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Immunoglobulin A (IgA) is the most abundant Ig in mucosae where it plays key

roles in host defense against pathogens and in mucosal immunoregulation.

Whereas intense research has established the different roles of secretory IgA in

the gut, its function has been much less studied in the lung. This review will first

summarize the state-of-the-art knowledge on the distribution and phenotype of

IgA+ B cells in the human lung in both homeostasis and disease. Second, it will

analyze the studies looking at cellular and molecular mechanisms of homing and

priming of IgA+ B cells in the lung, notably following immunization. Lastly,

published data on observations related to IgA and IgA+ B cells in lung and

airway disease such as asthma, cystic fibrosis, idiopathic pulmonary fibrosis, or

chronic rhinosinusitis, will be discussed. Collectively it provides the state-of-the-

art of our current understanding of the biology of IgA-producing cells in the

airways and identifies gaps that future research should address in order to

improve mucosal protection against lung infections and chronic

inflammatory diseases.
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BAFF-R, B cell activating-factor receptor; BCMA, B cell maturation antigen; Breg, Regulatory B cell; BRM,

Tissue-resident memory B cells; CF, Cystic fibrosis; COPD, Chronic obstructive pulmonary disease; CRS,

Chronic rhinosinusitis; CRSsNP, Chronic rhinosinusitis without nasal polyps; CRSwNP, Chronic

rhinosinusitis with nasal polyps; CSR, Class switch recombination; DC, Dendritic cell; d-IgA, Dimeric IgA;

GALT, Gut-associated lymphoid tissue; GC, Germinal center; HEV, High endothelium venule; iBALT,

inducible bronchus-associated lymphoid tissue; IgAD, Selective IgA deficiency; IPF, Idiopathic pulmonary

fibrosis; LLPC, Long-lived plasma cell; MALT, Mucosae-associated lymphoid tissue; MBC, Memory B cells;

Nabs, Natural antibodies; NP, Nasal polyps; OVA, Ovalbumine; Pa, Pseudomonas aeruginosa; PC, Plasma

cells; pIgR, Polymeric immunoglobulin receptor; RA, Retinoic acid; SC, secretory component; s-IgA,

Secretory IgA; TACI, Transmembrane activation and CALM interactor; TLO, Tertiary lymphoid organ;

TNF, Tumor necrosis factor; TRAF, TNF receptor associated factor
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1 Introduction

IgA is the most secreted antibody isotype in the human body,

mainly at mucosal surfaces where it plays protective roles such as

immune exclusion. There are two subclasses of this

immunoglobulin, namely IgA1 and IgA2. Compared to IgA1,

IgA2 has a shorter hinge region and is therefore more resistant to

pathogen-derived bacterial proteases (1, 2). There is only 10 to 20%

of IgA2 in the blood (3), whereas this proportion increases in the

lung mucosa, with approximately 25 to 30% of IgA2 in

bronchoalveolar fluid (3, 4). In addition, monomeric IgA is

predominant in serum in contrast with mucosal sites where there

is mostly dimeric IgA (d-IgA) (80%) (2, 5). In the bronchus,

epithelial cells express the polymeric Ig receptor (pIgR) which

binds IgA and can be internalized to transport it to the lumen.

The transcytosis ends with the cleavage of the C-terminal part of

pIgR, the secretory component (SC), which is bound to d-IgA (6).

The complex consisting of d-IgA and SC is called secretory IgA (S-

IgA) and its main role is to prevent pathogens in the mucosal lumen

from entering the body, which is called the immune exclusion (7–9).

Beside pIgR, IgA can interact with cells through different receptors

such as IgA Fc receptor I (FcaRI or CD89) or the transferrin

receptor 1 (CD71) (10, 11). CD89 is the main one in human,

expressed by myeloid cells: neutrophils, eosinophils, monocytes,

macrophages and dendritic cells (11). Mice do not express CD89

(but retained to Fca/mR, for both IgA and IgM), leading to the

development of transgenic mice expressing the human CD89 to

enable taking this interaction into account whilst studying the role

of IgA in vivo, e.g. in (11)IgA nephropathy (12–14), cancer (15) or

the inflammatory role of serum IgA (16).

IgA-producing B cells in the mucosa were mostly studied in the

gut and much less in the airways, leading to gaps in knowledge for

the later. This review aims to describe the different subsets of IgA+ B

cells in the airways during homeostasis and their changes and roles

following immunization and in disease such as IgA deficiency or

chronic airway/lung diseases. It also summarizes the mechanisms

underlying activation and homing of IgA+ B cells in the lung, as

compared to the gut.
2 Phenotype and location of IgA+ B
cells in the airways

2.1 Conventional B cells

Currently identified B-cell subclasses have been mainly studied in

blood and usually express CD45, CD19 and CD20. Naïve (IgD+/

IgM+), transitional, memory unswitched (CD27+ in humans and

IgM+), memory switched (CD27+, IgE+, IgG+ or IgA+) and antibody-

secreting B cells (CD20-, CD38+ and CD138+) also known as plasma

cells (PCs) are the main types of conventional (B2) B cells (17, 18).

The majority (60-70%) of circulating/blood B cells are naive,

expressing both IgD and IgM while IgA+ memory B cells (MBCs)

represent ˜ 10% of B cells in the peripheral blood (19) (Figure 1).

