diagnostic, prognostic, and therapeutic biomarkers (10). Recent

studies have demonstrated that lncRNAs can influence the

formation and incidence of cancers by influencing DDR-related

mRNAs/miRNAs (11). In nasopharyngeal cancer tissues, linc00312

was dramatically downregulated, and patients with high expression
02
of linc00312 had longer OS and improved short-term radiation

effectiveness (12). Mechanistically, linc00312 binds to DNA-PKcs

and suppresses the phosphorylation of the AKT-DNA-PKcs axis,

thereby influencing the NHEJ repair process. The lncRNA

SLC26A4-AS1 suppresses the expression of several DSB repair

genes, and its low expression level is significantly associated with

poor prognosis in thyroid cancer patients (13). Tumour suppressors

of the miR-34 family (miR-34a, miR-34b, and miR-34c) play a

crucial role in the DNA damage response (14). Another study used

dynamic Boolean network analysis and revealed that lncRNA GAS5

regulates miR-34c by targeting E2F1 and affects the ATM/p38

MAPK signaling pathway to inhibit GC proliferation (15).

However, few lncRNAs interacting with DRR-related genes have

been studied in GC.

From The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) databases, we obtained transcriptome,

clinicopathological, and OS data for GC in this research. The

Molecular Signatures Database (MSigDB) was collected for a total

of 588 genes involved in DDR. Differential analysis and correlation

analysis were used to establish the coexpression network of

lncRNAs-mRNAs involved in DDR. The predictive efficacy of a

GC prognosis model based on five DDR-related lncRNAs was

validated using an internal cohort, an external cohort, and cluster

analysis. In addition, comprehensive bioinformatics studies were

carried out to investigate the differences between high- and low-risk

groups in immune infiltration, chemotherapy, targeted medicines,

and immunotherapy sensitivity. Finally, the expression levels of

these five lncRNAs in GC cell lines and tissues were confirmed.

This research provides a glimpse into improving the prognosis

of GC patients and expanding the understanding of DDR-

related lncRNAs.
Method

Data collection

Transcriptome sequencing data and corresponding clinical

information were collected for stomach adenocarcinoma (STAD)

samples from TCGA (https://portal.gdc.cancer.gov/), including

tumor samples (n = 375) and normal samples (n = 32). GEO

(https://www.ncbi.nlm.nih.gov/geo/) was used to gather tumor
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samples sequencing data, including those from the GSE15459

(n=192), GSE26253 (n=432), GSE26901 (n=109), GSE26899

(n=93), and GSE84433 (n=357) cohorts with detailed characteristic

information and survival. The IMvigor210 cohort (immunotherapy

cohort) expression data and clinical information were obtained from

http://research-pub.gene.com/IMvigor210CoreBiologies/. The raw

data downloaded above were normalized for subsequent analysis

using the “Deseq2” package (16).

In addition, DDR-related genes were downloaded by searching

for “DNA damage repair” in MSigDB (http://www.gsea-

msigdb.org/msigdb/MSigDB/index.jsp).
Identification of DDR-related lncRNAs and
the mRNA−lncRNA coexpression network

From the “GOBP DNA REPAIR” project in the MSigDB

database, a total of 588 DDR-related mRNAs were obtained

(Supplemental Materials Table 1). The TCGA-STAD gene

expression matrix was divided into an mRNA expression matrix

and a lncRNA expression matrix using the Perl scripts and the

“human.gtf” annotation file. Using the “limma” package in R (version

4.1.1) for differential analysis (17), 62 differentially expressed DDR-

related mRNAs were identified from 588 DDR-related mRNAs (p<

0.05, |logFC| > 1.5) based on the TCGA-STAD mRNA expression

matrix (Supplemental Materials Table 2). Based on these 62

differential DDR-related mRNAs, mRNA-lncRNA correlation

analysis identified 137 DDR-related lncRNAs (P< 0.001, |Pearson

correlation coefficient| > 0.5) (Supplemental Materials Table 3).
Construction and validation of a
DDR-related lncRNA risk model in
the TCGA-STAD internal cohort

A total of 371 TCGA-STAD patients were randomly divided

into a training group (n = 187) and a test group (n = 184) at a ratio

of 1:1 to validate the DDR-related lncRNA signature. The R

“glmnet” package was used to identify the core prognostic

lncRNAs using the LASSO (least absolute shrinkage and selection

operator)-Cox regression analysis, and the value of the penalty

parameter (l) was selected based on the lowest partial likelihood

deviance using 10-fold cross-validation (18). When lambda (l) was
minimized, we obtained lasso models for the five prognostic

lncRNAs and their corresponding model coefficients, which were

multiplied by the coefficients and the corresponding lncRNA

expression to calculate risk scores and conduct subsequent

analyses. The calculation formula is as follows:

Risk score =o
n

i=1
CoefDDRrlncRNA  �  ExpDDRrlncRNA

The CoefDDRrlncRNA is the risk coefficient of DDR-related

lncRNA used to construct the formula, whereas ExpDDRrlncRNA is

the expression of DDR-related lncRNA in the formula. Then, we

calculated each patient’s risk score. According to the median risk
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score, patients were categorized as high-risk (risk score more than

the median) or low-risk (below the median risk score). Kaplan

−Meier analysis was utilized to compare the survival rates of the

high- and low-risk groups. To evaluate the sensitivity and specificity

of the signature, time-dependent receiver operating characteristic

(ROC) analysis was performed using the “survivalroc” package (19).

