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Innate lymphoid cells (ILCs) are important subsets of innate immune cells that

regulatemucosal immunity. ILCs include natural killer cells, innate lymphoid cells-1

(ILC1s), ILC2s, and ILC3s, which have extremely important roles in the immune

system. In this review, we summarize the regulation of mRNA stability mediated

through various factors in ILCs (e.g., cytokines, RNA-binding proteins, non-coding

RNAs) and their roles in mediating functions in different ILC subsets. In addition, we

discuss potential therapeutic targets for diseases such as chronic obstructive

pulmonary disease, cancer, and pulmonary fibrosis by regulation of mRNA

stability in ILCs, which may provide novel directions for future clinical research.
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1 Introduction

Innate lymphoid cells (ILCs) are located throughout the human body. Most ILCs are

enriched in mucosal structures, such as skin, lung, and digestive tract, and many ILCs are

found in adipose tissues and lymph nodes. ILCs play an important part in regulating immune

balance in tissues, resisting pathogenic infection, and enhancing adaptive immunity (1–3).

Inappropriate activation of ILCs is associated with chronic obstructive pulmonary disease,

cancer, and pulmonary fibrosis (4, 5).

For several decades, the discovery and functional studies of ILCs have enhanced

understanding of immune regulation in mucosal tissues considerably. However, the

development process and phylogenetic classification of ILC subsets are controversial.
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ILCs are divided into two cell types: cytotoxic ILCs (which mainly

represent conventional natural killer (NK) cells) and helper-like ILCs,

which produce cytokines (e.g., innate lymphoid cells-1 (ILC1s), innate

lymphoid cells-2 (ILC2s), innate lymphoid cells-3 (ILC3s)) (4).

NK cells and ILC1s are considered to belong in the same group of

ILCs due to their secretion of interferon-g (IFN-g) and tumor necrosis

factor-a (TNF-a) (6). Studies have shown that ILC1s cannot control

the growth or metastasis of local tumors, whereas NK cells favor

tumor monitoring, possibly because transforming growth factor-b
(TGF-b) signaling can convert NK cells into intermediate-ILC1s and

ILC1s in the tumor microenvironment to drive immune system

evasion (7, 8).

The lineage-specific transcription factor GATA binding protein-3

(GATA-3) shows high expression in ILC2s and mediates multiple

functions by producing various cytokines (e.g., interleukin-4 (IL-4),

IL-5, IL-9), and amphiregulin. Specifically, type-2 cytokines derived

from ILC2s play a crucial part in preventing parasitic infection and

inducing eosinophilic inflammation, which participates in asthma,

eosinophilic esophagitis, and chronic rhinosinusitis (9).

ILC3s are a heterogeneous cell population. They include natural

cytotoxic receptor (NCR) cells, which consist of lymphoid tissue

inducer (LTi) cells and LTi-like cells, as well as NCR+ ILC3s. Nuclear

hormone retinoic acid receptor-related orphan receptor gt (ROR gt) is
required for the development and function of ILC3s, similar to T-

helper type 17 (Th17) and Th22 cells (10).

Cytokines and cytokine receptors are pivotal for the function of

ILCs. TGF-b acts on its receptor TGF-b receptor 2 (TGF-bR2) and
attenuates IFN-g secretion by ILC1s (11). Type-I interferons, IL-2, IL-

12, IL-15, IL-18, IL-21 and their receptors positively regulate NK-cell

function, whereas the interaction of IL-23, IL-27 and their receptors,

may suppress or enhance NK-cell function (12). ILC2s show high

expression of IL-7 receptor a (IL-7Ra), IL-33 receptor (IL-33R) and

IL-17 receptor b (IL-17Rb) (13). Therefore, epithelial cell-derived

thymic stromal lymphopoietin (TSLP), IL-33 and IL-25 can stimulate

ILC2s to produce various type-2 cytokines (14). ILC3s and LTi, which

express IL-23 and IL-1b receptor (IL-1bR), are stimulated by IL-23

and IL-1b to produce the signature cytokines IL-17 and IL-22 (15).

