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The large majority of lymphocytes belong to the adaptive immune system, which

are made up of B2 B cells and the ab T cells; these are the effectors in an adaptive

immune response. A multitudinous group of lymphoid lineage cells does not fit

the conventional lymphocyte paradigm; it is the unconventional lymphocytes.

Unconventional lymphocytes—here called innate/innate-like lymphocytes,

include those that express rearranged antigen receptor genes and those that

do not. Even though the innate/innate-like lymphocytes express rearranged,

adaptive antigen-specific receptors, they behave like innate immune cells, which

allows them to integrate sensory signals from the innate immune system and

relay that umwelt to downstream innate and adaptive effector responses. Here,

we review natural killer T cells and mucosal-associated invariant T cells—two

prototypic innate-like T lymphocytes, which sense their local environment and

relay that umwelt to downstream innate and adaptive effector cells to actuate an

appropriate host response that confers immunity to infectious agents.

KEYWORDS

NKT (natural killer T) cell, MAIT (mucosal-associated invariant T) cell, innate-like effector
lymphocyte, symbionts, pathobiont
Introduction: ‘For a secret offence, a
secret revenge’

This subtitle ‘For a secret offence, a secret revenge’ (see Box 1) exemplifies the

metaphorical descriptions of fin-de-siècle—turn of the 19th century, scientific discoveries

written for the benefit of the general public; this style, quite common then and in the early

20th (3, 5), remains in textbooks and lectures in pathology, microbiology, and

immunology. By that time, many—Antony van Leeuwenhoek (6), Robert Hooke (7),

Theodor Schwann (8), and Matthias Schleiden (9), had independently peered down the

microscope, developing the ‘cell theory’—the cell as the fundamental unit of life. Now
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entered Rudolf Virchow (10) who espoused ‘omnis cellula e

cellula’—every living cell derives from another cell, the melodic

phrase coined by François-Vincent Raspail (11)—from

observations of leukocythemia—leukemic cells in the blood of a

50-year-old woman and formed the cellular basis of disease (10, 12).

Robert Koch and Louis Jean Pasteur independently developed the

microbial basis of infectious disease (13), and Élie Metchnikoff

(previously Ilya Ilyich Mechnikov) whose astute observations of

cells swarming toward the splinter prick in the starfish larva and

their attempts to eat it, voraciously gnawing at it—that is termed

phagocytosis, birthed cellular immunology (5, 14, 15), while from

the opposing and warring Paul Ehrlich school originated humoral

immunity (15–17).

Viewed against this historic backdrop, ‘for a secret offence, a

secret revenge’ refers to the body’s elegant defense system working

against agents that cause infectious diseases—the battles raged

between immune cells and bacteria. The immune system is

generally described as a warring system that oftentimes wins

battles yet may lose a war: the morbidity and mortality caused by

severe acute respiratory syndrome coronavirus 2 infection is a sorry

reminder of the perils of the warring immune system. While it is a

warring system indeed, it does not attack indiscriminately. The

immune system has learnt over eons to coexist with billions and

zillions of bacteria and other microbes in a symbiotic habit.

Amid kämpfe uńd schlaćhten with microbes and other forms of

external (irritants and allergens) and internal (mutant cells and

metabolic toxicants) dangers, in complex multicellular metazoans

arose a sensing-and-actuating system—the immune system. In

vertebrates, the initial response to aforementioned dangers is

actuated by the older innate immune system. In vertebrates, the

innate immune system, which arose in early metazoan faunas—the

simple invertebrates, is made entirely of the myeloid lineage of

hematopoietic cells such as macrophages, dendritic cells and mast

cells in tissues and by monocytes, neutrophils, basophils, and

eosinophils patrolling the blood and, on demand, tissues as well.

As the innate immune system responds to danger, it alerts the

adaptive immune system, which kicks into full gear should the

innate immune response not restore the host’s altered milieu

inteŕieur (homeostasis) to its original state—or close to it. The

adaptive system is slow in acting and is made entirely of lymphoid

lineage cells. These cells sense alterations in the homeostatic state

with the use of antigen-specific receptors encoded by somatically

rearranged gene segments, clonally expressed by B and T
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lymphocytes—the B-cell receptor (BCR) and ab T-cell receptor

(TCR). Such B and T lymphocytes together constitute the

conventional lymphocytes. The clonal expression of BCR and

TCR requires the priming of the adaptive immune system by

either immunization with antigen or natural infection for the

clonal expansion of the low-frequency antigen-specific

lymphocytes to clear infections and to protect against infectious

diseases. This requirement for priming distinguishes the adaptive

immune system from the innate, which reacts quickly, without the

need for prepriming.

Circa 1973, a non-B, non-T—the ‘null’ killer lymphocyte, which

could kill tumor cells without prior priming of the immune system,

was discovered. Now called natural killer (NK) cells, their discovery

alerted to lymphocytes that behave like the cells of the innate

immune system and featured the quiet annunciation of

unconventional lymphocytes (18). Next, a decade later, the start

of the year 1983 unveiled with the discovery of B lymphocyte

subsets: one that secreted natural antibodies (B1a) and the other

that produced antibodies to bacterial polysaccharides and T

lymphocyte–independent antigens (B1b) in addition to the

conventional B2 B cells of the adaptive immune system (19).

Then in ca. 1986 came the discovery of gd T cells, which express

the gd TCR genes—a kin to the ab TCR (20). The ensuing decades

announced the discovery of many more unconventional

lymphocytes (Figure 1): e.g., natural killer T (NKT) cells,

mucosal-associated invariant T (MAIT) cells, mouse CD8aa
intraepithelial T lymphocytes, mouse H-2M3-restricted T cells,

mouse/human H-2Qa1/HLA-E-restricted T cells, and human

group 1 CD1-restricted T cells as well as lymphoid tissue inducer

cells and innate lymphoid cells [reviewed in refs (21, 22).]. This

collection of unconventional T lymphocytes we here call innate/

innate-like effector lymphocytes.

The multitudinous innate/innate-like effector lymphocytes

share several common features. In addition to being of lymphoid

origin, they act quickly as they display a memory phenotype similar

to antigen-experienced conventional lymphocytes yet, unalike

conventional lymphocytes, retain no memories of past pathogen

encounters. After development, innate/innate-like effector

lymphocytes become home to secondary lymphoid and/or

nonlymphoid tissues. They are stationed at barrier sites where the

microbial consortia are known to congregate (19, 23, 24). As

discussed below in the “Hygiene Hypothesis” section, products

from these consortia facilitate the development and/or maturation
BOX 1 Fin-de-siècle—a turn-of-the-19th-century metaphorical description of the defense system as a warring system of the body that restores
balance when tipped over by an infection.

The subtitle ‘For a secret offence, a secret revenge’ owes to the title of one of the fables in ‘Vacation Stories: Five Science Fiction Tales’ written by the 1906 Nobel Laurate
Santiago Ramón y Cajal, published originally in the Spanish language assuming the alias of ‘Dr. Bacteria’. These fables were written for Cajal’s scientific friends. Famed for
the ‘neuron doctrine’ and precise and beautiful drawings of the nervous system (1), Cajal is less known for his artistic and literary works because much of these cultural
contributions were poorly recorded and archived. Cajal “wrote a collection of twelve fables or semi-philosophical, pseudoscientific tales that [I]” he “never dared take to press,
both for the oddness of their ideas and the laxity and carelessness of their style (2).” Fortunately, the collection of five science fiction works have survived Cajal and time in
‘Vacation Stories’; the remaining seven “sleep the slumber… far deeper than the so-called sleep of slumber[.]” not as “failed artistic works” as Cajal’s Preface would make the
reader to believe (2) but rather because those manuscripts were never found (3, 4).
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of a subset of innate/innate-like effector lymphocytes (25–29).