Calibration curves were generated to assess whether the predicted

survival rates were consistent with the actual survival rates (20). All

analyses were performed in the TCGA-STAD internal training

group, test group, and all samples. The independence of DDR-

related lncRNA signature on OS was further explored by univariate

and multivariate Cox proportional risk regression (CPHR) analyses

using clinical information (age, gender, grade, stage, survival time,

survival status) combined with Risk score in TCGA-STAD.
Nomogram

Based on R (version 4.1.1), we used the calibrate functions of

“rms” package (http://CRAN.R-project.org/package=rms) to

construct a nomogram to predict 1-year, 3-year, and 5-year OS

rates in TCGA-STAD. In the nomogram scoring system, each

variable is assigned a score, and the total score for each sample is

calculated by summing the scores of all variables (21). We evaluated

the predictive ability of the 1, 3, and 5-year models using the

Kaplan-Meier method, constructed calibration curves, and assessed

the concordance between the predicted OS rate and the actual

observed OS rate. The reliability of the model was evaluated using

decision curve analysis (DCA) (22).
Consensus clustering

Consensus clustering in unsupervised learning is also a widely used

classification method in cancer research. The “ConsensusClusterPlus”

package was used to determine the number of clusters and their

stability (23). Five prognostic DDR-related lncRNAs were employed

to identify and categorize molecular subgroups of patients in TCGA-

STAD. Additionally, 1,000 replications were conducted to confirm

categorization stability. To further explore the clinical value of

consensus clustering, associations between genetic subtypes,

clinicopathological characteristics, and risk models were investigated.

In addition, Kaplan−Meier analysis was employed to assess the

differences in survival rates between clusters. Finally, the “ggplot2”

package (24) was used to visualize the differences in clusters of DDR-

related lncRNAs used to construct the prognostic model.
Gene Set Variation Analysis (GSVA)

GSVA is a nonparametric and unsupervised method that is

frequently used to evaluate the biological features of different

subgroups (25). GSVA is a specific type of gene set enrichment

method that evaluates whether different pathways are enriched

across samples by converting the expression matrix of genes
frontiersin.org
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across samples into an expression matrix of gene sets, essentially

investigating the differences between specific gene sets across

samples. GSVA evaluations are usually performed on gene sets

from the MSigDB database, while customized gene sets can also be

analyzed. Based on R (4.1.1), the “GSVA” and “limma” packages

were utilized to search and show the differential gene sets between

the high- and low-risk groups (|logFC| > 0.2 and P< 0.05).
Validation of DDR-related risk model in
external cohorts

External GC cohorts (GSE15459, GSE26253, GSE26901,

GSE26899, and GSE84433) used as validation sets did not contain

all DDR-related lncRNAs used for establishing risk score. It is an

effective analysis method to further establish an alternate scoring

system by GSVA to identify the differential gene sets of high and low-

risk groups (26). Based on the risk model established by DDR-related

lncRNAs, the differentially expressed gene signature A/B in the low-

risk and high-risk groups of TCGA-STAD was identified to further

validate the clinical application value of the risk model. Gene

Signature A is a set of highly expressed genes found in the high-

risk group, whereas Gene Signature B is highly expressed in the low-

risk group. GSVA enrichment analysis was performed to estimate the

enrichment scores of gene signatures A and B in each TCGA-STAD

sample, and the RS score was calculated by subtracting the

enrichment score of gene signature A from the enrichment score of

gene signature B. By analyzing the discrepancies between gene

signature A, gene signature B, and RS score in different risk groups,

as well as the association between RS score and risk score, this

method may be exploited as an alternative risk score method. Finally,

RS score in the external GEO cohorts were calculated, and the Kaplan

−Meier method was used to compare the OS between the high-RS

score group and the low-RS score group.
Estimation of the immune and gene
mutation landscape

CIBERSORT (https://cibersort.stanford.edu/) is a common

algorithm for obtaining cell composition from gene expression

profiles (27). The CIBERSORT method with the LM22 gene

signature was used to calculate the proportion of 22 kinds of

tumor-infiltrating immune cells (TIICs) in TCGA-STAD. We

compared the heterogeneity in immune cell infiltration into the

tumor microenvironment between the high- and low-risk groups.

The “Maftools” R package was used to evaluate mutations in

different Risk score groups (28). Cancer stem cells (CSCs) are a kind

of cell identified in tumor tissues that have been associated with

tumor metastasis, recurrence, and drug resistance (29). CSCs were

characterized by mRNA expression-based Stemness index

(mRNAsi) (30). The One-class logistic regression (OCLR), a

complicated machine learning method that utilizes machine

learning to extract feature sets of transgenes and epigenomes

from untransformed pluripotent stem cells and their progeny, is
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an efficient way to assess the level of cancer differentiation (30).

Using the “TCGAbiolinks” R package in R (version 4.1.1), the

OCLR machine learning method was used to calculate the mRNAsi

of each sample based on the level of its mRNA expression (31).