They are circulating and can relocate to secondary lymphoid organs
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(SLOs) such as the lymph nodes (LNs) or tertiary lymphoid organs

(TLOs). In the lung, the mucosa associated lymphoid tissue is known

as the inducible bronchus associated lymphoid tissue (iBALT) (20).

iBALT is a lymphoid aggregate that is usually rarely detectable in the

lung at homeostasis in mouse or in man, but can develop following

infections or during chronic inflammation (20, 21).
2.2 Resident B cells

Although circulating B cells are present in the lung, other

specific subtypes are represented in this organ. A subset of tissue-

resident memory B cells (BRMs) has been identified in the lung in

2012 (22) and was described as the main producer of IgA in the

respiratory system (23). This subset of B cells has mostly been

studied in mice; they were identified by iv injection of labelled anti-

CD45 antibodies followed by sorting and FACS analysis of B cells

(24). In this study, non-circulating cells represented almost half of B

cells in the lung (24, 25). Even though a specific marker for this

subset was not established (26), mouse BRMs express CD69 and

CD103 (22, 24, 26, 27) (Table 1). A larger proportion of BRMs are

switched to IgA as compared to circulating blood B cells (24). Their

presence and ability to stay (and not recirculate) in the lung is

probably due to an increased expression of CXCR3, a receptor to the

CXCL11 chemokine (23, 24). In addition, CXCR3 KO mice do not

have BRMs and display an impaired production of IgA in the lung

(23). BRMs cells have been described in different locations in the

lung; after immunization against influenza virus, BRMs were

observed in iBALT (28, 29) while alveolar BRMs were also

reported after a similar immunization to influenza (29) or

Streptococcus pneumoniae (29, 30) (Figure 2). Barker et al. also

identified a putative subset of BRMs in the lungs from human

donors, where most memory B cells (CD27+) expressed CD69 while

naive B cells (IgD+) did not (30). Moreover, most of these CD69+ B

cells were class-switched and did not express CD38, indicating that

they were not yet differentiated into plasma cells (30).
FIGURE 1

Proportion of B-cell subsets in blood. In peripheral blood,
transitional (CD24+ CD38+) represent 2.4%; naive (CD27-; IgD+)
65%; memory unswitched (CD27+; IgD+) 15%; memory switched
(CD27+; IgD-) 13; plasmablasts/plasma cells (CD24-; CD38+) 1%; and
others 2.5%. Out of memory switched B cells (inset), 23% are IgG+,
21% are IgA+: 21%, and 52% are IgM+ (IgM+ only or IgM+/IgD+).
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TABLE 1 Comparison of IgA+ B cells in airways and in the gut.

LUNG GUT

Human Mouse Human Mouse

Homing

Adhesion

a4b1 integrins/VCAM1

CD62L/PNAd

LFA1

a4b1 integrins/VCAM1

CD62L/PNAd

LFA1

a4b7 integrins/MAdCAM1

CD62L/MAdCAM1

a4b7 integrins/MAdCAM1

CD62L/MAdCAM1

Chemokine
receptor -
chemokine

CXCR5 – CXCL13

CXCR3 – CXCL11

CXCR5 – CXCL13

CXCR4 – CXCL12

CCR7 - CXCL19

CCR7 - CXCL21

CCR9 – CCL25

CCR10 – CCL28

CCR9 – CCL25

CCR10 – CCL28

B-cell subsets

Memory (MBC)

Markers

CD23low

CD62Llow

CD27+

CD38+

CD69+

CD80+

CD103+

CXCR3hi

CD23low

CD62Llow

CD38+

CD69hi

CD103hi

CXCR3hi

CD27+

CD38+

CD40low

CD62L-

B220+

CD23+

Expected
function

Long-lived cell with specific
antibodies maturation;
differentiation into PCs after
challenge

Long-lived cell with specific
antibodies maturation;
differentiation into PCs after
challenge

Long-lived cell with specific
antibodies maturation;
differentiation into PCs after
challenge

Long-lived cell with specific
antibodies maturation;
differentiation into PCs after
challenge

Resident (BRM)

Location iBALT or alveoli iBALT or alveoli GALT, Peyer patches and lamina
propria

GALT, Peyer patches and lamina
propria

Plasma (PC)

Markers CD20-

CD27+

CD38+

CD138+

CD20-

B220+

CD27+

CD38+

CD138+

CXCR3+

CD20-

CD19+

CD27+

CD38+

CD138+

a4b7-integrin+

CD73+ PD-L2+

CD80+

Expected
function

Secretion of specific antibodies Secretion of specific antibodies Secretion of specific antibodies Secretion of specific antibodies

Long-lived
(LLPC)

Not described Not described Subset: CD19-

CD45- CD27hi

CD38hi CD138+

Subset: CD19+ CD45- CD27hi

CD38hi

B220-

CD38+ CD138+

(Continued)
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2.3 Plasma cells

Plasma cells (PC) are the terminal differentiation stage of the B-

cell lineage that secretes antibodies. They differentiate from GC B

cells or memory B cells and are CD27+, CD38+ and CD138+ but

CD20- (18). In the mucosa, IgA is the most represented isotype

(70% to 90%) (31, 32), most of them (around 80%) being located in

the gut, especially in the gut-associated lymphoid tissue (GALT)

(32, 33). A recent research of 3 control subjects suggested that IgA1

is the predominant subclass among IgA PCs in healthy lungs (two
Frontiers in Immunology 04
thirds of IgA+ PCs) (34), while IgA2 increases during the late stage

of COVID infection (34).