A growing body of research suggests that key mechanisms of gene

regulation, including transcriptional and posttranscriptional regulation,

have vital roles in the phenotype and function of ILCs. Transcriptional

regulation has been studied thoroughly, but posttranscriptional

regulation is much less explored. Posttranscriptional regulation is

reflected mainly in the: splicing and processing of mRNA precursor

heterogeneous nuclear RNA; processing and localization of mRNA

from the nucleus to cytoplasm; stability or degradation of mRNA in

cytoplasm. RNA editing and RNA interference also belong to the

category of posttranscriptional regulation (16–20).

In recent years, several studies have revealed that mRNA stability

affects the function of ILCs (21, 22). The first mechanism of mRNA

degradation is exonucleolytic degradation, which removes the poly

(A) tail (PAT) by exonucleases, such as the carbon catabolite

repression 4 (CCR4)-negative on TATA-less (NOT) complex or

poly(A)-specific ribonuclease (PARN). mRNA can be degraded

from either the 3’ end or 5’ end. Degradation from the 3’ end is

associated with the binding of exosomes containing exonucleases.

Degradation from the 5’ end is initiated by the formation of a complex

at the 3’ end that recruits a decapping enzyme to remove the 5’ cap,
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and then the mRNA is degraded by 5’!3’ exonuclease. The second

mechanism of mRNA degradation is endonucleolytic cleavage. For

example, site-specific ribonucleases can induce internal cleavage to

produce RNA fragments, which are then degraded by exonucleases.

The third mechanism of mRNA degradation is nonsense-mediated

degradation (NMD), which inhibits the production of aberrant

proteins by eliminating abnormal mRNAs with premature

termination codons (PTCs). PTCs are recognized by a protein

complex that contains up-frameshift proteins during the

progression of translation, which stalls the subsequent translation

and recruits degradation machinery (23, 24).

Next, we focus on the role of mRNA stability regulation in the

three major ILC subsets in various diseases.
2 Regulation of mRNA stability can
affect the antiviral, immunoregulatory,
and antitumor properties of NK cells

ILC1s and NK cells mainly work together in protective responses to

intracellular bacteria and viruses and in cancer immunosuppression.

However, the phenotypic maturation of NK cells is dependent on the

transcription factor eomesodermin (Eomes), which is highly cytotoxic

(25). Under inflammatory conditions, upregulation of stress ligands in

host cells can trigger activation of NK cells. In contrast, the deficiency of

major histocompatibility complex type-I (MHC-I) molecules during

viral infection induces inhibition of NK-cell activity (26, 27). The

mRNA stability of IFN-g, IL-10, urokinase plasminogen activator

(uPA), and the receptor of uPA (uPAR) in NK cells can be regulated

bymany stimulating factors, such as cytokines and pathogens (Table 1).
2.1 Cytokines regulate the stability of IFN-g
mRNA through protein kinase C and p38
mitogen-activated protein kinases signaling
pathways in NK cells

IFN-g plays a vital part in regulating the immune response. IFN-g
produced by NK cells has antiviral, immunoregulatory, and

antitumor properties (41, 42). The antitumor function of NK cells

mediated by IFN-g can induce apoptosis, tumor dormancy, and

immunoediting in tumor cells that are related to the relapse and

progression of tumors (43, 44). Recently, several studies have shown

that PKC and p38 MAPK signaling pathways have critical roles in the

cytokine-mediated stability of IFN-g mRNA (Figure 1).

Many studies have shown that p38 MAPK is activated through

different ways to regulate the mRNA stability of various cytokines.

This regulation involves mRNA elements (e.g., adenylate-uridylate

(AU)-rich elements (AREs)) and mRNA-binding proteins (46). The

effect of AREs on mRNA stability relies on moieties which selectively

recognize these elements and regulate the fate of mRNA via

interacting with the machineries related to regulation of mRNA

stability. The p38 MAPK signal-dependent phosphorylation of

ARE-binding protein affects its binding to AREs and prevents

degradation by recruiting the deadenylase PARN, exosome, and

decapping enzyme (46). Often, the mRNA-binding protein
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phosphorylation affects the RNA-binding affinity or subcellular