Using the “limma” package, the correlation between mRNAsi and

Risk score was further analyzed.
Immunotherapy evaluation based on
RS score

Tumor Mutational Burden (TMB) is the number of somatic

mutations in the coding sequence (CDS) region of the longest

transcript sequence per million bases (MB), which includes the total

number of base substitutions and insertion/deletion mutations (32). A

higher TMBmay result in the generation of more neoantigens, raise the

probability of T cell recognition, render immunotherapymore effective,

and be associated with better outcomes with immune checkpoint

inhibitors (ICIs). Microsatellite instability (MSI) refers to the

instability of microsatellite (MS) sequence length due to insertion or

deletion mutations during DNA replication (33). Mismatch repair

(MMR) defects often cause this condition. The mutation information

data of TCGA-STAD was downloaded from the TCGA database,

which included sample information and the corresponding mutant

genes, chromosome locations, mutant bases, mutation types, etc

(Supplemental Materials Table 4). Based on the mutation

information data, the Perl script calculates the TMB of the matching

sample. In addition, we obtained MSI status assessment tables for

various TCGA samples (Supplemental Materials Table 5). The TMB

and MSI status of the two groups of samples with high and low RS

scores were compared by the Wilcox test. In addition, the correlation

between the RS score and TMB was calculated. Tumor Immune

Dysfunction and Exclusion (TIDE, http://tide.dfci.harvard.edu/) can

be applied to identify biomarkers that predict the therapeutic efficacy of

ICIs (34). Higher TIDE prediction scores indicate a greater probability

of immune evasion, indicating that patients are less likely to respond

favorably to ICIs treatment. The T-cell-inflamed score (TIS) can

predict the clinical response to immune checkpoint blockade based

on existing antitumor immunity in the tumor microenvironment

(TME) (35). The TIDE, MSI, T-cell dysfunction, and exclusion

scores were obtained for each TCGA-STAD sample through the

TIDE online database to assess the potential clinical efficacy of

immunotherapy in different RS score groups (Supplemental

Materials Table 6). The Wilcoxon test was applied to compare TIDE,

MSI, and T-cell dysfunction and exclusion scores between different RS

score groups. In addition, the TIS was calculated using the mean log2-

scale normalized expression of the 18 signature genes (Supplemental

Materials Table 7). Using the “timeROC” R package (https://cran.r-

project.org/web/packages/timeROC/), we compared the prognostic

values of the RS score, TIDE, and TIS and performed a time-

dependent ROC curve analysis to obtain AUC. Furthermore, anti-

PDL1 cohort (IMvigor210) samples were classified using the RS score.

The “survival” and “ggplot2” packages were used to plot OS curves,

different degrees of immunotherapy response, and the proportion of

patients with or without response.
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Drug sensitivity analysis

To predict anticancer drug sensitivity in different risk groups,

the anticancer drug dataset was downloaded from the Genomics

of Drug Sensitivity in Cancer (GDSC) website (https://www.

cancerrxgene.org/), and the “oncoPredict” package was applied to

calculate the IC50 of different anticancer drugs in different risk

groups (36). We screened the TCGA-STAD samples for drugs with

a standardized mean IC50<1, as such samples, are considered

effective for the treatment of gastric cancer, and we performed

wilcox-test of drug sensitivity for these drugs in the high- and low-

risk subgroups to determine the varying levels of response to drugs

in patients of different risk groups.
Cell culture and tissue samples

The normal human gastric epithelial cell line GES-1, as well as the

human gastric cancer cell lines AGS, MGC-803, SNU-719, HGC-27,

and MKN-28, are both accessible in our lab. Supplemental Materials

Table S8 provided the major genetic characteristics of the cell lines.

All cell lines were cultured in RPMI-1640 medium (Gibco, Grand

Island, NY, USA) supplemented with 1% penicillin/streptomycin and

10% fetal bovine serum. Cells were grown in 5% CO2 at 37°C. The

experimental cells were in the logarithmic growth phase.

Twenty GC samples and matched adjacent samples from

patients treated at the Seventh Affiliated Hospital of Sun Yat-sen

University were frozen at -80°C. Before undergoing surgery,

every patient submitted a consent letter. The Seventh Hospital of

Sun Yat-sen University’s Ethical Review Committee authorized

this research.
RNA extraction and qRT−PCR validation

TRIzol was used to extract total RNA (Invitrogen). A reverse

transcription kit (TaKaRa) was used to convert the RNA to cDNA.

All operations were carried out by the manufacturer’s instructions.

Fluorescence quantitative PCR equipment (CFX96 Touch, Bio-Rad)

was used to detect the expression of lncRNAs, and the reaction

conditions were carried out according to the operating

instructions of the fluorescence quantitative PCR kit (SYBR

Green Mix, Roche). Quantitative PCR was carried out in three

duplicates per reaction. GAPDH was chosen as the internal
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reference of lncRNAs. The 2-DDCT method was used for data

analysis, DDCt=experimental group (Cttarget-lncRNA-CtGAPDH)-control

group (Cttarget-lncRNA-CtGAPDH). The amplification primer sequences

of each gene and its internal reference are detailed in Table 1.
Statistical analysis

R Studio (R version 4.1.1), GraphPad Prism 6.0 (GraphPad

Tools, San Diego, CA, USA), and PASS 15.0 software were applied

for statistical analysis. Each chapter introduces particular software

packages utilized by R studio. The Wilcox test was used to compare

two groups, one-way ANOVA was used to compare multiple

groups, Pearson correlation analysis was used to determine

correlations, and Kaplan−Meier analysis was used for survival

analysis. Any p< 0.05 was considered statistically significant.
Results

The workflow of the prognostic model analysis is illustrated in

Figure S1. This study included 1590 samples, including normal

samples from TCGA-STAD (n=32) and GC samples from TCGA-

STAD (n=375), as well as GC samples from GSE15459 (n=192),

GSE26253 (n=432), GSE26901 (n=109), GSE26899 (n=93), and

GSE84433 (n=357).
Identification of DDR-related lncRNAs
in GC

The DDR-related gene set containing 588 genes was selected

from MSigDB. After differential analysis of these genes in TCGA-

STAD, 62 differentially expressed DDR-related genes were

identified (Figure 1A), and mRNA−lncRNA coexpression

network analysis was conducted (Figure 1B). Five DDR-related

lncRNAs with prognostic values were identified using univariate

analysis (Figure 1C). AC145285.6, AC007405.3, and LINC00106

were considered protective factors for GC prognosis, whereas

MAGI2-AS3 and AL590705.3 served as risk factors. Kaplan-Meier

analysis showed that patients with high expression of AC007405.3,

AC145285.6, and LINC00106 had a good prognosis, while those

with high expression of AL590705.3 and MAGI2.AS3 had a poor

prognosis (Figure S2). The expression of these five chosen DDR-
TABLE 1 Real-time quantitative PCR primer sequences used in this study.