As most IgA+ PCs are located in the gut, IgA-secreting PCs are

also present in the murine lung. Twenty days after primary influenza

virus infection or intranasal vaccination, IgA+ PCs derived from BRMs

can be observed in the submucosal areas, beneath the bronchial

epithelium (23, 29). Interestingly, IgA+ PCs are already detectable 4

days post-secondary infection, next to the alveoli instead of more

proximal airways (29). IgA+ PCs have also been described in the lung

after challenging ovalbumin (OVA)-sensitized mice (35).
TABLE 1 Continued

LUNG GUT

Human Mouse Human Mouse

Subset: CD19+ CD45+ CD27hi

CD38hi Blimp1
IgAhi

Breg

Markers Immature subset:
CD24+/CD38+

Memory subset:
CD24+/CD27+

Plasmablast subset:
CD27+/CD38+

B10 subset: CD25+/CD71+

B1 subset: CD43+

Immature subset:
CD24+/CD38+

Memory subset:
CD24+/CD27+

Plasmablast subset:
CD27+/CD38+

B10 subset: CD25+/CD71+

B1 subset: CD43+

Immature subset:
CD24+/CD38+

Memory subset:
CD24+/CD27+

Plasmablast subset:
CD27+/CD38+

B10 subset: CD25+/CD71+

B1 subset: CD43+

Immature subset:
CD24+/CD38+

Memory subset:
CD24+/CD27+

Plasmablast subset:
CD27+/CD38+

B10 subset: CD25+/CD71+

B1 subset: CD43+

Expected
function

Regulation of immune response;
secretion of IL-10, IL-35 and
TGF-b

Regulation of immune response;
secretion of IL-10, IL-35 and
TGF-b

Regulation of immune response;
secretion of IL-10, IL-35 and
TGF-b

Regulation of immune response;
secretion of IL-10, IL-35 and
TGF-b

B1

Markers

Not described

CD19+

IgDlow

CD23+

CD5+ and CD5- subsets

Not described

CD19+

B220low

IgDlow

CD43+

CD25+
CD73+

PDL2+

CD5+ and CD5-subsets

Expected
function

Not described

Production of cross-reactive
natural antibodies

Clearance of apoptotic debris

Modulation of inflammation

Not described

Production of cross-reactive
natural antibodies

Clearance of apoptotic debris

Modulation of inflammation

Isotype (and
isoform)

Dimeric IgA1, mainly (70%; IgA2,
30%)

Dimeric IgA Dimeric IgA2, mainly (60%) Dimeric IgA

MALT Not readily detectable in the
healthy lung

iBALT induced by infection/
inflammation

Not readily detectable in the
healthy lung

iBALT induced by infection/
inflammation

Well developed in healthy
individuals

CD11 cells in lamina propria

Well developed in healthy
individuals

CD11 cells in lamina propria
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A unique subset of IgA+, long-lived PCs (IgA+ LLPC), able to

survive for years, was identified in the bone marrow (36, 37). Further

studies led to identify that bone marrow IgA+ PCs were Ly6ahi TIGIT-

and had a particularly high capacity to produce antibodies and a BCR

being highly mutated due to SHM in the GC (38). It was thus

suggested that IgA+ LLPC are differentiating in the mucosa before

recirculating and relocating to the bone marrow. Interestingly, IgA+

LLPC were also observed in the gut, 80% of LLPCs being located in

GALT (33, 39). Gut and bone marrow LLPCs share a long-lived

phenotype (B220-), the same antibody repertoire and somatic

hypermutation rate (40). The gut predominance as source of those

cells could be explained by the fact that the gut represents the main

source of overall IgA+ B cells. In addition, more attention has been

given to gut-derived rather than lung-derived LLPCs (e.g., IgE+

LLPCs). However, one study showed that a subset of IgA+ LLPCs

was induced upon intranasal vaccination or local allergen challenge

(ovalbumin) that was more efficient than systemic sensitization (35,

41). Thus, the condition of induction and exact role of lung-derived

IgA+ LLPCs remain unclear and should be further studied especially in

human. (Table 1).
2.4 Regulatory B cells

In blood as well as in tissue, there are several subsets of B cells

that can be classified as Bregs because of their regulatory role; these

include CD24+/CD27+ with both a memory and regulatory
Frontiers in Immunology 05
phenotype; CD24+/CD38+ immature cells, CD27+/CD38+

plasmablasts as well as a subset of CD25+/CD71+ B cells and

CD43+ B1 cells. Bregs may modulate inflammation, notably via

cytokine secretion of IL-10, IL-35 or TGF-b (42). A recent study

discovered a subset of blood-derived IgA+ Bregs that produce IL-10

also expressing PD-L1 (43). Interestingly, whereas those IgA+ Bregs

expressed IL-10, PD-L1 and Fas-L, they did not express the classical

Breg markers, suggesting that IgA+ Bregs may represent a new

subset (Table 1). Another study identified a subset of circulating

IgA-secreting Bregs in mice that was induced following intranasal

exposure to a fusion protein made of flagellin (FlaA) and Bet v1

allergen (44). They showed production of both IgG and IgA by

those Bregs. Whereas those IgA antibodies could not bind to the

triggering antigen, it was demonstrated that IgA+ Bregs could

inhibit Th2 inflammation, opening therapeutic perspectives in

allergy (44).
2.5 B1 cells

B1 cells have been discovered in mice as the main subset of B

cells found in the pleural and peritoneal cavities (45). Considered as

part of the innate immune system, B1 cells are developed at

neonatal stages and have the ability to secrete antibodies prior to

any infection or antigen exposure (45, 46). B1 cells from these

cavities are characterized by their expression of CD19, surface IgM

(high), surface IgD (low), CD43 and CD11b (47, 48). This
A B

FIGURE 2

Distribution of IgA+ B cells in the airways, at homeostasis (A) and during chronic inflammatory condition (B). Plasma cells (PC) are normally mainly
found beneath the airway epithelium and in submucosal glands (upper panels), representing a pro-IgA niche, and secrete d-IgA, which is transported
through pIgR-mediated routing to the mucosal lumen. IgA+ memory B cells are also found in the alveolar septa (lower panels). During chronic
inflammation, accumulation of IgA+ PCs is observed, along increased numbers of IgA+ B cells within lymphoid follicles, following cognate
interactions with T cells as well as innate signaling from dendritic cells (DC). Created with BioRender.com.
frontiersin.org
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population can be further divided into two main phenotypes,

namely B1a cells (CD5+) and B1b cells (CD5-) (49). In the pleural

cavity, the majority of B1 cells (75%) are corresponding to the B1a

phenotype (48) but those cells may trans-differentiate to B1b cells

after stimulation by pathogens (48, 50). Both B1 subsets have the

ability to produce “natural antibodies” (NAbs) (49), which can be

IgM but also IgG3 or IgA isotype. NAbs can be defined as non-

specific antibodies synthesized prior to immunization (51, 52). They

are cross-reactive and detect a large spectrum of antigens with low

affinity, including self-antigens (51, 53) and a hypothesis even

suggests that NAbs rise following exposure to self-antigens (53).