localization. For example, phosphorylated KSRP (a vital factor for

ARE-mediated mRNA decay) on T692 by p38 MAPK reduces its

affinity toward AREs, resulting in increased stability of transcripts

containing ARE (47). Also, MK2 (a kinase downstream of p38

MAPK) mediates phosphorylation at serine 52 and serine 178 to

promote redistribution of zinc finger protein 36 (TTP) from nucleus

to cytoplasm in HeLa cells (48). Furthermore, the phosphorylation of

mRNA-binding proteins can alter interaction among mRNA-binding

proteins and change scaffolding properties for mRNA-modifying

enzymes, such as polyadenylases, deadenylases, poly (A) binding

proteins (PABP), decapping enzymes, endonucleases, exonucleases,

and exosome proteins. In many cases, the phenomenon results in

mRNA stabilization (46). In addition to AREs, the p38 MAPK

signaling pathway can regulate mRNA stability through the 3′
untranslated region (3′UTR), which has a critical role in regulation

of mRNA stability (49).

2.1.1 IL-12 and IL-18
IL-12, produced primarily by monocytes and macrophages,

stimulates the growth of NK cells (at least in part) and Th1 cells

through binding to its receptor on these cells (50). The effect elicited

by IL-18 resembles the effect of IL-12, possibly because they

synergize (51). In NK cells stimulated by IL-12 plus IL-18, IFN-g
mRNA was shown to be destabilized potently by a specific inhibitor

of p38 MAPK, and its half-life decreased, which demonstrated that

IL-12 plus IL-18 could enhance the stability of IFN-gmRNA rapidly

through the p38 MAPK signaling pathway and, thus, increase the

expression of IFN-g in NK cells (33). Simultaneously, destabilization

of IFN-g mRNA by inhibitors of p38 was accompanied by

shortening of the PAT (52), thereby illustrating that regulation of

the stability of IFN-g mRNA might be related to the PAT. Some

studies have shown that IL-12- plus IL-18-induced IFN-g
stabilization might be caused by blocking of mRNA deadenylation

(52–54), but the specific RBP acting on the IFN-g mRNA has not

been identified.
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2.1.2 IL-33
IL-33, a nuclear cytokine from the IL-1 family, is expressed

abundantly in epithelial, endothelial, and fibroblast-like cells (55).

Upon tissue damage, it acts as an alarm signal (alarmin) to alert

immune cells expressing IL-1 receptor like 1 (IL-1RL1), such as

tissue-resident immunological cells, including regulatory T cells

(Tregs), mast cells, ILC2s, NK cells and macrophages (55).

Ochayon et al. measured the phosphorylation and downstream

targets of p38 MAPK in NK cells through flow cytometry (FCM)

and treated the culture with actinomycin D to inhibit production of

nascent RNA, thereby permitting the decay measurement of existing

IFN-g transcripts in NK cells. They revealed that IL-33 could enhance

the mRNA stability of IFN-g and then promote IFN-g expression,

which was mediated by rapid induction of phosphorylation of the

activated protein-1-dependent p38 MAPK signaling pathway (32).

Posttranscriptional regulation of cytokines by MK2/3 in macrophages

was mediated by TTP, which could regulate the stability of AREs

containing mRNAs (56). We have hypothesized analogous underlying

mechanisms in NK cells, which need to be investigated further.

MK2 phosphorylation regulates inflammation (57, 58). However,

only a partial inhibitory effect on IL-12/IL-33 synergistic interactions

after suppressing MK2 has been noted compared with the inhibition

of p38 MAPK (32). These findings imply that other p38 MAPK-

induced mediators, such as activation transcription factor 2 (ATF2),

may also be critical for the enhancement of IL-33 effect, and

additional studies focusing on correlation with regulation of mRNA

stability are needed (32).

2.1.3 TGF-b and IL-18
TGF-b has three known family members (TGF-b1, TGF-b2 and

TGF-b3) in mammals that can regulate various physiological

processes (59). Inoue et al. reported that TGF-b1 inhibited IL-18-

induced IFN-g production and antiviral activity by downregulating

the stability of IFN-g mRNA in a mouse line of NK cells (LNK5E6)

(28). They also found that the IFN-gmRNA stability was regulated by

destabilizing elements in the IFN-g mRNA 3′UTR, particularly AREs
TABLE 1 Regulation of mRNA stability in ILCs is involved in various diseases.