DDR-related lncRNAs Forward (5′-3′) Reverse (5′-3′)

MAGI2-AS3 TCTTCAAGAGCCAGGGACAG TGCAGCTCAAACTCTCCAGA

LINC00106 AGTGGTCACCTGAGATGGAGCAG CGTCTGTCTTACGGCACGAAGC

AC145285.6 AGTGGGAGAGAATCAAGTCGGTGAA GGCTTCTAAGGCGGTTTGAGACCTT

AL590705.3 AGAGATTTAATTGTGGTTCTGCCAAGGA AGTTTTGGTTACAGGCTCCCAAGTG

AC007405.3 CCAGCCTTTTGGCTAAGATCAAGTGT AGGAGATGACTACAGGAAGGGCTTT
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related lncRNAs in TCGA-STAD was further plotted using a

heatmap and box line diagram (Figures 1D, E), and it was

revealed that their expression was significantly different;

AC145285.6, AL590705.3, AC007405.3, and LINC00106

expression was increased in GC tissues, but MAGI2-AS3

expression was decreased. The Sankey diagram described the

coexpression of these prognostically significant DDR-related

lncRNAs linked to their respective mRNAs (Figure 1F).
Construction of DDR-related lncRNA
prognostic signature

The prognostic model for GC based on these five DDR-related

lncRNAs was built by univariate Cox regression and LASSO regression

(Figure S3). The formula is described in the method chapter, and the
Frontiers in Immunology 06
specific coefficients are shown in Table 2. In TCGA-STAD, GC patients

were separated into a training group and a test group. Using the

formula, each patient’s risk score was calculated, and patients were

classified into high-risk and low-risk groups (Figure 2A). More deaths

were observed in the high-risk group (Figure 2B), and a heatmap

revealed the distribution of these five lncRNAs in the different risk

groups (Figure 2C). AC145285.6, AC007405.3, and LINC00106 were

higher in the low-risk group, whereas MAGI2-AS3 was elevated in the

high-risk group. Additionally, survival curves were used to assess the

prognostic value of the model for OS in GC. The OS rate in the high-

risk group was considerably lower in the training group, test group, and

overall sample (Figure 2D). The model’s prognostic accuracy was

further assessed using ROC (Figure 2E). The 5-year AUCs for the

training group, test group, and overall sample were 0.702, 0.737, and

0.708, respectively. Taken together, these results suggest that this DDR-

related lncRNA signature is a valuable prognostic model for GC.
B

C D

E F

A

FIGURE 1

Construction of the DDR-realted mRNA's-incRNAs coexperience network and identifying prognostic DDR-realted incRNAs (A) Volcano plot of 558
DDR-related genes in GC. Red dots represent up-regulated genes dots represent down-regulated genes. (B) The co-expression network of DDR-
related IncRNAs. (C) HR and 95% CI of the top five IncRNAs using univariate Cox regression. (D, E) The expression levels of five DDR-related
IncRNAs in tumor and normal issues. (F) Sankey diagram of prognostic DDR-related IncRNAs *P<0.05, ***P<0.001.
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Evaluation of DDR-related
lncRNA signature

Cox regression was used to analyze whether the prognostic

models constructed based on the five DDR-related lncRNAs were

independent risk factors for GC. Univariate COX regression

demonstrated that the risk model, tumor stage, and age could

significantly affect patient prognosis (Figure 3A), whereas

multivariate COX regression indicated that the risk model was an

independent prognostic factor for GC [P<0.001, hazard ratio
TABLE 2 The respective coefficients of five lncRNAs in the risk model
formula.

DDR-related lncRNAs coefficients

MAGI2-AS3 0.211108414500143

LINC00106 -0.123766252153069

AC145285.6 -0.188414949324606

AL590705.3 0.0399582944274701

AC007405.3 -0.56881526329518
B
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A

FIGURE 2

Evaluation of the DDR-related IncRNAs signature in the TCGA-STAD cohort. (A, B) The distribution of the risk scores and scatter plots of survival in
patients in the training group, text group, and all samples. (C) Prognostic signature signal heatmaps in the different group (D) The Kaplan-Meter
curve analysis of the low-and –high-risk groups in the different group. (E) Receiver operating characteristics (ROC) curve analysis of the signature in
the diffrerent group.
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(HR) = 3.635, 95% confidence interval (CI) = 2.010-6.574]

(Figure 3B). To further evaluate the efficacy of risk models for

practical application, a nomogram was constructed using

clinicopathological parameters and risk scores to predict 1-year,

3-year, and 5-year OS in GC patients (Figure 3C), with the patient’s

prognosis worsening as the risk score increased. The calibration

curve showed relatively good fits for OS prediction (Figure 3D).