Those innate-like lymphocytes that express rearranged BCRs or

ab/gd TCRs recognize their cognate ligands by germ-line encoded

portions of the antigen-specific receptors using an innate
Frontiers in Immunology 03
recognition logic (30–34). Innate/innate-like lymphocytes react to

self- and nonself-ligands: Some recognize H-2Qa1/HLA-E-

restricted self and/or microbial peptides, H-2M3-restricted N-

formylated mitochondrial/microbial peptides, group I and group
FIGURE 1

Innate-like effector lymphocyte functions mirror type 1, type 2, and type 3 effector cells. Natural killer T (NKT), mucosal-associated invariant T (MAIT),
and gdT cells are characterized by semi-invariant T-cell receptor (TCR) expression by contrast to conventional T cells express a diverse TCR (IMGT
nomenclature) repertoire. By contrast, innate lymphoid cells and NK cells do not express rearranged antigen receptors. Type 1 effectors include the
cytotoxic NK and CD8+ T cells and T helper (Th) 1 cells, as well as NKT1, MAIT1, and gdT1 cells. They require IL-12 for induction, which is bolstered
by IFN-g. T-bet and the related eomesodermin transcription factors control the differentiation of type 1 effector cells, which are essential for
immunity against intracellular pathogens. Type 2 effector cells include Th2, NKT2, and gdT2 cells. These cells are activated by IL-4 and require
GATA3 for their effector differentiation. Their physiologic functions—e.g., parasite expulsion, and pathologic—e.g., airway hypersensitivity, are
mediated by IL-4, IL-5, and IL-13 secretions. RORgt—the lineage specific transcription factor program type 3 effectors, which include Th17 and
NKT17, MAIT17, and gdT17 cells. Lineage-specific inducive factors include IL-6, TGF-b, IL-1b, IL-23, and IL-7. Type 3 effector cells secrete IL-17 and
IL-22 upon activation, by which they mediate tissue repair and confer immunity to extracellular bacteria and fungi.
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II CD1-restricted lipids—e.g., ab and gd T cells and NKT cells, or

major histocompatibility complex (MHC)–related 1 (MR1)-

restricted metabolites—e.g., MAIT cells. Others recognize ligands

directly without the need for MHC/non-MHC restricted

presentat ion—e .g . , intact prote ins , smal l molecules/

phosphometabolites—e.g., gd T cells, or phospholipids—e.g., B1a

cells and gd T cells. Further, inflammatory cytokines alone—e.g.,

type I interferons (IFNs) or interleukin (IL)-12 and IL-18 by

themselves—without the need for antigenic or agonistic ligands,

can activate innate-like T lymphocytes. Innate/innate-like effector

lymphocytes are quick responders; they can act as quickly as cells of

innate immune system or faster [reviewed in refs (21, 22)]. This

feature in several innate/innate-like effector lymphocytes is

ingrained during development by a genome regulatory network

under the control of a promyelocytic leukemia zinc finger

transcription factor (encoded by Zbtb16; reviewed in ref (35, 36)].

Activated innate/innate-like effector lymphocytes secrete a wide

variety of cytokines and chemokines with which they can steer

downstream type I, II, and III immune responses (Figure 2).

Thereby, they integrate sensory output/s received from the innate

immune system to provide context to downstream innate and

adaptive immune responses (35, 42). Here we review how NKT

cells and MAIT cells—two prototypic innate-like T lymphocytes,

sense their local environment and relay that umwelt to downstream
Frontiers in Immunology 04
innate and adaptive effector cells to actuate an appropriate response

that confers protection from infectious diseases.
Natural killer T and mucosal-
associated invariant T cells—two
peas in a pod

There are multiple types of NKT and MAIT cells that are

distinguished by their ab TCR usage and, consequently, the ligands

they recognize (21). The focus in this review is on NKT and MAIT

cells that express an invariant TCR a-chain: semi-invariant NKT

cells begotten from the rearrangement of TRAV11*02 (mouse

Va14i) or TRAV10 (human Va24i) to TRAJ18 and MAIT cells

from TRAV1-2 (mouse and human Va9i and human TRAV12/

TRAV20) to TRAJ33 rearrangement [reviewed in refs (35, 43–45)].

A curious feature of these rearrangements is not only the conserved

TRAV to TRAJ usage but also that this rearrangement results in

conserved residues that make up the CDR3a (complementarity

determining region 3a) loop of the TCR a-chain. Furthermore,

invariant Va14i a-chain pairs with TRBV13-2*01 (Vb8.2),
TRBV29*02 (Vb7), or TRBV1 (Vb2) b-chain to form a functional

mouse semi-invariant NKT cell TCR. Additionally, the Va24i a-
FIGURE 2

Immune functions of mouse NKT cells. NKT cell activation is initiated by semi-invariant NKT cell receptor interactions with cognate antigen and
bolstered by costimulatory interactions between CD28 and CD40 and their cognate ligands CD80/86 (B7.1/7.2) and CD40L, respectively. The
resulting activated NKT cells crosstalk with members of the innate and the adaptive immune systems by deploying cytokine and chemokine
messengers. Upon activation in vivo, NKT cells rapidly secrete a variety of cytokines and chemokines, which influence the polarization of CD4+ T
cells toward Th1 or Th2 cells as well as the differentiation of precursor CD8+ T cells to effector lymphocytes, and B cells to antibody-secreting
plasma cells. Some of these mediators facilitate the recruitment, activation, and differentiation of macrophages and DCs, which results in the
production of interleukin (IL)-12 and possibly other factors. IL-12, in turn, stimulates NK cells to secrete IFN-g. Thus, activated NKT cells have the
potential to enhance as well as temper the immune response. This schematic rendition is an adaptation of past reviews (35, 37–41) and works cited
in the text.
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chain pairs with the mouse TRBV13-2*01 orthologue—TRBV25-1

(Vb11) to form a functional human semi–invariant NKT cell TCR.

Akin to the semi-invariant NKT cells, MAIT cells pair with a

limited set of b-chains to form a functional MAIT cell TCR. The

conserved nature of the functional NKT and MAIT cell TCRs allow

them to recognize their respective ligands—CD1d+lipid/s and MR1

+vitamin metabolites, respectively, by means of conserved

interactions—i.e., with an innate-like recognition logic (reviewed

elsewhere: refs (29, 30, 34)].

In a similar vein, the pig semi-invariant NKT cells use the

pTRAV10 TCR Va gene segment, which is highly homologous to

segments encoding human TRAV10, mouse TRAV11, and rat

TRAV14S1—the canonical Va segments used by the semi-

invariant NKT cells in these species. The best alignments for

pTRAJ18*01 were TRAJ18, TRAJ18, and TRAJ18, the Ja18 gene

segments used by the human, rat, and mouse invariant a-chain,
respectively. pTRBV25 is most similar to human TRBV25-1 (Vb11),
mouse TRBV13-2*01 (Vb8.2), and rat Vb8.2—the canonical Vb
segments used by the semi-invariant NKT cells in these species (46).

NKT cell functions are controlled by a variety of lipid agonists

presented by CD1d molecules. These agonists include

glycosphingolipids such as a-galactosylceramide (aGalCer) and

a-glucosyldiacylglycerols and related compounds—both of host/

self and microbial origins (see Table 1 and references therein).

MAIT cell functions are controlled by metabolites in the riboflavin

biosynthesis pathway when presented by MR1 (43, 44, 59–62). One

such MAIT cell agonist is a derivative of vitamin B2 metabolite 5-

(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU),

which is synthesized by both symbiotic and pathogenic bacteria

(43, 44, 59, 60). Consequently, infections with bacteria- harboring

mutations in the rib gene/s prevent MAIT cell activation, which in

some infections can prove fatal (62).

By the last fin-de-siècle, the roles for NKT cells were implicated in

steering immune responses to pathogens: to bacteria—Salmonella

choleraesuis, Listeria monocytogenes, Mycobacterium bovis, and M.

tuberculosis; to viruses—hepatitis B virus and lymphocytic

choriomeningitis virus; to parasites—Plasmodium spp., Leishmania

major, and Schistosoma mansonii; and to worms—Nippostrongylus

brasiliensis [refs (63–80); see also Supplemental Table 1]. How NKT

cells were activated by these pathogens was not understood. At that

time, the only known NKT cell agonist was aGalCer (49, 81, 82).