ILC subset Factors Target mRNA Stability Function References

NK cells
Cytokines

TGF-b, IL-18

IFN-g mRNA

Destabilization Prevent immune dysregulation and diseases (28, 29)

IL-2, IL-12 Stabilization Modulate immunoregulatory properties (30, 31)

IL-33 Stabilization Affect antiviral properties (32)

IL-12, IL-18 Stabilization Regulate immunity against infectious pathogens (33)

IL-2 uPA, uPAR mRNA Stabilization Affect antitumor properties (34)

Pathogen Leishmania species IL-10 mRNA Stabilization Inhibit host resistance to an intracellular pathogen (35)

ILC2

RBPs
Regnase-1 Egr1, ICOS mRNA Destabilization Inhibit pulmonary fibrosis (36)

TTP IL-5 mRNA Destabilization Regulate intestinal homeostasis (37)

miRNA
miRNA-155 c-Maf mRNA Destabilization

Inhibit allergic rhinitis
(38)

miRNA-155-5p TP53INP1 mRNA Destabilization (39)

ILC3 CircRNA circZbtb20 Nr4a1 mRNA Stabilization Decrease susceptibilities to bacterial infection (40)
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in 5’ half of the 3′UTR (29). However, the underlying mechanism of

stability regulation is incompletely understood. A similar mechanism

has been reported in a human myelomonocytic cell line (KG-1). IL-18

inhibited TTP mRNA and led TTP phosphorylation by inducing p38

MAPK-activated MK2, and then localized TTP to the cytoplasm to

interact with ARE. Phosphorylated TTP lost its ability which could

trigger the deadenylation of IFN-g mRNA due to blockade of the

recruitment of cytoplasmic deadenylases (60, 61). However, TGF-b
could induce multiple cell types to upregulate TTP transcription

through the Smad pathway. Smad proteins, downstream of TGF-bRs,
can mediate a stimulatory effect by binding to the Smad-binding

element (SBE) of the TTP promoter (45), thereby repressing IL-18-

induced IFN-g mRNA expression through TTP-induced

destabilization (62, 63).

2.1.4 IL-2 and IL-12
IL-2 and IL-12 strongly regulate IFN-g expression (30, 31). Ye et al.

demonstrated that in NK3.3 cells (a human NK cell line dependent on

IL-2), the increase of IFN-g protein induced by stimulation of IL-2 plus

IL-12 was due largely to the enhanced stability of cytoplasmic IFN-g
mRNA. Additional studies revealed that IFN-gmRNA induced by IL-2

plus IL-12 in NK cells required PKC activation, showing that regulation

of the stability of IFN-g mRNA by IL-2 plus IL-12 might be mediated
Frontiers in Immunology 04
by the PKC pathway (30). Hodge et al. showed a novel manner of

posttranscriptional regulation in IFN-g expression: the role of IL-2, IL-
12 and polyadenylation was related to mRNA stability (31, 64–67). IL-2

plus IL-12 appeared to make the processed form of mRNAmore stable,

and then promoted increased nucleocytoplasmic shuttling of mature

IFN-g mRNA (31). However, compared with IL-2- plus IL-12-induced

cytoplasmic stabilization, IL-12 had nuclear effects which resulted in

increased accumulation of the precursor and processed IFN-g mRNA.

Interestingly, IL-2 could overcome the IL-12-induced nuclear-retention

of IFN-g mRNA, which resulted in rapid shuttling of IFN-g mRNA. In

other words, the IL-12-induced nuclear retention of IFN-g mRNA

prevailed until receiving IL-2 stimulation, which mediated

transcription-independent movement of nuclear IFN-g mRNA.