Because of their cross-reactivity, NAbs secreted in the mucosa can

interact with potential pathogens even during the first encounter

with the microorganism and play a key role in the innate immune

response to infections (54–56). For instance, anti-GAL NAbs are

observed in serum since childhood and are able to bind to several

microorganisms (57) and anti-phosphorylcholine NAbs recognize

Gram-positive bacteria (46). In addition, it has been shown that

their low affinity autoreactivity can play a helpful, homeostatic role

in, notably with anti-phosphoryl NAbs that can bind to apoptotic

cell membranes (46, 58).

Although there is no consensus yet for specific markers of B1

cells in the human body (52, 53), some “B1-like cells” have been

described and characterized as CD27+, CD43+, CD70- in peripheral

blood and in the umbilical cord (46, 53, 59). A review on the

ontogeny of human B1 cells highlighted that this subset represents

1% of B cells in the adult blood, this number decreasing with age

(60). When looking specifically at IgA-producing B1 cells, a

population expressing CD27 and CD43 was described in blood

(61, 62). Moreover, a particular phenotype of IgA+ innate

lymphocytes named “natural helpers” was observed in both gut

and lung (63–66). Researchers discovered that those natural helpers

were producing cytokines similar to Th2 such as IL-5, IL-6 and IL-

13 (64, 65). In the lung, these natural helpers have been only

characterized in mouse models, with a potential role in allergic

asthma (65). (Table 1).
3 Mechanisms of homing and priming
of IgA+ B cells in the lung

3.1 Homing of IgA+ B cells

B cells circulating in the bloodstream can enter tissues, either in

lymph nodes (LN) or in mucosa associated lymphoid tissue

(MALT) (33, 67, 68). Although the generic mechanisms beyond

the homing to those locations are similar, some specific axis are also

involved. The homing of B cells has been well described in the gut;

in contrast, there are many differences with the iBALT. The iBALT

is rarely observed in healthy individuals, their induction requiring

the presence of inflammatory signals (20, 69). In response to IL-17,

different stromal cells present at the early stage of iBALT formation,

such as follicular dendritic cells, can recruit B cells (70, 71). This

recruitment starts in high endothelial venules (HEVs), at the border

of iBALT, where B cells circulating in the bloodstream can interact

with endothelial cells to home into this tissue. Several phenotypes of
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circulating B cells (naïve, transitional, memory unswitched,

memory switched) express L-selectin (CD62-L), a receptor to

peripheral lymph node addressin (PNAd) that is a signalling

molecule on the membrane of endothelial cells in iBALT (67).

This leads to the attraction of B cells to the walls of HEVs, allowing

the adhesion of B cells to the endothelium via a4b1 integrins

interacting with V-CAM1 (67). This is an important difference

compared to the homing into GALT, where the adhesion is driven

by the binding of a4b7 integrins to Mad-CAM1 (67). Subsequently,

the CXCL13 chemokine secreted by DCs in the central zone will

attract B cells through their CCR5 receptor, leading to the

formation of a B-cell follicle in the iBALT (20, 70). It has been

described that in some iBALT structures, fibroblast-like cells could

alternatively guide B cells via the CXCL12-CCR4 axis (71).

The development of mucosal vaccines is a real challenge, with

homing of B cells to the lung being an important element of this

research. Back in 2004, it was proven that after intranasal

inoculation of SARS-CoV virus, mice developed pulmonary

lymphoid follicles along with upregulation of the chemokines

CXCL9, CXCL10 and their receptor CXCR3 (72). Similar results

were observed when mice were intranasally inoculated with

Bordetella bronchiseptica (73). Moreover, transgenic mice lacking

CXCR3 had fewer lymphocytes in lung tissue and displayed a

delayed clearance of the bacteria (73). More recently a murine

model of intranasal immunization with Influenza virus

demonstrated an increase of B cells in the lung as well as higher

levels of CXCL11 and IgA (22, 23). The studies showed that the

IgA-producing B cells in those murine models were also expressing

CXCR3 and that this receptor was a key for local IgA production, as

CXCR3-/- mice had fewer IgA+ cells in the lung (22, 23). A study

conducted on delta-inulin, a potential adjuvant, showed that

pulmonary immunization against Influenza coupled with this

adjuvant led to a 4-fold increase of the number of CXCR3+ class-

switched memory B cells in the lung as well as an increase of local

IgA and IgG production (74). When re-challenged by a lethal

exposure to Influenza, mice that did not receive the adjuvant

during the immunization suffered from weight loss and poor

survival after 8 to 9 days while mice who received the adjuvant

were fully protected (74). Collectively these studies in murine

models suggest that the homing of B cells via CXCR3 pathway is

key to the immune response to infection and could be targeted for

improving the development of mucosal vaccines.
3.2 Regulation of lung B cells towards IgA

It is known that a class-switch recombination (CSR) to IgA can

happen via T-cell dependent or independent pathways (33, 75–77).