aGalCer (KRN7000) was isolated from the marine sponge—Agelas

mauritianus, whose potent antitumor activity is mediated by NKT cells

(47–49, 83) (see Box 2). In the ensuing two decades, much has been

learnt about how NKT and MAIT cells control immune responses to

infections with bacteria and viruses, many of which do not

biosynthesize agonistic ligands. There are three distinct ways to

activate NKT and MAIT cells (Figure 3): the first is termed TCR

agonist–dependent direct activation. In this mode, the presentation of

the agonist aGalCer by CD1d or 5-OP-RU by MR1 activates NKT or

MAIT cells, respectively (Tables 1–3), to initiate their effector function/

s (reviewed in ref (35). The second mode is termed TCR agonist–

dependent and cytokine-assisted activation. Weak ligands—e.g., a-
galacturonosylceramide (aGalUCer) biosynthesized by Sphingomonas

spp (50, 51, 87, 111), aGalCer-like asperamide B by Aspergillus

fumigatus (52), a-glycosyldiacylglycerols from Borrelia burgdorferi
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and Streptococcus pneumoniae (54, 55), or self aGalCer or

isogloboside 3 (iGb3) induced by certain bacterial infections or sterile

inflammation [ref (37, 56, 158–160); for structures, see Table 1]—that

poorly activate NKT or MAIT cells require an immune push. That

push is provided by inflammatory cytokines produced by the activation

of DCs—e.g., IL-1b, IL-12, IL-18, or type I IFNs (96, 103, 116, 131, 155,
161). Hence, the context of infection can influence the activation of

NKT andMAIT cells. The third mode of activation occurs in a manner

independent of TCR stimulation but is reliant on cytokine/s alone. This

mode of NKT and MAIT cell activation is termed TCR-independent

inflammatory cytokine–induced activation. Bacteria that do not

biosynthesize agonistic lipids but contain microbial pattern

recognition receptor ligands such as lipopolysaccharide result in a

TCR-independent inflammatory cytokine response frommyeloid cells.

These inflammatory cytokines can activate NKT cells. This mode of

NKT andMAIT cell activation plays a protective role during infectious

diseases, especially caused by virus infections (156, 157, 162–166).

Once activated, NKT cells produce a variety of cytokines and

chemokines that steer downstream innate and adaptive immune

responses. This response includes type I, II, and III cytokines, which

are secreted by NKT1, NKT2, and NKT17 cells, respectively.

Corresponding MAIT1 and MAIT17 cells and attendant cytokine

responses are similarly described. The three subsets emerge under

the transcriptional activity of factors similar to those established in

conventional CD4+ T cells (Figures 1, 2). Broadly, akin to

conventional CD4+ T cells, NKT and MAIT cells play roles in

immunity to infections and tumors and in autoimmune and allergic

reactions. These features of NKT and MAIT cells are reviewed in

detail elsewhere (35, 38). In addition to the three NKT cell subsets,

NKT10 cells—which secrete IL-10—play regulatory functions in

conjunction with T regulatory cells. NKTfh cells—which provide

cognate and noncognate help to conventional B cells to secrete

antibodies—may control immunity to human pathogens such as

Borrelia hermsii, S. pneumoniae, and P. falciparum (167–169).

These features of NKT and MAIT cells are reviewed in detail

elsewhere (35),

Human NKT cell responses are as diverse as the mouse NKT

cells (170). Two functional subsets were recognized that were

segregated by the lack of CD4 or CD8 coreceptor expression

(NKT1) or by CD4 expression (NKT2). Human NKT1 cells

produce IFN-g and TNF-a and, when activated under the

influence of inflammatory cytokines, upregulate NKG2D and

perforin expression priming them for cytotoxic response against

infected cells and cancer cells (171, 172). Akin to mouse, the human

NKT2 subset, which produces IL-4 and IL-13 and their

accumulation in the lungs, may underlie the pathology in chronic

asthmatic patients (173). Activated human NKT cells also produce

IL-17 (170), which may reflect the existence of an NKT17 subset in

humans. Further, NKT17 andMAIT17 subsets are present in higher

frequency when compared to NKT1 and MAIT1 subsets in liver

perfusates, which produce IL-17 and IFN-g, respectively (174).

Human NKT and MAIT subsets have some semblance to mouse

NKT and MAIT subsets, but further studies are necessary to

understand how similar they are in the two species.

The evolutionary origins of NKT and MAIT cell subsets have

not been traced yet. Both NKT and MAIT cells arose as eutherian
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TABLE 1 Natural, synthetic, microbial, and self natural killer T (NKT) cell agonists: structures and properties.

Lipid
(class1)
origin

Chain
length2 Structure Agonist

activity 3,4 Ref.

Natural and synthetic

Agel 9b
(GSL)

The sponge
Agelas

mauritianus

C17 (C16-
Me) phyto

C24

O
HO

HO

O
HO

OH

HN

OH

O

OH Antitumor
(47,
48)

KRN7000
aGalCer
(GSL)

synthetic
analogue of
Agel 9b

C18-phyto
C26

O
HO

HO

O
HO

OH

HN

OH

O

OH

Very strong;
robust IFN-g, IL-

4, and other
cytokines

(49)

Microbial

aGalUCer
(GSL)

C18-phyto
C14

O
HO

HO

O
HO

OH

HN

OH

O

OH

O

Weak;
Sphingomonas

spp.

(50,
51)

Asp B (GSL)
Aspergillus
fumigatus

C20:2-C9

Me C16-
C2 OH

O
HO

HO

O
HO

OH

HN

OH

O OH

Weak (52)

Acyl-
aGlcChol
Helicobacter

pylori

C14

O

OHO
HO

HO

O

O

Strong; binds a
small NKT cell
subset (mo)

(53)

aGalDAG
(GGL)
Borrelia

burgdorferi

sn1-C18:1
sn2-C16 O O

O

O
O

HO

HO
HO

OH

O

Weak (mo)-to-
none (hu)

(54)

aGlcDAG
(GGL)

Streptococcus
pneumoniae

sn1-C18:1
sn2-C16 O O

O

O
OHO

HO
HO

OH

O

Weak (55)

Self—mammalian cells

aGalCer
(GSL)

C18
C24:1

O
HO

HO

O
HO

OH

HN

OH

O

IFN-g, IL-4 (56)

iGb3
(GSL)

C18-
C24 O

HO
O

HO

OH
HN

OH

O

O
O

OH

HO

OHO
HO

HO
HO

OH

O

Weak (mo)-to-
none (hu)

(57)
F
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1Agel, agelasphin; Asp B, asperamide B; Chol, cholesterol; DAG, diacylglycerol; GalCer, galactosylceramide; GalUCer, galacturonosylceramide; GlcCer, glucosylceramide; sn, stereo nomenclature
for glycerolipids; GGL, glycoglycerolipid; GSL, glycosphingolipid.
2sphingosine/phytosphingosine chain length indicated first and N-acyl chain length second,
3agonist strength based on Ref (58).
4relative potencies in comparison to aGalCer; mo, mouse; hu, human.
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innovations approximately 125 million years ago in an ancestor

after the therian mammals split to metatherians and eutherians—

the true placental mammals (35, 175, 176). Among mammals other

than the mouse and human, the development and function of NKT

cells in pigs—Sus scrofa (var. domesticus)—are intensely studied.
Frontiers in Immunology 07
Pig NKT cell subsets were recently described using the single-cell

RNA sequencing analysis of more than 11,000 differentiating

thymic NKT cells (177). The vast majority of porcine NKT

thymocytes resemble mouse NKT2 cells. Surprisingly, these pig

NKT2-like cells do not differentiate into NKT1 or NKT17 subsets.

Instead, some develop into a population enriched for interferon-

stimulated genes that simultaneously maintain an NKT2-like gene

profile, as well as two very rare subsets, designated iNKT-swine (sw)

1 and iNKT-sw2. iNKT-sw1 and iNKT-sw2 cells are most similar to

two minor populations of innate-like CD8aa T cells present in pig

thymocytes, sharing the expression of FCGR3A, ZNF683, NKG7,

and MHC class II–encoding genes. They also downregulate tissue

emigration genes, suggesting that both are long-term thymus

residents. Similar thymus-resident populations of MAIT cells, gd
T cells, and CD8aa T cells have been described before and have

been speculated to modulate thymocyte differentiation to respond

to peripheral perturbations, such as infection (24, 174, 178, 179).

Interestingly, iNKT-sw2 cells are enriched for CD244 and CXCR6,

which are upregulated on a newly discovered population of NKT

cells found in mice and humans that are highly cytotoxic and

protect mice from melanoma metastasis and influenza

infection (180).

Although peripheral pig NKT cells can be stimulated

nonspecifically to secrete IFN-g and IL-17 (181, 182), thymus-

resident pig NKT cells appear to produce little if any IFN-g, IL-4,
or IL-17 under steady-state conditions (177). One explanation for

the surprisingly undifferentiated state of pig NKT thymocytes is that

they emerge from the thymus in a functionally immature state and

undergo further differentiation in the periphery. Since human NKT

thymocytes do not also produce IFN-g or IL-4 under steady-state

conditions, it is possible that the diversity of NKT thymocyte

subsets observed in mice is unusual and that it is more normal

for species with the NKT-CD1d system to express fewer and/or less

differentiated NKT thymocytes.