Ultimately, the increased expression of IFN-g mRNA in cytoplasm

resulted in the enhanced synthesis and secretion of IFN-g protein from

NK92 cells (31). Nuclear retention of IFN-gmRNA might be mediated

by a specific mRNA element, such as the AREs of IFN-gmRNA in its 3′
UTR. This speculation was supported by the observation that a

sequence-mediated nuclear mRNA-retention element (which was

identified in the U2AF mRNA) could prevent transport of

nucleocytoplasmic mRNA (68). However, the role of AREs in mRNA

nuclear retention has not yet been determined, and needs

further investigation.
FIGURE 1

Regulation of the stability of IFN-g mRNA in NK cells through p38 MAPK and PKC signal-transduction pathways. For clarity, these posttranscriptional
regulators are not necessarily placed at the correct cell site. IL-12 and IL-18 can enhance the stability of IFN-g mRNA in NK cells through the p38 MAPK
pathway, which may phosphorylate unknown RBPs to result in decreased RNA-binding affinity and then decreased deadenylation. TGF-b inhibits the
stability of IL-18-induced IFN-g mRNA. IL-18 may inhibit TTP mRNA and affect the stability of IFN-g mRNA through the p38 MAPK pathway, which may
phosphorylate TTP. This phosphorylation results in the decreased RNA-binding affinity of TTP, which can trigger deadenylation of IFN-g mRNA by
recruiting cytoplasmic deadenylase. However, TGF-b can upregulate TTP transcription specifically through the Smad pathway. Smad proteins
downstream of TGF-b receptors can mediate a stimulatory effect by binding the SBE of the TTP promoter (45), thereby repressing expression of IL-18-
induced IFN-g mRNA through TTP-induced destabilization. A similar TTP-related mechanism may be found in IL-33-stimulated NK cells. IL-2 and IL-12
may affect the stability of cytoplasmic IFN-g mRNA and stability of the nuclear-processed form of IFN-g mRNA through PKC-dependent polyadenylation
in NK cells. In addition, IL-12 mediates nuclear shuttling whereas IL-2 mediates nuclear retention, which may be related to AREs, but the specific
mechanism requires further investigation. Solid arrows indicate confirmed mechanisms. Dashed arrows indicate possible mechanisms that need further
verification. Molecular interactions and all abbreviations are explained in the text.
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2.2 Infection with Leishmania parasites alters
the stability of IL-10 mRNA to affect anti-
inflammation mechanisms in NK cells

IL-10 is an anti-inflammatory cytokine and its expression is

controlled by some transcription factors, such as specificity protein

1 (Sp-1) and Sp-3 (69). IL-10 can contribute to the development of

many diseases (70–72). NK cells can also differentiate to produce IL-

10 and may have regulatory activity (73). IL-10 mRNA 3 ‘UTR has

multiple copies of the potential mRNA destabilization motif

(AUUUA), which are associated with the regulation of mRNA

stability and located in three potential regulatory regions (AU1,

AU2, AU3) (74, 75). Maroof et al. described a posttranscriptional

mechanism of regulation involving IL-10 expression that induced

long-term activation in vivo after infection with Leishmania parasites

and enhanced stability of IL-10 mRNA in NK cells. Those actions

enhanced the production of IL-10 protein and the inhibitory function

of NK cells to diminish host resistance to an intracellular pathogen

(35). The specific regulatory mechanism of stability of IL-10 mRNA

has not been reported in NK cells, but a precedent has been found in

macrophages that control IL-10 secretion. Specifically, upon

macrophage activation, IL-10 transcription was upregulated

through phorbol 12-myristate 13-acetate response elements located

in the promoter of IL-10. Then, the degradation of IL-10 mRNA was

inhibited, which was related to these three regulatory regions in the

IL-10 mRNA 3’UTR (74, 75). Recently, several ARE-binding proteins

(76–80) and ARE-recognizing proteasomes (81) have been reported,

which might be involved in the destabilization of IL-10 mRNA

through regulation of AU2 in macrophages. However, the

molecular mechanism underlying infection by Leishmania species-

induced enhancement of the stability of IL-10 mRNA in NK cells is

not clear, and additional studies are needed to determine if similar

mechanisms exist in NK cells.
2.3 IL-2 modulates the accumulation,
metastasis, and cytotoxicity of NK cells by
regulating the stability of uPA/uPAR mRNA
in NK cells

uPA and uPAR have major roles in NK cell-mediated decay of the

extracellular matrix (82, 83). These roles may be related to the

accumulation, metastasis, and cytotoxicity of NK cells (84).