These results demonstrate the clinical applicability of nomograms

that integrate risk models. In addition, DCA demonstrated that the

nomogram was better for the risk score and stage in discriminating

against patients at high risk (Figure 3E). The TimeROC analysis

revealed that the AUC of the risk score and nomogram was higher

than that of the other TCGA-STAD indicators (Figure 3F).
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Identification of GC subtype based on
prognostic DDR-related lncRNAs

To further assess the prognostic potential of using these five

DDR-related lncRNAs in the TCGA internal cohort in different

methods of prognostic model construction, we used the

unsupervised clustering method to identify different regulatory

patterns based on the expression levels of five DDR-related

lncRNAs. K=2 divided the TCGA-STAD cohort into clusters 1

(n = 289) and 2 (n = 82) (Figure 4A). Figure 4B shows the difference

in risk score between patients with two DDR clusters. Figure 4C

shows the distribution of patients within the two DDR subtypes,

two risk score groups, and survival state. The survival study revealed
B

C D

E F

A

FIGURE 3

Construction of a nomogram model integrated with the risk score. (A, B) Univariate and multivariate Cox analyses included different
clinicopathologic features. (C) Nomogram model for predicting the 1-, 3-, and 5 –year OS of Gc patients. (D) The calibration plots for 1-, 3- and 5
years in the TCGA-STAD. (E) Decision curve for nomogram. (F) Comparison of the predictive capacity of clinic pathological features and the
nomogram using time- ROC analysis. ***P <0.001.
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a substantial survival difference between cluster 1 and cluster 2,

with cluster 2 exhibiting a higher survival rate (Figure 4D). In

combination with clinicopathological data and risk models,

heatmaps and box plots displaying the expression patterns of five

lncRNAs in patients from distinct clusters indicated that patients in

cluster 1 had a higher risk score, suggesting a worse prognosis

(Figures 4E, F). Except for MAGI2-AS3, the remaining four DDR-

related lncRNAs exhibited differential expression in two different

clusters, with all of them exhibiting higher expression in cluster 2.

These findings show that these five DDR-lncRNAs can more

accurately represent the prognosis of GC patients.
Validation of risk models in the
external cohort

Through the signal pathway enrichment analysis of the high-

low risk group of TCGA-STAD, it was discovered that the high-

risk patients had rich signal pathways associated with tumor

development and metastasis, such as cell adhesion molecules,

focal adhesion, extracellular matrix (ECM) receptor interaction,

and TGF beta pathway. Additionally, we found that a series of

DDR processes, including mismatch repair, DNA replication,

homologous recombination, spliceosomes, and base excision

repair, were enriched in the low-risk group. Indirectly, these

results reflect the accuracy of the risk model constructed by

DDR-related lncRNAs and the more aggressive molecular

features of high-risk patients (Figure 5A). To understand the

efficacy of the risk score, gene signatures A and B were applied

to discern between high- and low-risk groups, with gene signature

A being expressed in the high-risk group and gene signature B

being expressed in the low-risk group (Figure 5B). The risk gene

signature score (RS score) was calculated using the expression

differential between gene signatures A and B in the high- and low-

risk groups. Both gene signatures A and B and the RS score were
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significantly different between the high-risk and low-risk groups

(Figure 5C), and there was a significant correlation between the

risk score derived from DDR-related lncRNAs and the RS score

(Figure 5D). Kaplan−Meier analysis confirmed that high RS scores

were associated with poor prognosis (Figure 5E). The above

results suggest that the RS score method is an alternative risk

score model. To further confirm the predictive efficacy of the

alternative model, the prognostic value of the RS score was

validated in GSE15459, GSE26253, GSE26901, GSE26899, and

GSE84433. In each of the five external cohorts, we calculated each

patient’s RS score using the same method. According to the

calculated median value of the RS score, patients were divided

into the high-RS score and low-RS score groups. The results of the

five external cohort survival analyses uniformly indicated that

patients with a high RS score had a poor prognosis. Further ROC

curve analysis revealed that the alternative model could reliably

predict patient prognosis (Figure 6).
Landscape immune infiltration and gene
mutation in different risk score groups

The tumor microenvironment plays a vital role in the

development of GC. Based on the estimate algorithm, we

analyzed immune scores, stromal scores, and ESTIMATE scores

in TCAG-STAD and found that the high-risk group tended to have

higher scores (Figure 7A). Further analysis was conducted to

examine the immune microenvironment status of the low- and

high-risk groups by CIBERSORT, and bar graphs were used to

visualize the infiltration levels of 22 immune cells (Figures 7B, C).

The findings revealed that the patients with high-risk scores had a

higher proportion of resting CD4 T cells, monocytes, M2

macrophages, resting dendritic cells, and resting mast cells,

whereas the low-risk patients had a greater abundance of

activated CD4 T cells, follicular helper T cells, M0 macrophages,
B C D E

F

A

FIGURE 4

Identification of DDR-related lncRNAs subtypes in GC. (A) Consensus matrix heatmap defining two clusters (K=2). (B) Differences in risk score
between two DDR clusters. (C) Alluvial diagram of the distribution of the subtypes in groups with different risk score and survival outcomes. (D)
Kaplan-Meier curves for OS of the DDR-related lncRNAs subtypes. (E) Relationships between clinicopathologic features, low-/high-risk group, and
the two lncRNAs subtypes. (F) Differences in the expression of five DDR-related lncRNAs among the two subtypes. NS: no significance, *P<0.05,
**P<0.01, ***P<0.001.
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and M1 macrophages. Additionally, correlation analysis of the risk

score and immune cell infiltration revealed that M2 macrophages,

resting mast cells, monocytes, neutrophils, and memory CD4 T cells

increased as the risk score increased, whereas M0 and M1

macrophages, activated CD4 memory T cells, and follicular helper

T cells decreased (Figure 7D). We evaluated gene mutations to

develop a deeper insight into the immunological characteristics of

different risk subgroups. We found the 20 genes with the highest

mutation rates in the high-risk and low-risk subgroups (Figure S4A-
Frontiers in Immunology 10
B). These genes had a greater mutation rate in the low-risk group.