In comparison to NKT cells, relatively little is known about

porcine MAIT cells. However, MAIT cell TRAV1-TRAJ33 TCRa
sequences have been cloned from pig blood and tissues and found to

pair with a limited number of TCR b-chains (183). It was further
shown that pig MAIT cells can be CD4POSCD8POS, CD4POSCD8NEG,

and CD4NEGCD8POS T cells and express transcripts for the MAIT

cell–associated surface molecules IL-18Ra, IL-7Ra, CCR9, CCR5,
and/or CXCR6 and the transcription factors PLZF and T-bet

or RORgt.
BOX 2 A tale of a-galactosylceramides and its biosynthesis.

aGalCer/KRN7000 was first isolated from the marine sponge—Agelas mauritianus. As mammalian symbionts—e.g., Bacteroides fragilis, biosynthesize aGalCer-related
compounds (26, 28, 84), it remains open whether the aGalCer was isolated from A. mauritianus or was derived from bacteria living in a symbiotic relationship with those
sponges (85, 86). Bacteroidetes and a-Proteobacteria are the residents of sponges, members of which are known to biosynthesize a-anomeric glycosphingolipids that
activate NKT cells (26, 28, 50, 51, 87). Of note, however, aGalCer was isolated from an Agelas-related marine sponge species—Axinella corrugata whose symbionts include
a-Proteobacteria (88, 89). Nonetheless, current evidence suggests that the A. corrugata aGalCer was derived from the sponge itself and not its symbionts (88, 90).
Resolving the source of aGalCer can yield insights into the biosynthesis of aGalCer in mammals (56). One possible route to the biosynthesis of aGalCer and aGlcCer
might be the CGT1 (b-galactosylceramide synthase) and CGS (b-glucosylceramide synthase) themselves, which may have an a-linkage retention property. The two
hexosylceramide synthases use a-linked uridyldiphosphate-charged sugar donors to form b-linked monohexosylceramides by catalyzing a to bmutarotation prior to the
condensation reaction. The potential presence of aGlcCer/aGalCer in the absence of a-hexosylceramide synthase genes within mouse and human genomes poses a
quandary, however (56, 91). Biochemical evidence suggests that hexosylceramide synthases may contain a-linkage retention activity, which retains the a-linkage of the
charged sugar donor to generate a-linked monohexosylceramides (92–95). This a-anomer retaining activity may explain the synthesis of a-anomeric glycosphingolipids
in sponges and mammals, and, potentially, in bacterial species discussed in the text that biosynthesize such lipids.
FIGURE 3

Modes of NKT and MAIT cell activation by microbes. Potent agonists
—such as aGalCer, directly activate NKT cells, without the need for
a second signal, in a TCR signaling–dominated fashion (left panel).
Alternatively, microbes containing TLR ligands such as LPS activate
NKT cells by inducing IL-12 production by DCs, which amplifies
weak responses elicited upon the recognition of CD1d bound with
self-glycolipids by the NKT cell TCR. Several endogenous lipid
agonists have been identified and characterized (see Table 1). Some
microbes—such as Sphingomonas capsulata and Borrelia
burgdorferi—synthesize a-anomeric glycolipids for their cell walls.
These glycolipids, when presented by CD1d, weakly activate NKT
cells directly. In the presence of a second signal—generally a
proinflammatory cytokine such as IL-12, such weak agonists
strongly activate NKT cells (middle panel). By contrast, the mode of
MAIT cell activation appears to be agonist concentration dependent:
microbes that produce high levels of 5-OP-RU—a product of ribD-
controlled catalytic activity, directly activate MAIT cells, while those
that produce low levels of 5-OP-RU require a cytokine boost. Unlike
conventional T cells, cytokines alone can activate both NKT and
MAIT cells. Such cytokines, which include a combination of IL-12
and IL-18, activate NKT cells in a TCR-independent manner (right
panel). This diagram renders the different strategies for NKT cell
activation; they apply to MAIT cells as well. Similarities and
differences, if any, are described in the text. Adapted from past
reviews (35, 37, 38, 41) and works cited in the text.
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TABLE 2 Role of NKT cells in microbial infection and immunity.

Microbe Activation mechanism/s
(antigen)1 NKT cell role2 Model Infection

route
Reference

(s)

Gram-positive bacteria

S. pneumoniae
CD1d-dependent self and nonself (aGalDAG)

+ IL-12
Protective Ja18-/-, CD1d-/- i.n., i.t. (55, 96, 97)

S. aureus
Non-self
(lysyl-PG)

Not protective Ja18-/-, CD1d-/- i.v. (98, 99)

L. monocytogenes Self + IL-12
Protective
Detrimental

CD1d-/- i.v. (99–101)

Gram-negative bacteria

P. aeruginosa CD1d-dependent (unknown)
Protective CD1d-/- i.n.

(102)
Not protective Ja18-/-, CD1d-/- i.t.

S. typhimurium CD1d-dependent self (iGb3) Not protective CD1d-/- p.o.
(51, 99, 103,

104)

H. pylori CD1d-dependent nonself (aCgT) Protective Ja18-/- p.o. (105)

C. trachomatis (muridarum) CD1d-dependent nonself (GLXA)
Detrimental
Not protective

CD1d-/-
i.n.

intravaginal
(106–108)

C. pneumonia CD1d-dependent self and nonself (unknown) Protective Ja18-/-, CD1d-/- i.n. (109)

L. pnemophilla Cytokine dependent, IL-12 Detrimental Ja18-/- i.t. (106–108)

Francisella tularensis
subspp. tularensis SchuS4

CD1d dependent (unknown) Detrimental CD1d-/-4 i.n. (110)

Ft subspp. holarctica live vaccine
strain

CD1d dependent (unknown) Detrimental
CD1d-/- i.n. (110)

F. novicida CD1d dependent (unknown) Not protective CD1d-/- s.c., i.d. (110)

a-Proteobacteria

Sphingomonas spp. CD1d dependent nonself (aGlcACer) + IL-12

Protective (low
dose)

Detrimental (high
dose)

Ja18-/-, CD1d-/- i.v.
(50, 51, 96,

111)

N. aromaticivorans CD1d-dependent nonself (aGalUCer)
Primary biliary

cirrhosis
CD1d-/- i.v. (112)

Spirochetes

B. burgdorferi
CD1d-dependent, nonself (aGalDAG) + IL-

12
Protective 4CD1d-/- i.d.

(54, 96, 113,
114)

Mycobacteria

M. tuberculosis CD1d-dependent self
Not protective
Protective3

CD1d-/-

Cell transfer
i.v.

aerosol
(72, 115)

Fungi

A. fumigatus
CD1d-dependent non-self (asperamide-B)

and self + IL-12
Detrimental (AHR)3

Protective (early)
CD1d-/-

i.n.
i.t.

(52, 116)

C. neoformans CD1d-dependent self Protective CD1d-/- i.t. (117)

Parasites

P. berghei ND Detrimental CD1d-/- i.d. (118)

P. yoelii CD1d dependent Protective CD1d-/- i.v. (119)

T. gondii ND
Protective

Detrimental3

Ja18-/-, CD1d-/-

Ja18-/-, CD1d-/-;
Va14tg

p.o. (120, 121)

(Continued)
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Collectively, current evidence indicate that pig NKT and MAIT

cells have characteristics similar to their human and mouse

counterparts. Nonetheless, several key lineage-defining differences

in mouse and pig NKT cell subsets point toward the acquisition of

species-specific innate/innate-like T cell adaptations, perhaps for

different pathogens or may reflect the different niches in which the

two species evolved and the symbiotic microbes they live with.

Hence, the species-specific developmental aspects should be

considered, especially in the light of ecology and evolution, when

assessing the suitability of mice and pigs as biomedical models for

innate/innate-like T cell research.
The hygiene hypothesis: yes, you may
pick your nose and eat it

This subtitle was motivated by a burgeoning field of rhinotillexis

—yes, nose picking, a new area of scientific enquiry. Beneath this

otherwise aversive and socially inept and unacceptable behavior, yet

innate to primates, may lie a means to the periodic reinforcement of

disease tolerance [see Box 3; ref (184)].