Recently, via Matrigel™-based studies, an increase in the number

of invading NK cells has been reported after IL-2 stimulation, and this

invasion has been demonstrated to employ the uPA system (84, 85).

Al-Atrash et al. revealed that IL-2 upregulated expression of uPA and

uPAR in NK cells, and that the half-life of uPA mRNA in IL-2-treated

cells was slightly longer than that in unstimulated cells. Therefore, the

enhanced stability of uPA mRNAmight be a contributory factor to its

expression upregulation (34). In lung fibroblasts as well as in

epithelial, carcinoma, and mesothelial cells, the expression

regulation of uPA and uPAR has been shown to occur at a

posttranscriptional level, which was mediated by the interaction of

a 30-kD RBP to the uPA mRNA 3′UTR (86) and a 50-kD RBP to the

coding region of uPAR mRNA (87–89), which resulted in

destabilization of the binding of uPA/uPAR mRNA. Moreover, the
Frontiers in Immunology 05
expression of uPAR RBP decreased, which might contribute to the

increase of uPAR mRNA after IL-2 treatment in YT cells (a NK-like

lymphoid cell line). However, other mechanisms cannot be excluded,

such as structural modification of uPAR RBP. Therefore, Al-Atrash

et al. indicated that the mRNA stability of uPAR in IL-2-stimulated

YT cells appeared to be regulated (at least partly) by destabilizing

RBPs interactions. Under such conditions, modifying the stability of

uPAmRNA in NK cells could enhance the infiltration of NK cells into

tumors, thus destroying tumors more effectively (90–93). Therefore,

increasing invasiveness by NK cells before administration of NK cells

in cancer immunotherapy by upregulating regulation of uPA and/or

uPAR expression may increase infiltration into tumors and

eradication of tumor cells by NK cells.
3 Regulation of mRNA stability can
affect pulmonary fibrosis, allergic
rhinitis, and the intestinal homeostasis
of ILC2s

ILC2s play a vital part in preventing parasitic infection and

inducing eosinophil inflammation by secreting type-2 cytokines.

ILC2s are involved in regulating intestinal homeostasis and the

development of diseases, such as pulmonary fibrosis and allergic

rhinitis (94–99). In addition, an increasing number of studies have

revealed that RBPs and microRNAs (miRNAs) have crucial roles in

regulating the homeostasis of ILC2s through control of

mRNA stability.

The next part of this review focuses on the notion that mRNA

stability of early growth response 1 (Egr1), inducible costimulator

(ICOS), IL-5, c-Maf and tumor protein p53-induced nuclear protein

(TP53INP1) in ILC2s can be regulated by RBPs and miRNAs (Table 1).
3.1 RBPs maintain ILC2s homeostasis by
regulating the mRNA stability of Egr1, ICOS,
and IL-5

3.1.1 Regnase-1
Regnase-1 encoded by MCPIP1 (ZC3H12A) inhibits gene

expression through mRNA degradation (100, 101). Yoshinari et al.

screened the binding sites of transcription factors for upregulated

genes related to “pulmonary fibrosis” in Comparat ive

Toxicogenomics Database. They identified a set of transcription

factors that may regulate gene expressions associated with

pulmonary fibrosis. Among the identified transcription factors,

regnase-1 deficiency resulted in >60-fold higher expression of Egr1

(which enhances the transcription of various fibrosis-associated genes

(102, 103)) in ILC2s. The overexpression of wild-type (WT) regnase-1

rather than mutated regnase-1 inhibited the luciferase reporter

harboring the 3′UTR of Egr1, suggesting that the mRNA of Egr1

was degraded by regnase-1. In addition to Egr1, ICOS has been

reported that it isto be positively associated with the amount of ILC2s

in the blood of patients with idiopathic pulmonary fibrosis (36).

Maazi et al. found that ICOS had an important role in the survival of

ILC2s and cytokine production through the IL-2 and signal
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transducer and activator of transcription 5 (STAT5) pathway (104).