The results revealed that missense mutations were the most

frequent type of mutation. The mutation rates of TTN, TP 53,

and MUC 16 were the most common and were above 25% in both

groups. In addition, we observed a negative correlation between

the risk score and the CSC index (Figure S4C). Given that risk

scores are statistically correlated with the majority of immune

cell infiltration levels, gene mutations, and CSC index, the

immunotherapy outcomes of patients may be affected.
B
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A

FIGURE 5

Biological characteristics in the different risk score groups and Construction of the RS score. (A) Heat Map showing differentially enriched biological
pathways between the low- and high-risk groups. (B) Heat map displaying DEG signature termed as gene signature A/B between the low- and high-risk
groups. (C) Boxplot showing the difference in the enrichment score of gene signature A/B and the RS score between the low- and high-risk groups. (D)
Spearman correlation analysis between RS score and risk score. (E) The Kaplan-Meier curve shows the OS of patients with different RS scores.
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Evaluation of the immunotherapy response
based on RS score

Although immunotherapy has significant efficacy and few

serious adverse events, only some malignant tumor patients are

sensitive to immunotherapy, and molecular subtypes are still

required to pinpoint populations that respond to immunotherapy.

We compared differences in TMB between patients with high and

low RS scores, as well as the correlation between RS score and TMB.

The results revealed a negative correlation between RS score and

TMB, and patients with low RS scores had higher TMB (Figure 8A).

The proportion of patients with MSS and MSI-H in different RS

score groups was statistically different. Patients with MSS had

higher RS scores than those with MSI (Figure 8B). The TIDE

algorithm was used to assess the response to immunotherapy in

the high-RS and low-RS score groups, and there was no statistically

significant difference between the two groups, despite a huge

disparity in median TIDE scores (Figure 8C). Furthermore, we

discovered significant differences in the T-cell exclusion score, T-

cell dysfunction, and MSI between the two risk groups (Figures 8D–

F) indicating that the low-RS score group may be more susceptible

to immunotherapy. Under the AUC, the result illustrated that our

risk model was the best compared with TIS and TIDE (Figure 8G).

We next validated this hypothesis in the anti-PDL1 immunotherapy

cohort (IMvigor210) and discovered that patients in the low-RS
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score group had a longer survival and a better prognosis than those

in the high-RS score group (Figure 8H). It was discovered that the

low-RS score group had more patients with complete response (CR)

and partial response (PR), whereas the high-RS score group had

more patients with stable disease (SD) and progressive disease (PD)

(Figure 8I). In addition, the group of non-responders had a higher

RS score (Figure 8J). In conclusion, the RS score can effectively

assess the immunotherapy sensitivity of patients.
Drug sensitivity

The prognosis of GC patients can be improved by selecting an

appropriate drug for comprehensive treatment, which still involves

chemotherapy and targeted therapies. We investigated the response

to different oncology drugs in high-risk and low-risk patients using

the “oncoPredict” package. According to the predictive model, the

IC50 was predicted for each patient with TCGA-STAD. We

identified 16 potential anticancer drugs with IC50<1, indicating a

strong inhibitory effect against GC (Figure 9A). There were

statistically significant differences in the response of 11 drugs in

different risk groups (Figures 9B–K). Except for staurosporine, most

antitumor agents, such as camptothecin, epirubicin, docetaxel,

vinblastine, and bortezomib, had lower IC50 values in the low-

risk group than in the high-risk group. These findings suggest that
B C

D E

A

FIGURE 6

Validation of the prognostic DDR-related IncRNA signature based on RS Score. The upper left parts are distribution plots for the relationship
between RS score and survival status the lower left parts are heat maps for the gene signature A/B in the cohorts; the upper right parts are ROC
curve for the RS score in the different external cohorts; the lower right parts are survival curves between high-and low-RS score groups.
(A) GSE15459; (B) GSE26253; (C) GSE26253; (D) GSE26901; (E) GSE84433.
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patients in the low-risk group were more likely to respond favorably

to these medicines.
Validation of differentially expressed
lncRNAs in qRT−PCR

To verify the expression patterns of the five DDR-related

lncRNAs selected in the construction of the risk model, qRT−PCR

was used to detect the differential expression of each lncRNA in GC

cell lines and tissues. The results showed that the expression of
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AC145285.6, AC007405.3, and LINC00106 was elevated in GC

tissues, whereas the expression of MAGI2-AS3 was decreased.

Specifically, AC145285.6 was overexpressed in AGS, SNU-719, and

HGC-27 cells but was expressed at low levels in MGC-803 cells

(Figure 10A). MAGI2-AS3 decreased in all GC cell lines (Figure 10B).

AL590705.3 was marginally elevated in the MGC-803, SNU-719, and

HGC-27 cell lines (Figure 10C). AC007405.3 was upregulated in

AGS, SNU-719, HGC-27, and MKN-28 cells, while it was

downregulated in MGC-803 cells (Figure 10D). LINC00106 was

elevated in AGS, SNU-719, and HGC-27 cell lines but decreased in

MKN-28 cells (Figure 10E).
B
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FIGURE 7

Immune infiltration in two risk score subgroups. (A) Differences in tumor microenvironment between high-and low-risk groups. (B) Composition of
immune cells in different subgroups. (C) The relative immune infiltration score of 22 immune cells between low- and high-risk groups. (D)
relationships between risk score and different immune cells. NS: no significance, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Discussion

With the advent of personalized medicine, it is crucial to

investigate methods for early detection, methods to predict the

prognosis, therapeutic sensitivity markers, and potential therapeutic

targets to improve the OS rate among GC patients. High DNA

damage repair activity in cancer cells causes resistance to

chemotherapeutic agents and reduces the efficacy of

immunotherapy (37, 38). The development of GC is associated

with mutations in oncogenes, cancer suppressor genes, and DDR-

related genes, such as KRAS and BRCA1/2, which promote genomic

instability and carcinogenesis. Based on DNA damage repair,

multiple biomarkers with strong predictive effectiveness for

prognosis and anticancer treatment have been identified (39–41).