The pervasive presence of microbes, flourishing at every nook

and cranny of the earth and on the surfaces and the insides of

metazoans, make them a formidable friend and foe. Hence, on being

birthed unto a dirty world, to gain fitness, metazoans found ways to

befriend and tame microbes, especially the beneficial, and ward off

unfriendly ones over eons of evolution. Symbiosis emerged, lending

to fitness in both directions—in the metazoan hosts and their

microbial partners. So much so, symbiosis has led to the

coevolution of the hosts with their microbiota, or vice versa, to

the point of codependence, wherein the immune system evolved to

manage the microbial consortium from going ‘wild’ and,
Frontiers in Immunology 09
reciprocally, the diversity of the consortium and its biosynthetic

products control the immune system from going ‘rouge’. Thus, the

hygiene hypothesis postulates that early life exposure to a full range

of diverse microbes (and worms) promotes the development and

maturation of an immune system—which reacts in a balanced

measure to prevent disease whether incited by external (infections

and allergens) or internal (autoinflammation) agencies of

inflammation (188).

For example, under sterile, germ-free conditions, the immune

system of the laboratory mouse develops and matures poorly,

rendering them susceptible to infectious diseases and

autoimmune disorders such as colitis (189–196). Conversely, the

equilibration of the gut microbiome of the laboratory mouse to that

of the ‘dirty’ pet store mouse by cohousing the two, altered, in the

former, the immune cell composition at the barrier sites, resistance

to infection, and T-cell differentiation in response to virus infection

(197). A similar equilibration of the gut microbiome of a laboratory

mouse raised under germ-free conditions by the transfer of the gut

microbiota from a feral relative of the laboratory mouse and its

maintenance over several generations by breeding increased disease

tolerance and fitness. Inflammatory responses in such mice to a

lethal influenza virus challenge was highly tempered and so was

mutagen- and inflammation-induced tumorigenesis (198). All of

these altered immune features acquired by the laboratory mouse

reflected those of the pet store or feral mouse and those of the adult

human (197, 198). The ability to approximate the human immune

system in the laboratory mouse by the transfer of the microbiome

indigenous of a feral mouse may facilitate and enhance preclinical

vaccine development and testing (198–201). Furthermore, the role

of the microbiota in the maturation of T cells may explain the

intriguing finding that, at steady state—in the absence of an

infection—DC emigrees from the barrier epithelium of

nonlymphoid tissues stochastically prime and program resting,
TABLE 2 Continued

Microbe Activation mechanism/s
(antigen)1 NKT cell role2 Model Infection

route
Reference

(s)

L. donovani CD1d dependent, lipophosphoglycan Protective CD1d-/- i.v. (122)

E. histolytica CD1d dependent, foreign antigen (EhLPPG) Protective CD1d-/- i.h. (123)

Viruses

HSV-1
CD1d dependent, nonself (glycoprotein B and

US3)
Protective

Not protective3
Ja18-/-, CD1d-/- Scarification (124–126)

HSV-2 ND Protective CD1d-/- Intravaginal (127)

Sendai virus ND Detrimental Ja18-/-, CD1d-/- i.n. (128)

RSV CD1d dependent, self Protective CD1d-/- i.n. (129, 130)

Influenza virus H1N1 and H3N2 ND Protective Ja18-/-, CD1d-/- i.n. (131–135)

HBV ND Protective Ja18-/-, CD1d-/- i.v. (136)
1see Table 1 for the structures of NKT cell agonists.
2differential outcomes in the different studies may have arisen from the use of different microbial/parasite strains.
3the outcome of infection in Ja18-/- mouse model may require additional validation as the deletion of this TRAJ gene segment by homologous recombination had resulted in the deletion of
additional TRAJ gene segments, including TRAJ33—the gene segment essential for the construction of MAIT cell TCR a-chain; additional TRAJ gene segment losses severely constricted the TCR
repertoire of conventional T cells as well [see ref (137)].
4BALB/c background of mouse strains used in these studies; others were in C57BL/6 background.
AHR, airway hyperreactivity; GLXA, chlamydial glycolipid exoantigen; ND, not determined; i.d., intradermal; i.h., intrahepatic; i.n., intranasal; i.p., intraperitoneal; i.v., intravenous; i.t.,
intratracheal; p.o., per oral; s.c. subcutaneous.
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naïve CD8+ T cells within the local draining lymph nodes for tissue

residency (202).

After development in the thymus, NKT and MAIT cells

emigrate and home to lymphoid and nonlymphoid tissues,
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presumably to patrol and maintain the integrity of the tissue

borders. The NKT and MAIT cell content at these borders varies

by tissues and the mouse strain. Their tissue distribution and

functions are best studied in the mouse; only a bit is known of
TABLE 3 Role of mucosal-associated invariant T cells in microbial infection and immunity.

Microbe Activation mechanism/s MAIT cell
role1 Model Infection

route
Reference

(s)

Gram-positive bacteria

C. difficile MR1 and cytokine dependent Detrimental Human PBMC in vitro (138)

S. pneumoniae

MR1 dependent, SAgs Detrimental C57BL/6, CAST : EiJ in vitro (139)

MR1 dependent, Spn polysaccharide Protective Human PBMCs in vitro (140)

MR1 (SAgs) and cytokine dependent IL-12
and IL-18

Detrimental Human PBMCs in vitro (141)

S. aureus MR1 dependent, SAgs Detrimental C57BL/6, CAST : EiJ in vitro (139)

Gram-negative bacteria

K. pneumoniae ND Protective MR1-/- i.p. (142)

P. aeruginosa ND Protective Human PBMCs in vitro (143)

L. longbeachae MR1 dependent Protective MR1-/- i.n. (144)

H. pylori MR1 dependent Detrimental MR1-/- p.o. (145, 146)

E. coli MR1 dependent Protective Va19tg, MR1-/- i.p., i.v. (147)

S. enterica serovar Typhi MR1 dependent Detrimental Human PBMCs in vitro (148)

S. enterica serovar paratyphi A MR1 dependent Protective Human PBMCs in vitro (149)

S. typhimurium MR1 dependent Protective Human PBMCs in vitro (33)

F. tularensis subspp. holarctica
LVS

ND Protective MR1-/- i.v. (150)

MR1- and cytokine- dependent IL-12p40 Protective MR1-/- i.n. (151)

Mycobacteria

M. abscessus MR1 dependent Protective Va19tg, MR1-/- i.p., i.v. (147)

M. tuberculosis MR1 dependent, riboflavin derivatives Protective C57BL/6, Cast;EiJ i.n. (152)

Viruses

Dengue virus Cytokine dependent: IL-12 and IL-18 Protective Human PBMCs in vitro (153)

Zika virus Cytokine dependent: IL-12 and IL-18 Protective Human PBMCs in vitro (153)

HIV-1 Cytokine dependent: IL-12 and IL-18 Protective Human PBMCs in vitro (154)

Influenza A
MR1 and cytokine dependent Protective

Human PBMCs and
LDMCs

in vitro (155)

Cytokine dependent: IL-18 Protective Human PBMCs in vitro (156)

Influenza virus H1N1 Cytokine dependent: IL-12 and IL-18 Protective MR1-/- i.n. (157)
frontiersin.or
1differential outcomes in the different studies may have arisen from the use of different microbial/parasite strains.
ND, not determined; i.n., intranasal; i.p., intraperitoneal; i.v., intravenous; p.o., per oral.
BOX 3 Rhinotillexis—a new, burgeoning field of scientific enquiry.

It is so new and burgeoning that the National Public Radio felt compelled to interview Dr. Anne-Claire Fabre—a pioneer in the field at the Naturhistorisches Museum in
Bern, Switzerland, on the matter (npr.org/2022/11/15/1136423436/researchers-dig-into-why-nose-picking-is-a-common-behavior). It is so new that the word rhinotillexis
is neither in the Oxford English Dictionary nor the Merriam-Webster American English Dictionary yet but has appeared in Wikipedia, the free encyclopedia, however.
Unless careful, excessive rhinotillexis may cause self-induced ethmoidectomy, especially if one suffers from rhinotillexomania (see en.wikipedia.org/wiki/Nose-picking).
Rhinotillexis is not peculiar of repulsive men or their man cubs, but it is a primate thing [(184) and references therein]. Self-vaccination, per oral distribution of nasal
microflora, and dental hygiene are a few proposed immunologic attributes of rhinotillexis (185–187).
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their distribution in the human body (24, 172, 203–205). In mice,

thymic NKT cell development, after commitment to this lineage

and positive selection, progresses from stage 0 to stage 1 to stage 3—

the mature NK1.1POS NKT cells, known to consist largely of NKT1

cells. Of these, CD24NEG CCR7POS stage 1/2 NKT cells emigrate from

the thymus and seed both the lymphoid and non-lymphoid tissues,

where they undergo further maturation, largely driven by the local

cytokine milieu (206–208), and perhaps the microbiota.