Yoshinari et al. found that ICOS expression was upregulated

significantly in ILC2s deficient in regnase-1 (36). Uehata et al.

showed that regnase-1 degraded ICOS mRNA directly through the

3′UTR in T cells (105): additional studies needed to be ascertained if

similar mechanisms exist in ILC2s. Taken together, those data

suggested that the posttranscriptional regulation of Egr1 and ICOS

by regnase-1 in ILC2s suppressed the pro-fibrotic function of ILC2s in

lung. Therefore, regnase-1 is regarded as a crucial posttranscriptional

regulator for the pro-fibrotic function of ILC2s in mice and humans,

and its regulatory mechanism for Egr1 and ICOS may provide novel

therapeutic strategies for idiopathic pulmonary fibrosis. However,

further studies are needed of all the transcriptional and

posttranscriptional gene-regulation networks that can regulate

pulmonary fibrosis by ILC2s (36).

3.1.2 TTP
The tristetraprolin family, which includes TTP, zinc finger

protein 36 like 1, and zinc finger protein 36 like 2, has critical roles

in posttranscriptional regulation, especially for regulation of mRNA

stability (106). TTP (also known as TIS11, Zfp36, and Nup475)

contains two zinc-finger domains that have a crucial role in the

posttranscriptional regulation of inflammation (107–109). Hikichi

et al. overexpressed TTP significantly using a retroviral vector and

found that the production of IL-5 was inhibited in IL-2- and IL-33-

stimulated ILC2s. They assessed the stability of IL-5 mRNA and

found that TTP overexpression could enhance mRNA degradation.

Those results suggested that TTP regulated IL-5 expression in ILC2s

through mRNA degradation (37). Hikichi et al. undertook luciferase

reporter assays with IL-5 3′UTRs. They created three constructs

through mutation of different AREs in the IL-5 3′UTR and carried

out a reporter experiment. Those results showed that TTP regulated

IL-5 expression directly by binding to the IL-5 mRNA △ ARE 5-7

sequence, which led to a reduction in the stability and expression of

IL-5 mRNA. Studies have demonstrated that the mechanism of

mRNA degradation by TTP involves the C-terminal domain

recruiting a deadenylase to remove the PAT (109).

IL-5, derived from ILC2s, has been reported to maintain steady-

state eosinophils in small intestine (110). Hence, the mucosal barrier

can be protected by these homeostatic eosinophils in the small

intestine through supporting immunoglobulin-A secretion from

plasma cells (111, 112). Hikichi et al. analyzed the eosinophil

number in small intestine and lungs of Zfp36-deficient mice. In

accordance with the increased number of ILC2s, the accumulation

of eosinophils was significantly enhanced in small intestine of Zfp36-

deficient mice. Those results indicated that TTP regulated eosinophil

number via an appropriate production of ILC2s-derived IL-5, thereby

contributing to intestinal homeostasis (37).
3.2 miRNA affects allergic rhinitis by
regulating the stability of c-Maf mRNA and
TP53INP1 mRNA in ILC2s

miRNAs, as one of small and noncoding RNAs, regulate gene

expression at posttranscriptional level specifically (113). miRNAs can

load into the RNA-induced silencing complex (RISC) and then bind
Frontiers in Immunology 06
to the 3′UTR of target mRNAs, which results in the degradation or

translational inhibition of mRNA (114).

miRNA-155 is a key regulator for ILC2s and NK cells, impacting

their development and functions (115–117). Through database

analysis with bioinformatics software (TargetScan, PicTar,

miRanda) and luciferase reporter assays, Zhu et al. suggested that

miRNA-155 targeted WT c-Maf 3′UTR. Using reverse transcription-
quantitative polymerase chain reaction (RT-qPCR) and enzyme-

linked immunosorbent assay (ELISA), Zhu et al. determined the

roles of miRNA-155 in the expression of c-Maf and Th2 cytokines in

ILC2s. miRNA-155 overexpression inhibited the expression of c-Maf

mRNA and protein significantly, and increased Th2 cytokines

expression including IL-4, IL-5, IL-9 and IL-13, in ILC2s. Those

results indicated that miRNA-155 decreased the mRNA and protein

expression of c-Maf and promoted expression of Th2 cytokines in

ILC2s by binding to the c-Maf mRNA 3′UTR (38). In allergic rhinitis,

increased activity of ILC2s and release of Th2 cytokines have been

considered to be the main causes of disease aggravation (38). Reduced

c-Maf expression in the nasal mucosa of mice and patients with

allergic rhinitis was recovered significantly by administration of

miRNA-155 antagomir, suggesting that miRNA-155 might be a

therapeutic target for allergic diseases (38). However, whether

miRNA-155 affects the secretion of Th2 cytokines in ILC2s through

regulating the stability of c-Maf mRNA is not known.