Nevertheless, recent research has mostly focused on the protein-

coding genes involved in DDR regulation. It is well known that

lncRNAs play a role in the development of GC (42), and there have

been multiple studies of lncRNAs to construct GC prognostic

models, including ferroptosis (43), pyroptosis (44), necroptosis
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(45), and immune-related (46) lncRNA prognostic models, many

of which have not been validated in external data sets or additional

experimental validation. Previous studies have shown that lncRNAs

are involved in multi-drug resistance (MDR) in GC, with specific

mechanisms including DNA damage repair (47). Therefore, a

thorough investigation of the prognostic significance of DDR-

related lncRNAs is essential for GC.

Using univariate Cox and LASSO regression in supervised

learning, five DDR-related lncRNAs were used to develop a risk

score model in this study. In the TCGA-STAD internal cohort, the

low-risk group displayed superior OS. In contrast to other clinical

characteristics (such as age, grade, and stage), the risk score had a

strong predictive influence on prognosis. In addition, by integrating

risk score, age, and stage into a nomogram, the results

demonstrated that risk score and age could considerably influence

GC prognosis, and risk score can be applied as an independent

prognostic factor for GC. In addition, we effectively separated the

internal cohort of patients into two clusters using a consensus

clustering algorithm in unsupervised learning, and we analogously
B
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FIGURE 8

The prognostic value of RS score in immunotherapy from TCGA-STAD and IMvigor210 cohort. (A) TMB score in different RS score subgroups and
the correlation between TMB, high-/low-risk groups, and RS score. (B) Relationship between RS score and MSI. (C-F) TIDE, T cell exclusion, T cell
dysfunction, and MSI in different RS score subgroups, respectively. (G) ROC analysis of RS score, TIDE, and TIS on OS in TCGA-STAD. (H) Kaplan-
Meier curve and log-rank test compare the OS of patients with low or high RS score in the IMvigor210 cohort. (I) Bar plot displaying the relative
frequency of different clinical response subgroups in the low or high RS score group. (J) Boxplot demonstrating the RS score difference between the
response group and the non-response group. NS: no significance, ***P<0.001, ****P<0.0001.
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discovered that cluster 2 had higher survival rates than cluster 1.

The high-risk group was enriched in signaling pathways related to

ECM, tumor invasion, and metastasis, whereas the low-risk group

was enriched in pathways related to DDR. Indirectly, the differences

in these enrichment pathways imply disparities in prognosis across

patients with different risk scores. After establishing the RS score by

calculating the differential gene signature A/B of two different risk

groups using GSVA, we validated that it could better fit the risk

score in the internal cohort and then validated the prognostic value

of the RS score using five GSE datasets to broaden the application of

the risk model.

The five DDR-related lncRNAs that were used to construct the

risk model were differentially expressed in TCGA-STAD, and

among them, MAGI2-AS3, LINC00106, and AL590705.3 had

prognostic significance. MAGI2-AS3, which can function as a

competitive endogenous RNA (ceRNA), was found to be

dysregulated in several cancers (48). High MAGI2-AS3 expression

was related to poor prognosis in GC, and MAGI2-AS3

overexpression facilitated the migration and invasion of GC cells

by sponging miR-141/200a and upregulating ZEB1 expression (49).

Notably, MAGI2-AS3 can also affect cancer progression via
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epigenetic regulation. In breast cancer (BC), for instance,

overexpression of MAGI2-AS3 reduces the proliferation and

migration of BC cells by downregulating DNA methylation of

MAGI2 and blocking the Wnt/-catenin pathway (50). In addition,

MAGI2-AS3 expression was downregulated in leukemic stem cells

(LSCs), and overexpression of MAGI2-AS3 inhibited LSC self-

renewal by inducing TET2 to promote methylation of the LRIG1

promoter region (51). DNA methylation and demethylation are

involved in the DNA damage response, and previous research has

shown that TET2 plays a crucial role in DDR by modulating the

expression of BRCA2 and Lig4 (52). MAGI2-AS3 may bind to

CDCA5, RAD51, and UBE2T in GC, as predicted by the DDR-

related lncRNA−mRNA network. These genes also play a

significant role in DDR (53–55); nonetheless, the mechanism by

which MAGI2-AS3 impacts DDR in GC has yet to be elucidated.

Previous research revealed that LINC00106 expression was

decreased in cisplatin-resistant GC cell lines and that knocking

down LINC00106 enhanced the proliferation and migration of AGS

cell lines (56). Given that cisplatin induces a DNA damage response

by binding to DNA (57), it is possible that LINC00106 is involved in

the DDR process and influences the phenotype of GC cells. The
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FIGURE 9

Drug sensitivity analysis. (A) IC50 testing results for drugs with IC50<1. (B-K) Potential drugs with significant treatment differences in the high- and
low-risk subgroups.
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FIGURE 10

Evaluation of the expression of five DDR-related IncRNAs in GC tissues and cells. (A) ACI45285.6 (B) MAGIC2-AS3 (C) AL590705.3 (D) AC007405.3
(E) LINCO00106. NS: no significance, *P<0.05, **P<0.01, ***P<0.001.
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remaining three DDR-related lncRNAs have not been researched.