Since 1989, transforming growth factor b1 (TGF-b1) has been

identified as the main cytokine driving CSR of naive B cells to

IgA by a T-cell dependent pathway (78–80) (Figure 2). In the lymph

nodes of the lungs or the gut, more specifically in the germinal

center (GC), naive B cells can be activated when their BCR binds to

their cognate antigen. Whenever this event happens, the expression

of CCR7 will increase at the expense of the expression of CXCR5.

Thus, those B cells will be attracted by CCL21, at the periphery of
frontiersin.org
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the GC, where CD4+ Th cells reside (77, 81). Th cells can secrete

active TGF-b1, which binds to TGF-b receptor (TGF-bR) and

activates its serine/threonine kinase activity (75, 82), leading to

the phosphorylation and activation of SMAD2 and SMAD3 and

allowing them to interact with SMAD4 and RunX3 to promote the

expression of Ia and Ca, which are mandatory for the initiation of

CSR (75, 80, 83). In addition, CD40 ligand (CD40L), a protein from
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the tumor necrosis factor (TNF) family also expressed by Th cells, is

mandatory for the T-cell dependent pathway (84) (Figure 3).

CD40L can bind to CD40, a transmembrane protein of B cells

which will induce the recruitment of TNF receptor associated factor

(TRAF) followed by activation of the NF-kb kinase inhibitor (IKK)

(75, 85), inducing its phosphorylation and subsequently its

ubiquitination to allow NF-kB to play its transcription factor

activity and promote the transcription of AICDA (75, 85, 86).

Other factors can synergize with CD40L, such as IL-4 which is

able to activate the transcription factor STAT6 which also promotes

AICDA transcription (86). The process of T-cell dependent CSR

toward IgA takes a week (75) and can lead to different endpoints; B

cells can return to the follicle, proliferate and undergo somatic

hypermutation (SHM), or recirculate in the periphery after

differentiation into MBCs or ASCs (77).

T cell-independent pathways allow B cells to switch to IgA

faster and can be mediated by dendritic cells (DCs) (75, 76, 87)

(Figure 4). It has been shown that lung DCs are able to induce a

local CSR toward IgA with a better efficiency than spleen DCs (88).

The main cytokines secreted by DCs that induce IgA switching are

B-cell activating factor (BAFF, or BLyS) and A proliferation-

inducing ligand (APRIL) (76), two cytokines of the TNF

superfamily (89). Both are ligands to the B-cell maturation

antigen (BCMA) and transmembrane activator et CALM

interactor (TACI) (90), whereas BAFF may also bind a selective

BAFF-receptor (BAFF-R) (90).

TACI receptor has slightly stronger affinity for BAFF than

APRIL (91) but it is not able to bind all forms of those molecules;

only oligomeric forms of APRIL or BAFF can bind to TACI (92).

Interestingly, TACI is able to induce survival signal but also to

negatively regulate B cells (92). The pathways behind these opposite
FIGURE 4

T cell-independent pathway to IgA synthesis. Epithelial and dendritic cells may secrete BAFF that binds to BAFF-R, inducing an interaction between
BAFF-R and TRAF3 which induces ubiquitinylation of NIK. Accumulation of NIK leads to activation of NFkB that promotes B-cell survival. BAFF-R also
interacts with BCR and Lyn, activating the PI3 kinase and Akt/mTOR pathways to promote survival and maturation of naive B cells. Secondly, BCMA
receptor can also bind BAFF as well as APRIL, inducing the recruitment of TRAFs and the activation of NFkB as well as of Elk1 and MAP Kinase pathways,
promoting the survival of plasma cells. Third, ligation of TACI by BAFF or APRIL activates the canonical NFkB pathway via its interaction with MyD88,
leading to the differentiation of B cells into PCs and class switch to IgA. It may also induce a negative regulation of B cells through an unknown
mechanism, or the differentiation of B cells into Bregs when the binding by APRIL occurs in the absence of BAFF. Created with BioRender.com.
FIGURE 3

T cell-dependent pathway to IgA synthesis. Th cells may secrete
active TGFb1 which binds to TGFb-R, triggering the phosphorylation
and dimerization of Smad2 and Smad3 that are interacting with
Smad4 and RunX3 to promote the transcription of Ia and Ca. The
second signal consists of CD40 that interacts with CD40L expressed
by T cells, to recruit a complex of TRAFs protein that activates IkB
kinase. The phosphorylation of IkB by IKK unleashes NFkB and
allows its translocation to the nucleus where it promotes the
transcription of AID and CSR to IgA. Created with BioRender.com.
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activities are not fully understood but TACI can interact with

MyD88, an activator of NF-kB (43, 93) as well as with TRAF3

that inhibits the NF-kB pathway (77). The interaction between

TACI and BAFF and APRIL can induce the CSR to IgA but also the

differentiation into PCs by promoting the expression of Prdm1 (93),

which encodes Blimp-1 that is a key transcription factor promoting

XPB1 and inducing a secretory phenotype (94).

It has been reported that ligation of TACI by APRIL in the

absence of BAFF, also induces CSR to IgA (5). Although the

mechanisms of CSR driven by TACI remain unclear, TACI could

interact with the MyD88 protein adaptor in order to activate NF-kB,
inducing CSR by promoting the transcription of activation induced

cytidine deaminase (AICDA) or CH genes which are crucial for CSR

(93). In addition, a recent in-vitro study showed that APRIL

stimulation of TACI, coupled with IL-21 and in the absence of

BAFF or TGF-b, induces the differentiation of B cells isolated from

PBMC to a subset of Bregs expressing IgA and IL-10 (43). This study

also suggested that this specific subset of IgA+ Bregs could play a

protective role against experimental autoimmune encephalomyelitis

or arthritis (43). A similar cell phenotype was observed in mice after

immunization against an allergen, and induction of IgA+ Bregs in this

context was also dependent on MyD88 and NFkB activation (44).