Verily, the early life exposure of NKT and MAIT cells to the

host microbiota has profound, lifelong effect/s on these innate-like

lymphocytes (25, 27, 161). Their development itself is dependent on

positive selection by agonistic ligands—aGalCer in the case of NKT

cells and 5-OP-RU in the case of MAIT cells [reviewed in refs (44,

203), and references therein]. The origins of these agonists are less

clearly defined. Because CD4POSCD8POS thymocytes activate Va14i
NKT cell hybridomas, it is thought that an NKT cell agonist/s may

be of self origin. Thus, b-galactosylceramide synthase (CGT)-

deficient thymocytes foster NKT cell development; hence,

bGalCer or its derivatives are less likely the thymic NKT cell

agonist. Conversely, b-glucosylceramide synthase (CGT-1)–

deficient thymocytes poorly activate Va14i NKT cell hybridomas

and conditional CGT1-deficient thymocytes to not promote NKT

cell development (57, 209). As bGlcCer itself does not activate

Va14i NKT cell hybridomas, a bGlcCer derivative—iGb3 or a self

aGlcCer (Table 1)—is a potential NKT cell–activating self-agonist.

While iGb3 synthase deficiency does not alter NKT cell

development and function and no known mammalian enzyme/s

synthesize a-anomeric glucosylceramide or galactosylceramide,

how these agonists are biosynthesized is unclear [see Box 2 for

details, see ref (35)]. Alternatively, as several gut symbionts

common to many mammals biosynthesize a-anomeric

glycosylceramides, their transport by lipid transfer proteins such

as apolipoprotein E (210) could potentially deliver the agonist/s to

the thymus. This is less likely because NKT cells develop in germ-

free mice, but they are not without defects (25, 27, 211).

In a similar vein, mammalian cells do not biosynthesize vitamin

B2, whose precursor is a precursor to the MAIT cell agonist 5-OP-

RU (33, 59, 147, 212), but rather acquire it from symbionts (161,

203, 213). Consequently, MAIT cells develop poorly in germ-free

mice bred under sterile conditions (205, 214). By contrast, NKT

cells develop in such mice as noted above. It appears as though NKT

cells and MAIT cells compete for niche such that, mice, which have

more NKT cells than humans, have a low frequency of MAIT cells.

Reciprocally, humans have a high frequency of MAIT cells but are

low in NKT cell frequency (205, 214).

NKT cell numbers in the intestinal mucosa are controlled by the

neonatal colonization of bacterial symbionts. NKT cells accumulate

in significant numbers within the intestinal mucosa, lungs, and liver

but not the thymus or spleen of germ-free mice (25, 27). The

increased NKT cell number observed in germ-free mouse intestinal

mucosa perhaps owes to increased levels of CXCL16—the ligand of

CXCR6, the levels of which are controlled by the gut microbiota (25,

215). Moreover, NKT cells developing in germ-free mice do not

mature and are hyporesponsive to the glycolipid agonist aGalCer
(27). Colonization with NKT cell agonist–bearing bacteria—e.g.,

Sphingomonas yanoikuyae, during early life but not in adulthood
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restored NKT cell maturation and normoresponsiveness to

aGalCer (27). Nevertheless, aGalCer compounds synthesized by

different bacterial symbionts—e.g., Bacteriodes fragilis and S.

yanoikuyae (see Table 1), appear to exert differential effects on

developing NKT cells (26, 28, 84); why this is awaits resolution.

Early-life microbial ecology has implications for health. Thus,

consistent with increased NKT cell frequency in the gut and lungs,

germ-free mice are overly sensitive to oxazolone/dextran sodium

sulfate–induced inflammatory colitis and airway hypersensitivity

(25, 27, 215). This disease phenotype is reversed by early-life

exposure to B. fragilis–derived glycosphingolipid(s) (28). Whether

the normal development and functions of human NKT cells require

interactions with the gut microbiota awaits discovery. So also,

whether the microbiota—known to vary between individuals of

different genetic, ethnic, and geographic backgrounds (216)—

controls human peripheral NKT cell frequency, which varies

tremendously between individuals—from undetectable to 5%—

remains unknown.

Unlike the gut, which hosts swarms of thousands of microbial

species, it is generally assumed that the internal organs not exposed

to the outside—such as the liver, heart, and brain—are sterile,

devoid of resident microbes. Counter to this assumption, a recent

study found mouse and human liver hosts its own, unique microbial

consortium distinct from the gut as it was enriched in

Proteobacteria (217). This microbiome was seeded from the gut

microbiota in a selective manner that depended on the sex of the

mouse and the local environment. Moreover, the local immune

response was dependent on the liver microbiome, which was

influenced by Bacteroidetes species. The hepatic microbiome

controlled antigen-presenting cell maturation and adaptive

immunity through the mediation of NKT cells (217).

Bacteroidetes species biosynthesize aGalCer (26, 28, 84), which

activate NKT cells to secrete CCL5 chemokine, in turn, recruiting

immune cells to the liver and their activation, expansion, and

function (217). Hence, local tissue microbiomes influence local

immunity in an NKT cell—dependent mechanism.

NKT cell homeostasis described above requires intestinal

microbial lipid presentation by CD11c+ DCs and macrophages

(218). Reciprocally, NKT cells appear to control the bacterial

composition of the gut microbiota. Consequently, dysbiosis and

disruption in intestinal homeostasis ensue in mice deficient in NKT

cells—CD1d-/- (218–221) or Ja18-/- (222–224) mice —or mice that

lack CD1d expression by DCs, which thereby are unable to present

intestinal lipids to activate local (218), intestinal mucosal NKT cells.

This dysbiosis and altered intestinal homeostasis are consistent with

alterations in the IgA repertoire (223, 225) and the induction and

function of regulatory T cells within the gut (192, 222), which are

observed in these mice as well (218, 223).

By contrast to the above reports, a recent study found that there

are no differences in the composition of the gut microbial

consortium in CD1d−/− mice (226). Similarly, no differences were

observed in the consortium in Va14 transgenic mice, which carry

high numbers of NKT cells—largely the IL-4 producing NKT2

subset (227, 228). While NKT cell activation by peroral delivery of

aGalCer minimally, yet consistently, altered the diversity of the

consortium, this effect was only transient. However, the shift in
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microbiota composition was comparable to the natural drift found

in the colony. Critically, this report noted that the natural drift in

the microbial composition of individual vivarium over time and,

perhaps, the differences in the microbial composition between

vivaria, but not NKT cells, had significant influence on the

composition of the mouse gut microbial consortium even at

steady state (226). Because this is a report from a single center,

whether mouse and human NKT cells have an impact on the

microbial consortium of the gut will require a concerted,

multicenter study.

Mouse and human skin abound with MAIT cells. MAIT cell

frequency varies between individuals (229). MAIT cell frequency is

similar in genetically identical mice housed in the same cage but

varied between those housed in distinct cages. This suggested that

the microbiota may have a role in determining the frequency.

Studies in germ-free mice revealed that MAIT cells depended on

early-life exposure to gut microbial consortium (45, 161, 203, 213).

Hence, germ-free mice failed to develop MAIT cells that localize to

barrier tissues—such as the skin, when exposed to microbes later

in life.

The development of mouse MAIT cells in the thymus is

dependent on the presentation of a by-product of riboflavin

biosynthesis—5-OP-RU (33, 44, 59, 147, 203, 212). Even though

flavonoids are essential, mammalian cells are riboflavin auxotrophs.

They depend on external sources of riboflavin, which is

biosynthesized by several bacteria and fungi—both symbionts and

pathobionts, as well as plants. The microbial origin of riboflavin and

biosynthetic metabolites explains the intimate dependence of MAIT

cell development on the gut microbiota. 5-OP-RU is biosynthesized

in a ribD-dependent manner by the gut, and potentially the skin as

well, transported to the thymus, and made available to MR1-

expressing cells for assembly and display at the cell surface (213).