We evaluated their expression levels in GC tissues using qRT−PCR,

and the results were essentially consistent with those from TCGA-

STAD. There was no significant change in AL590705.3 expression,

but there were increases in AC145285.6, AC007405.3, and

LINC00106 expression and decreases in MAGI2-AS3 expression.

Their expression levels in GC cell lines were consistent with those

observed in tissues.

Immune evasion, which is a hallmark of cancer cells, hampers

and frequently inhibits cancer therapies aimed at stimulating the

immune system against malignancy, including defective antigen

presentation and immune checkpoint activation, thus leading to

immunotherapy resistance (58). A series of DDR-related genes,

such as ATM and DNA-PKcs, can facilitate tumor cell immune

evasion (5). Alternatively, the DDR pathway is engaged in

regulating the functions of immune cells within the tumor

microenvironment (TME). It was shown that DNA damage

activated the cyclic GMP-AMP synthase-stimulator of interferon

genes (cGAS-STING) pathway, resulting in increased tumor-

infiltrating lymphocytes (TILs) and IFN-related gene expression

(59). Previous research has confirmed that the infiltration of M2

macrophages and mast cells in the TME is associated with a poor

prognosis for GC (60, 61). We investigated the infiltration of

immune cells in GC in different risk groups and discovered that

the levels of M2 macrophages and mast cells climbed in the high-

risk group, and their infiltration abundance increased as the risk

score increased. These findings indicate that this risk score can

distinguish between immune infiltration characteristics of high-

and low-risk groups.

Although immune checkpoint inhibitors (ICIs) are a

promising strategy for patients with advanced GC, the response

rate is still limited, and novel tactics are necessary to maximize the

efficacy of ICIs (62). The Cancer Genome Atlas categorized GC

into four different molecular subtypes: EBV-positive, MSI-rich,

genomically stable, and chromosomally unstable (63). Within

these subtypes, EBV-positive and MSI-high tumors have

exhibited a higher sensitivity to ICIs. In addition, high TMB has

been suggested as a potential biomarker for predicting the clinical

efficacy of immunotherapy with ICIs (64). Defective DDR

promotes MSI and TMB, whereas a rise in neoantigen burden

promotes immunogenicity and attracts more immune cells to the

TME. Several studies have found that MUC16 and TTNmutations

are associated with better prognosis in GC and higher TMB (65,

66). In TCGA-STAD, MUC16 and TTN mutation rates were

higher in the low-risk group. We also observed significant

differences between the various RS score groups for several

frequently applied immunotherapy biomarkers. MSI and TMB

were more significant in the group with a low RS score and

negatively correlated with the RS score. Furthermore, the low-

RS score group had lower tumor-infiltrating cytotoxic T

lymphocyte (CTL) dysfunction and exclusion of CTL levels.

Based on these findings, we expected that patients with low RS

scores would have a better ICI response, which was confirmed

in the immunotherapy cohort. In brief, we discovered that the
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RS score can distinguish between patients undergoing

immunotherapy and may provide a theoretical basis for ICI

treatment selection in clinical trials.

It is well established that chemotherapeutics induce DNA

damage via direct or indirect pathways, which may contribute to

the development of cytotoxicity. If tumor cells can repair such

damage, there is a possibility that they will survive chemotherapy or

become more tolerant to chemotherapeutic medicines (67).

Multiple lncRNAs can impact chemoresistance by regulating

DDR-related genes (47). lncRNA-CRAL, for example, inhibits

DNA damage and death in cisplatin-resistant GC cells through

the miR-505/CYLD/AKT pathway via the ceRNA mechanism and

may serve as a biomarker of chemoresistance (68). In this study, we

investigated the sensitivity of various drugs in two risk subgroups of

patients and found that the low-risk group was more susceptible to

both conventional chemotherapeutic treatments and targeted

drugs. Low-risk patients respond well pharmacologically to

medications that induce DNA damage, inhibit DNA and RNA

synthesis, and inhibit spindle formation. In addition, proteasome

inhibitors may provide additional benefits for low-risk populations.

Numerous studies have demonstrated the crucial role of the

DDR process in regulating the biological behavior and therapeutic

susceptibility of tumor cells (69). Risk models based on DDR-

related genes have been constructed for different cancers, such as

lung adenocarcinoma (LUAD), hepatocellular carcinoma (HCC),

and soft tissue sarcoma, with many studies focusing exclusively on

the prognostic value of the models (70–72). However, DDR-related

lncRNAs have received less attention in GC research. By

constructing a DDR-related lncRNA risk model, we not only

focused on its predictive significance but also better analyzed the

immune infiltration and treatment sensitivity differences among

patients. In addition, we found that the risk score/RS score can

guide personalized chemotherapy and immunotherapy for patients

with GC, thereby improving their prognosis.

Inevitably, the risk model that we constructed has some

limitations. First, although the RS score is positively associated

with the risk score, the predictive value of the model is indirectly

validated by the RS score in the external datasets. In addition, we

validated the expression of lncRNAs in the risk model using qPCR,

but the specific mechanisms by which DDR-related lncRNAs affect

specific DNA repair pathways, the tumor microenvironment,

chemotherapy, and immunotherapy sensitivity are unknown and

require further validation in vivo and in vitro.

In conclusion, this risk model is a reliable biomarker for

predicting prognosis and treatment sensitivity in GC. Furthermore,

this study provides new insights for future basic research and clinical

practice in the study of DDR-related lncRNAs.
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