Signalling pathways underlying the differentiation of B cells into IgA+

Bregs could open the way for new therapeutic strategies in allergic

and inflammatory airway diseases.

BCMA is the second TNF receptor able to bind both BAFF and

APRIL, with a stronger affinity for the later (95). This receptor plays a

key role in the survival of PCs, a defect of BCMA or its ligand resulting

in reduced number of PCs in the bone marrow (96). The signalling

pathways downstream of BCMA remain unclear but it is clear that it

cannot interact with Myd88 (97)and that they lead to survival

signalling pathways such as the classical NF-kB, Elk-1, c-Jun N-

terminal kinase, and p38 mitogen-activated protein kinase pathways

(97, 98). BAFF can also bind with a strong affinity to BAFF-R, which is

present on all B-cell subsets (99). This will induce the activation of

both the canonical and alternative NF-kB pathways, leading to the

induction of survival signals for B cells. In addition, ligation between

BAFF and BAFF-R causes the activation of phosphatidyl-inositol 3

kinase (PI3K), which activates the downstream signalling pathway of

Akt and also induces survival of B cells.

Retinoic acid (RA), a widely studied molecule derived from

vitamin A, can interact with specific nuclear receptors expressed in

various organs (100). In the lung, RA plays an important role for

prenatal lung organogenesis (100) and supports post-injury alveolar

regeneration in the adult lung (101). In addition to interactions with

epithelial or mesenchymal cells, it also contributes to maintenance

of mucosal immunity (102–105). Thus, DCs can synthesize RA

which interacts with B cells via their RA-receptor (106). It has been

demonstrated in vitro that RA induces a class-switch to IgA in B

cells from human tonsils (106) and murine spleen by interacting

with RA-receptors on B cells (107). In addition, RA may accelerate

the differentiation process from B cells to PCs (108), further

increasing the production of IgA antibodies. This is collectively

supported by the fact that a defect in vitamin A results in impaired

generation of IgA+ B cells (109).
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4 Roles of IgA+ B cells in lung
mucosal defense and in disease
Although selective IgA deficiency (IgAD) is the most prevalent

immune deficiency, affecting 1 out of 100 to 1000 individuals and

that most IgAD subjects are asymptomatic, this defect increases the

risk of upper and lower respiratory tract infections (110). Studies in

mice showed that although naive IgA+/+ and IgA-/- mice have the

same susceptibility against influenza infection (111–113), whenever

they were exposed to influenza virus 5 weeks after vaccination

without adjuvant, the survival of IgA -/- mice was decreased

compared to controls, suggesting that IgA could provide

postvaccinal protection (113). This statement is reinforced by the

fact that local immunization against influenza induces the secretion

of IgA by PCs as well as BRMs in submucosal areas of the airways

and offers a better protection against infection than systemic

immunization, which does not affect IgA levels (23). It is however

known that IgA-/- mice display abnormalities in generating other

isotypes such as IgE or IgG (114). Nevertheless, intranasal

vaccination that promotes S-IgA responses has gained interest,

notably following COVID pandemics.

Chronic obstructive pulmonary disease (COPD) is a common

respiratory disease and the third cause of death worldwide since

2019 (115). It is associated with tobacco exposure and characterized

by emphysema and obstruction of small airways (116). Lymphoid

aggregates are developing near the distal airways of COPD patients

(117) and our group described that IgA+ B cells in those areas were

the only ones that upregulate during disease, mostly in severe

patients (118). An accumulation of IgA1 was also observed in the

subepithelial area (119), consistently with an increased synthesis

combined with the lack of transport to the lumen through the pIgR

which is downregulated in COPD (120). In addition, IgA

autoantibodies against cytokeratins 18 and 19, expressed by

epithelial cells, are increased in the plasma from COPD patients

(121). Activation of B cells in this disease could be mediated by T

cells, and more specifically by IL-21-secreting Th17 cells within

lymphoid follicles (118). It is also possible that airway epithelial cells

contribute to activate B cells as primary bronchial epithelial cells

from COPD patients provide signals (such as IL-6) to B cells to

promote their IgA synthesis, possibly through TACI upregulation

(119, 122).

Patients with cystic fibrosis (CF) are particularly susceptible to

airway and lung infections. CF is a genetic autosomal recessive

disease due to a mutation on the gene encoding for thecystic fibrosis

transmembrane conductance regulator (CFTR) protein, a ion

channel for chloride anions (123), leading to dehydration of the

airway mucus that becomes sticky and promotes respiratory

infections with opportunistic pathogens such as Pseudomonas

aeruginosa (Pa) (124). In CF lungs, lymphoid aggregates that

include IgA+ PCs (CD138+) were observed (124). Similarly,

increased levels of IgA can be observed in serum and

bronchoalveolar lavage (BAL) from CF patients compared to

healthy controls (125). In addition, the increase in IgA in serum

and airway secretions was correlated with chronic infection by Pa
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(126–128). These results were similar to murine models, where it

was also demonstrated that Pa infection leads to an upregulation of

pIgR in both control and CFmice as well as an increased production

of IgA, leading to an increase of BAL S-IgA (126). It was also

reported that BAFF mediates the induction of IgA following Pa

infection in mice (129), whereas depletion of BAFF increases the

susceptibility to Pa of CF mice. Thus, it seems that Pa infection

induces a specific IgA immune response that is associated in CF

with a global upregulation of the IgA/pIgR system, which relate

notably to BAFF and IL-17 signalling. This response is not

associated with the eradication/clearance of the pathogen but

rather accompanies chronic infection.