The mechanism by which 5-OP-RU is transported to the thymus

and how cells capture it to make available in the ER lumen for

assembly with MR1 are poorly, if at all, understood (203).

Thymic MAIT cell emigrees home to barrier tissues. Their

numbers at the barrier tissues depend on the local concentration of

microbial derivatives, which is emulated by the painting of skin with

varying concentrations of 5-OP-RU (161, 213). In the skin, they

surveil the dermal—epidermal interface. Cutaneous-resident cells are

the MAIT17 subset; their homeostasis is IL-23 dependent, and they

respond to skin commensals upon MR1-ligand recognition in an IL-

1- and IL-18-dependent manner. These MAIT17 cells are genetically

programmed for tissue repair and, hence, contribute to normal skin

physiology (161). Given the intimacies of NKT and MAIT cells with

the symbiotic consortium, one might wonder what roles innate-like

effector lymphocytes might have in precipitating erythema toxicum

neonatorum—which is perhaps an innate immune response to skin

microbiont/s that may have penetrated the newborn infant (230).

When van Leeuwenhoek peered down his microscope, curious

what might live on his teeth, and perhaps his gums, little did he

know he would find many ‘little animals’. In his Letter 39 to the

Royal Society, he claimed,

“For my part I judge, from myself (howbeit I clean my mouth…),

that all people living in our United Netherlands are not as many as

the living animals that I carry in my own mouth this very day: for I
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noticed one of my back teeth, up against the gum, was coated with the

said matter for about the width of a horse-hair, where, to all

appearance, it had not been scoured by the salt for a few days; and

there were such an enormous number of living animalcules here, that

I imagined I could see a good number of ‘em in a quantity of this

material that was no bigger than a hundredth part of a sand-grain”

(from a collection of surviving van Leeuwenhoek letters, translated

and compiled in ref (6). [see letter 39: Phil. Trans. XIV (231)

568, 1684)].

What those ‘little animals’ or ‘animalcules’ on man’s teeth

meant remained cloaked for over two centuries. Elie Metchnikoff

had a hunch to which, later in his career and life, he laid, to an

obsession, much attention to prolong his life, in futility

notwithstanding (232). The foregoing advances, which awaited

next-generation ‘omics’ technologies and platforms, vindicates

Metchnikoff’s hunch on beneficial and harmful gut microbes and

lends support to the physiologic functions of early-life exposure to a

diverse array of microbes—and, hence, the hygiene hypothesis.
Kämpfe únd schláchten of natural
killer T and mucosal-associated
invariant T cells with pathogens

NKT cells and MAIT cells perform specialized roles during

infections to confer immunity to the host as they struggle (kampf)

with and battle (schlacht) pathogens (see Tables 2, 3 and

Supplementary Tables 1, 2). While both possess the phenotype of

activated T cells, their induction differs from conventional T cells in

that they can be triggered during pathogen infections through

invariant receptors and cytokine signals in much the same

fashion as innate cells. This results in the rapid secretion of

multiple cytokines that are released with similar kinetics to innate

cell-derived cytokines—i.e., minutes to hours after stimulation.

Accordingly, NKT and MAIT cells can influence the behavior of

cells in the innate branch of the immune response while also

shaping downstream adaptive immune responses. Over the past

decades, it has become clear that the innate properties of NKT and

MAIT cells are shared by a wide variety of MHC class I–like

restricted innate-like ab T cells with invariant TCRs that are

widespread among jawed vertebrates [reviewed in Ref (233)].

These types of lymphocytes are specialized to allow the

recognition of common or particular pathogens with relatively

few T cells (231). A good example is Xenopus laevis (African

clawed frog) tadpoles, which are able to survive in antigen-rich

waters using 15,000–20,000 T cells exhibiting limited TCR

diversity (234).

As regard the role of NKT cells in immunity, mice deficient in

CD1d or TRAJ18 that lack invariant NKT cells have shown that

these cells play nonredundant roles in several models of infectious

disease (235); NKT cell–deficient mice are more susceptible to

several bacteria species (Table 2 and Supplemental Table 1),

including S. pneumoniae (97, 236), Borrelia burgdorferi (113),

Sphingomonas spp. (50, 51), Pseudomonas spp. (102), Chlamydia

pneumoniae (109), and M. tuberculosis (73). They also exhibit
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greater susceptibility to fungal infections with Cryptococcus

neoformans (117) and Aspergillus fumigatus (116); viral infections

with herpes simplex virus (124, 237), hepatitis B virus (80, 136), and

influenza A virus (131, 132, 238); and protozoan parasite infections

with Plasmodium spp (76) and L. donovani (239). A wide array of

microbes and microbial products can stimulate NKT cells, either by

direct TCR activation, cytokine-mediated activation, or a

combination of both and induce them to express activation

markers and cytokines, which have diverse effects on other

immune cells and the course of an infection (see Tables 1, 2 and

references therein). Indeed, microbially activated NKT cells

typically secrete a narrower range of cytokines than aGalCer-
stimulated NKT cells, which are usually predominated by IFN-g.
This is consistent with the paradigm that the microbial activation of

NKT cells is mediated, to a large extent, through innate cytokines

such as IL-12 and IL-18, with weak or no TCR stimulation (240). In

some infections, NKT17 cells play a significant role. NKT17 cells in

a granulocyte–monocyte colony-stimulating factor (CSF2)–

dependent manner plays a protective role against S. pneumoniae

infection of mouse lungs (236). While Csf2-deficient NKT cells are

impaired in aGalCer-induced cytokine secretion and the

transactivation of downstream innate and adaptive immune

responses (241), anti-CSF2 blocking experiments confirm the role

of NKT17 cell–derived CSF2 in immunity against S. pneumoniae

(236). Moreover, NKT cells activated by microbes do not usually

undergo systemic expansion in vivo even when they contain NKT

cell antigens. However, NKT cells have been found to congregate at

the sites of infection in mice infected with lymphocytic

choriomeningitis virus (79), malaria parasites (119), and C.

neoformans (117). They have also been shown to expand in the

lungs and draining lymph nodes of pigs infected with influenza and

in the peripheral blood, draining lymph nodes, and lungs of pigs

infected with African swine fever virus (182). An intriguing aspect

of NKT cell biology is that these cells are programmed to undergo

apoptosis and/or become functionally anergic after stimulation

(242–244). This reduces the risk of a cytokine storm or chronic

inflammation arising from the large efflux of proinflammatory

cytokines that activated NKT cells produce. Usually, the degree of

NKT cell deletion/dysfunction corresponds with the strength of

activation, with some microbes such as the lymphocytic

choriomeningitis virus capable of rendering NKT cells anergic for

up to 3 months after infection (79, 245). Nevertheless, the

overactivation of NKT cells does occur in some mouse models of

infection, especially in tissues where NKT cells are found at high

concentrations, such as the liver in mice (80, 246, 247).

Among the lessons learnt from studying NKT cells in mice is

that gene t i c background can strong ly influence the

immunomodulatory activities of NKT cells. For example, the

same aGalCer analog treatment protocols cause divergent effects

on disease between different mouse strains in the mouse models of

autoimmune diabetes (248), experimental autoimmune

encephalomyelitis (249), collagen-induced arthritis (250, 251),

and systemic lupus erythematosus (252). Such differing outcomes

are probably related to the diverse concentrations and functional

phenotypes of NKT cells that exist among inbred mouse strains. For

instance, in a survey of 38 inbred mouse strains, NKT cells as a
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percentage of ab T cells ranged from 3.2% to 0.01% in peripheral

blood, 4.12% to 0.02% in the spleen, and 9.39% to 0.02% in the

thymus (253). The proportion of CD4+ to CD4-CD8- double-

negative NKT cells showed similar profound strain variation.

Functional differences have been ascribed to these subsets, with

the CD4+ subset exerting immunological tolerance in several

disease models.

Humans present comparable levels of heterogeneity in NKT cell

frequency and cytokine secretion profiles (171, 172, 254–258),

which may result in distinct NKT cell responses to microbial

infections that vary between individuals. However, whether NKT

cells play nonredundant roles in human infectious diseases is largely

unknown. Infection with the human immunodeficiency virus,

dengue virus, and M. tuberculosis have been linked to reduced

NKT cell responses to subsequent aGalCer stimulation (259–261).