In addition, IgA can also represent a biomarker of

infection or disease severity in CF. It is long known that CF

patients display elevated levels of autoantibodies, among which

IgA autoantibodies, in serum and sputum (130, 131). It can be

already observed in pediatric cohorts but the levels of some

specific antibodies increase with the age (132–134). The most

studied IgA autoantibodies in CF are antineutrophil cytoplasm

antibodies (ANCA) and more specifically the one targeting

bactericidal/permeability-increasing protein (BPI) (132, 135–

138). Neutrophils are major immune cells present in CF

airways, putatively playing protective roles against pathogens

(139) while also exacerbating airway damage, e.g. by releasing

neutrophil elastase that degrades peribronchial tissue (139). In

addition, dead neutrophils are the main source of extracellular

DNA that further thickens the mucus of CF patients (140). A

meta-analysis on the topic indicates that around 50% of the

patients had elevated levels of BPI-ANCA IgA (137). They also

demonstrated that the levels of BPI-ANCA were associated with

increased prevalence of P. aeruginosa infection, increased

response to P. aeruginosa infection and decreased lung function

(137). IgA autoantibodies directed against double-stranded DNA

were also observed both in serum and sputum from CF patients

but only the systemic one was associated with a worse outcome

(140). Finally, IgA autoantibodies against PAD-4 were identified,

also in serum and sputum secretions, correlating with disease

severity (141). Furthermore, it was reported that serum levels of

IgG BPI-ANCA correlated those of antibodies against

P.aeruginosa (132)whereas these IgG autoantibodies are not

present in the airways where only IgA BPI-ANCA are observed,

despite that IgG antibodies against P.aeruginosa are also present,

suggesting different pathways underlying local/airway vs systemic

autoimmune responses (132). In another work in children with

CF, an increase in the number of B cells was reported in blood

compared to BAL, also supporting this hypothesis (142). Finally, a

study on the response to P.aeruginosa infection in children

demonstrated differences between systemic and local responses

(143), all children with CF -whether they had chronic, acute, or

even no history of P. aeruginosa infection- displaying higher BAL

levels of IgA against P. aeruginosa than did control children. On

the other hand, children with no history of P. aeruginosa infection

had similar levels of serum specific IgA as control children (143).

Thus, whereas IgA may play a protective role against infection, it

is likely that it also play roles during autoimmune responses in the
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lung. Whereas IgA autoantibodies are well documented in CF, the

presence of autoreactive B cells and their location or biology has

been less studied. The relationship between a specific subset of

natural killer T cells and IgG autoreactive B cells in the lung was

explored in a murine model, showing that the number of germinal

centers autoreactive IgG+ cells in the lung was inversely correlated

to this T cell subset (144). To our knowledge, this has not been

evaluated with IgA autoreactive B cells, probably mostly due to

difficulties in isolating or detecting antigen specific B cells

particularly in tissues where a method has however been

developed using biotinylated specific antigens revealed by

avidin-cyanin 3 (145).

Finally, the IgA transport system seems also altered in this

disease (116, 146), with upregulation of pIgR expression allowing

increased transcytosis of IgA into mucosal secretions (118, 137).

despite an intrinsic inhibitory effect of the mutated CFTR on pIgR

expression in cells or animals (126, 146).. When CFTR-mutated

mice were infected with P.aeruginosa, pIgR expression was

upregulated, probably through the IL-17 pathway, indicating that

infection could restore and even upregulate the IgA/pIgR system in

this disease (126).

In asthma, an association was recently described between disease

severity and increased blood IgA+ B cells in a cohort of 154 patients

and 28 healthy individuals (147). Using flow cytometry, this study

showed that more severe asthma was associated with a decrease of

circulating naïve and transitional B cells and an increase of IgA+ B

cells compared to controls as well as compared to patients with mild

asthma (147). It was also described that BAFF levels were increased in

lung tissue and BAL (but not in serum) in human asthma (148, 149).

In ovalbumin (OVA)-induced allergic experimental asthma (95), it

was shown that those mice had increased IgA levels in both serum

and BAL (150). Interestingly, eosinophils, which are major effector

cells of allergic asthma, have a high expression of the myeloid IgA-

receptor FCaR1 in mice (150), as observed in allergic patients (151).

S-IgA can readily induce the degranulation of eosinophils (152, 153),

suggesting that IgA could contribute to the pathogenesis of mucosal

inflammation in asthma (150). Furthermore, inhibition of CD40-

CD40L or OX40-OX40L interactions in mice results in lower total

and OVA-specific IgA levels in lung tissue, BAL and serum, which

could suggest that this increase is at least partly due to a T–cell-

dependent mechanism (150).

IgA and IgA+ B cells could also play a role in both

autoimmunity and fibrogenesis in interstitial lung disease. In

particular, idiopathic pulmonary fibrosis (IPF), a deadly

pathology characterized by the destruction of the architecture of

the distal lung with an accumulation of collagen due to the

hyperactivation of fibroblasts (154, 155). Recent data suggest that

B cells and IgA could play a role in this pathology. First, lymphoid

aggregates were observed in IPF lungs (156, 157) and elevated

concentration of IgA antibodies in serum from patients with IPF

has been associated with a decreased survival (158). IPF patients

also display increased circulating IgA autoantibodies compared to

healthy individuals (159, 160), which correlate with the number of

TLOs in the lung (160). In addition, increased numbers of PCs and

transitional B cells were present in the IPF lung tissue, and TLOs
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were strongly stained for IgA (159). Moreover, an increase of

CXCL13 was observed in blood as well as in the lung tissue from

IPF patients, particularly in TLOs and near the fibroblast foci (161).