While these results suggest that at least some of the findings from

mouse NKT cell studies apply to human infections, there is little

evidence to indicate that humans with unusually high or low NKT

cell concentrations or effector responses have altered susceptibility

to microbial infections. Moreover, assessing this relationship is

complicated by the fact that circulating NKT cells are often a

poor reflection of NKT cells in organs and tissues (253, 254). In

due course, questions about the translatability of mouse model

studies may be partly addressed using CD1d knockout pigs as pig

and human immune systems share many similarities, and pigs can

be infected with a wide range of human pathogens (262–266).

MAIT cells are activated by microbial species that have an intact

riboflavin pathway (Table 3). Accordingly, mice deficient in MAIT

cells have an impaired ability to clear 5-OP-RU-producing bacteria,

such as Francisella tularensis (151, 267),M. bovis bacillus Calmette-

Guérin (268), M. abscesses (147), and Legionella longbeachae (144).

Furthermore, TRAV1-TRAJ33 TCR-transgenic mice that express

high concentrations of MAIT cells are more resistant to disease in a

mouse model of M. tuberculosis infection (147). The mechanisms

underlying MAIT cell antimicrobial immunity are not fully

understood (see Supplemental Table 2). However, MAIT cells can

lyse infected cells through perforin and granzymes (269, 270). They

also secrete a variety of effector cytokines, such as IFN-g, TNF-a,
GM-CSF, and IL-17, which potentiate bacterial killing through

myeloid cell activation (44, 196, 203, 205, 271, 272).

In addition to TCR-mediated activation, MAIT cells can

respond to microbial infections through a variety of cytokine

receptors that these cells express, including receptors for IL-1, IL-

7, IL-12, IL-15, IL-18, and IL-23 (203, 271). This capacity for TCR-

independent stimulation enables MAIT cells to participate in

immune responses against viruses that do not produce 5-A-RU

derivatives. For instance, in a mouse model of lethal influenza virus

infection, MR1-deficient mice had a significantly higher mortality

rate than MR1-intact mice (157). Similar results have been reported

for both CD1d and TRAJ18 knockout mice demonstrating that

NKT cells also play a nonredundant role in influenza virus

infections (131, 132, 238). However, while NKT cells were found

to be important for inhibiting virus replication, MR1-deficient mice

had a similar virus load to MR1-intact mice. Moreover, TCR-

dependent stimulation was found to be indispensable and

dispensable for NKT cells and MAIT cells, respectively, to control
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influenza virus infections (132, 157). These results suggest that there

exists significant overlap as well as cell type–specific differences in

the antiviral activity of NKT cells and MAIT cells.

The role of MAIT cells in human antimicrobial responses

remains largely uncertain. However, their high abundance in

humans suggests that they may play a more prominent role in

host defense and tissue homeostasis than they do in mice. MAIT cell

deficiencies have not been directly associated with susceptibility to a

particular pathogen in humans. Nevertheless, the frequency of

MAIT cells has been found to decrease in the blood of humans

infected with various types of bacteria. In some cases, this was

accompanied by an increase in MAIT cell frequency at the site of

infection (203, 272), suggesting that circulating MAIT cells migrate

from circulation to the infection site.

In addition to their contribution to antimicrobial immunity,

MAIT cells play a role in wound healing, including repairing host

tissues damaged by immune cells during pathogen clearance (203,

272). Activated MAIT cells express a variety of tissue repair factors,

including TGF-a, amphiregulin, vascular endothelial growth factor

A, IL-5, IL-13, and IL-22 (155, 273, 274). MAIT cells in barrier

tissues of the lung and skin are particularly enriched for tissue repair

genes, and MAIT cell–mediated wound healing has been

demonstrated in punch biopsy and Staphylococcus epidermis

infection models of skin damage (161). Together, these findings

indicate that MAIT cells play Janus-like opposing roles during

infection, on the one hand promoting cytotoxic and

proinflammatory responses that destroy infected cells while also

restoring tissue integrity after the resolution of the infection.
Stymied by microbial stealth

Unsurprisingly, pathogens have devised ways to stymie CD1d-

restricted antigen presentation. Most evade intracellular CD1d

trafficking. For example, the modulator of immune recognition

(MIR)-1 and MIR-2 proteins of Kaposi sarcoma–associated

herpesvirus (KSHV) are ubiquitin ligases. The two KSHV

proteins ubiquitinylate the cytoplasmic tail of human CD1d,

forcing the endocytosis of surface CD1d and, thereby, reducing

cell-surface CD1d expression (275). The human immunodeficiency

virus 1-encoded Nef protein mirrors the effects of MIR-1 and MIR-

2 proteins to reduce CD1d expression perhaps by increased

endocytosis coupled with the inhibition of the return transport of

CD1d to the cell surface (276, 277). Similarly, in herpes simplex

virus 1 (HSV-1)–infected cells, CD1d molecules accumulate in the

MHC class II–enriched compartment due to a defect in CD1d

recycling from endosomal compartments back to the cell surface

(278). HSV-1 also inhibits the upregulation of cell surface MR1 via

the US3 gene product to evade MAIT cell recognition (279).

Vaccinia virus and vesicular stomatitis virus also abrogate CD1d

antigen presentation, likely by impeding the intracellular trafficking

of CD1d molecules induced by mitogen-activated protein kinase

signaling (280). Some bacteria have also devised strategies to evade

CD1d-restricted antigen presentation. Notably, the infection of

monocytes by the human pathogen M. tuberculosis results in
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reduced CD1d mRNA expression, indicating the transcriptional

control of Cd1d expression by a mycobacterial product (281).

While pathogens evade NKT cell activation by way of

interference with intracellular CD1d trafficking and, thereby,

antigen presentation, pathogens induce MAIT cell dysfunction to

evade MAIT cell response. To that end, patients with S.

pneumoniae–induced sepsis show significantly reduced but more

active and dysfunctional MAIT cell responses compared to healthy

donors or paired 90-day samples (139). The hyperactive MAIT cells

stir up a pathological cytokine storm thought to be responsible for

mortality (141). Furthermore, the hyperactive MAIT cell response

poorly induces the differentiation of inflammatory monocytes to

dendritic cells during pulmonary infection (139). Similarly, studies

of C. difficile pathology indicate that these bacteria potently activate

MAIT cells in a combined TCR- and cytokine-dependent manner

inducing a pathological cytokine storm. The resultant runaway

inflammation perhaps enables C. difficile to overcome cellular

barriers to potentiate C. difficile–induced antibiotic-associated

colitis (138). In a similar vein, gastric H. pylori infections elicit a

hyperactive MAIT cell response, promoting an increased

recruitment of inflammatory immune cells to the gastric mucosa

exacerbating H. pylori gastritis (145). Thus, while some pathogens

evade NKT cell recognition, the effects on MAIT cells focus on

inducing MAIT cell hyperactivation and dysfunction as a means of

potentiating bacterial pathogenicity.
Sic parvis magna—greatness from
small things come

Some 50 years ago, Ivan Riott and John Playfair and their

respective groups, independently and a year or so apart, described a

small subset of lymphocytes that were neither B nor T cells yet killed

tumor cells without prior priming. While no small discovery in and

of itself, it was a small beginning considering the numerous

unconventional lymphocytes that were discovered in the ensuing

decades. Unbeknownst, the discovery of NK cells had silently

annunciated the existence of a grander system of cells whose

constituents played critical roles in immunity to infectious

diseases and cancer, as well as in precipitating autoimmune

disorders and allergic reactions. Multitudinous, they are yet

cluster together by several common phenotypic and functional

features. Their purpose is to process and integrate signals received

from the innate immune response to convey that umwelt to

downstream innate and adaptive effector responses. In this

manner, they appear to function in between, at the edges of the

innate and adaptive immune systems. Hence, innate/innate-like

effector lymphocytes are called in-betweeners—or, alternatively,

Latinate edge, and a ‘limbic immune system’ arises, perchance. In

this proposal for a triumvirate immune system, we do not insinuate

that the ‘limbic immune system’ is an evolutionary transition

between the innate and adaptive systems because the

independently acting modules that make up this system arise at

different times in evolution, repurposing loosely common genome

regulatory circuits to accomplish a common task. The ‘limbic
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immune system’ functions to integrate information relayed by the

innate sensory immune system about the local tissue environment

and to provide context to downstream effector innate and adaptive

immune responses. The multiple modules add robustness and

evolvability to this limbic system to keep abreast of the ever-

changing environment and the quick-evolving microbes,

especially of those members of an otherwise symbiont community

that turn pathobiont without much notice.
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