Furthermore, B cells in TLOs express CXCR5 (161) but not Ki67

(157), suggesting that they could mainly be recruited from blood

through a CXCL13-CXCR5 axis. It is known that TGF-b is

increased in IPF tissue (162), probably produced by Th cells in

TLOs (159), leading to the hypothesis that CSR to IgA could be

induced locally. The precise role of IgA+ B cells in IPF remains

however unclear and should be further studied.
5 Roles of IgA+ B cells in upper
airways

Few data exist on the role of IgA and IgA-producing B cells in

sinonasal diseases (163). In patients with selective IgAD, 48-78%

display recurrent upper airway infections, including rhinitis and

rhinosinusitis (164–166), likely due to the major role of IgA against

viral infections (167). Upper airway infections with viruses such as

rhinovirus (168), influenza (169) and SARS-CoV2 (170) lead to an

increase of S-IgA in the nasal lavage, which plays a protective role in

man (169) and mice (126, 127). Additional evidence emerged from

studies in endurance athletes, strenuous exercise decrease upper

airway S-IgA production that correlates to the increased rate of

upper respiratory tract infections (171–173).

In patients with allergic rhinitis (AR), nasal allergen challenge

induces local IgA production (153), and specific nasal IgA responses

have been reported for different allergens, including house dust

mites (174), grass (175), ragweed (176, 177), birch pollen (178, 179),

and red cedar (180) with antigen-specific IgA levels correlating with

nasal symptoms (180). However, patients with IgAD are more likely

to develop AR (165, 166) and AR patients have lower total IgA

levels in the serum as well as in their nasal tissue compared to

healthy controls (181, 182). One study showed that intranasal

administration of ragweed-specific IgA protected against allergic

inflammation in sensitized mice (183), and that the production of

allergen-specific IgA in neonatal mice prevented the development

of cockroach allergy (183). Several studies also reported that

successful allergen immunotherapyis associated with allergen-

specific IgA responses (184–191) along increased IgA+ B cells,

PCs, and Bregs that correlate with the clinical benefit (192, 193).

In chronic rhinosinusitis (CRS) patients it has been reported

that 16.7% has low levels of serum IgA, with 6.2% matching the

definition of selective IgAD (194). Similarly CRS is more frequently

reported in individuals with IgAD (up to 78%) compared to

individuals with normal IgA levels (166). In patients suffering

from CRS with nasal polyps (CRSwNP), increased numbers of B

cells and PCs are found in polyp tissue (195, 196) and these PCs

abundantly produce Igs including IgA. It has been reported that

these B cells infiltrating NPs are contributing to organize TLOs

(196–198), suggesting a unique B cell activation environment

within NPs that is distinct from classic GC-mediated mechanisms

(199). Several studies also reported overexpression BAFF in patients

with CRSwNP (200–203) and of local IgA+ PCs (204), IgA1+ B cells
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serving as precursors for IgA2+ B cells (205). One recent paper also

suggested the possibility of local conversion of antigen-specific IgA

to IgE (206), but this needs to be validated. Increased S-IgA levels

were observed in CRSwNP compared to healthy controls in one

study (204), but not in another (207). The latter study also showed

increased tissue IgA in CRSwNP with paradoxically reduced IgA

antibody levels to S. aureus enterotoxin B (207), a powerful pro-Th2

superantigen. Elevated levels of IgA autoantibodies to double-

stranded DNA and basement membrane proteins have also been

observed in CRSwNP (208).
6 Conclusion

In the lung, IgA-producing B cells and IgA+ PCs are found in

the airways, close to the surface epithelium and around submucosal

glands, as well as in the lung parenchyma. Following its transport

across the epithelium through pIgR-mediated trafficking, IgA

antibodies protect the conducting airways via immune exclusion

of inhaled pathogens and antigens. During disease state such as

infections or COPD, iBALT can develop and recruits B cells by

producing the chemokine CXCL13 that attracts the CCR5-

expressing B cells. T cells that are present in iBALT can induce

class-switching to IgA, through TGF-b and concomitant interaction

between CD40L and CD40. Dendritic cells may also induce IgA

synthesis in the lung by secreting APRIL and/or BAFF that bind to

three different receptors and lead to the activation of NF-kB and

Akt pathways that underlie survival and maturation of naïve B-cells.

Interestingly, TACI activation is closely related to class-switching to

IgA and differentiation into PCs.

Lung-tissue resident memory B cells were identified in the lung,

but within airways and alveoli. Upon antigen rechallenge, those

resident cells can move near the new infection site via CXCL13-

CCR5 interaction, where they differentiate into PCs to secrete

protective antibodies. This host response was not observed upon

systemic immunization, suggesting that mucosal vaccines could

represent a specific route for prevention against respiratory

infections. In addition, a subset of Bregs that produce IgA was

discovered following activation by APRIL in the absence of BAFF,

or following activation by a specific fusion protein containing an

allergen. Importantly, IgA+ Bregs produce IL-10 and are potent

regulators of allergic inflammatory responses in mice. In contrast,

IgA and IgA+ B cells could also contribute to chronic inflammation,

possibly through autoimmune mechanisms. iBALT from COPD

and IPF patients include IgA+ B cells, a feature that correlates with

increased levels of circulating IgA autoantibodies directed against

KRT18 and KRT19 (in COPD) or citrullinated proteins (in IPF). In

the upper airways, IgA+ B cells may also play different roles, as

patients with IgA deficiency are more susceptible to develop allergic

rhinitis or CRS on the one hand, while in CSRwNP IgA

autoantibodies against double stranded DNA could be

detrimental on the other.

There remain many gaps in knowledge regarding IgA immunity

in the lungs. Some of them are the characterization of B1-like and

LLPC subsets, the selective pro-IgA signalling operating in the lung
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(including molecular signalling, e.g. behind TACI), as well as the

regulation by IgA of airway/lung microbiome. Most importantly,

future research should also address the functional role of IgA+ B

cells that are present in several inflammatory diseases in the

airways, to determine whether, how, and under which

circumstances they exert protective and/or deleterious roles.
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