Zhu et al. demonstrated that there was a target RNA of miRNA-

155-5p in ILC2s: TP53INP1 (a tumor-suppressor protein). miRNA-

155-5p could downregulate the stability of TP53INP1 mRNA and

expression of TP53INP1 through binding to a specific sequence

(AGCAUUAA) in TP53INP1 mRNA 3 ’UTR. TP53INP1 is

negatively correlated with miRNA-155-5p. In contrast, TP53INP1

could inhibit the production of Th2 cytokines in ILC2s and promote

the production of Th1 cytokines and ILC2s apoptosis. miRNA-155-

5p showed high expression in allergic rhinitis. Studies have

demonstrated that TP53INP1 may have an anti-inflammatory role

because it can inhibit the nuclear factor-k B (NF-kB) signaling

pathway in patients with allergic rhinitis, but the specific

mechanism is largely unknown (39).
4 Regulation of mRNA stability can
modulate susceptibilities to bacterial
infection of ILC3s

ILC3s have critical roles in innate immunity and gut homeostasis

(118). In recent years, mRNA stability in ILC3s has been reported to

be regulated by circular RNAs (circRNAs). The section below

provides evidence that the stability of Nr4a1 mRNA in ILC3s can

be regulated by circRNAs (Table 1).
4.1 CircRNAs maintain ILC3s homeostasis by
regulating the stability of Nr4a1 mRNA

circRNAs are a class of non-coding RNAs with a ring structure.

They are formed by spliceosomes or nested splicing (119). Studies have

shown that circRNAs can be formed in ILC3s-induced intestinal

inflammation (120) and enhance the ability to resist bacterial
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infection (121). Liu et al. identified a circRNA (circZbtb20) through a

direct interaction with the RNA pulldown assay and sequence

alignment, which showed high expression of circZbtb20 in ILC3s.

circZbtb20 maintained the homeostasis and function of ILC3s by

enhancing the stability of Nr4a1 mRNA. Increasing numbers of

studies have revealed a close correlation between Nr4a1 and

regulation of the immune response. Also, Nr4a1 can initiate

transcription of Notch2 to promote its expression, which is required

for maintenance of the expansion and function of ILC3s. Liu et al. used

the biotin-labeled linearized circZbtb20 as “bait” to conduct RNA-

pulldown experiments. They found that circZbtb20 could enhance the

interaction between Nr4a1 mRNA and AlkB homolog 5 (Alkbh5) (40).

Alkbh5 is a demethylase for N6-methyladenosine (m6A)-modification,

and is related to the mRNA stability regulation (122). M6A regulates

the degradation of methylated RNA and is negatively correlated with

mRNA stability (123). Liu et al. found that Alkbh5 deficiency increased

m6A modification of Nr4a1 mRNA in ILC3s using single-base

elongation- and ligation-based qPCR (40). Liu et al. demonstrated

that the circZbtb20–Alkbh5–Nr4a1–Notch2 axis was important for the

homeostasis and function regulation of ILC3s, and that the destruction

of this axis increased susceptibilities to bacterial infection (40).
5 Conclusions and perspectives

ILCs are a fascinating cell population and have important roles in

several diseases. In the past decade, there has been an explosion of

knowledge surrounding the identification, development plans, and

functionality of ILCs.

Here, we summarized the current findings of the regulation of

mRNA stability on ILCs function. In particular, we focused on the

effects of RBP on regulation of mRNA stability in ILCs. First, even

though multiple cytokines (e.g., IL-12, IL-18) have been shown to

have important regulatory roles on ILC1s function, mRNA stability-

related RBPs in ILC1s have not been identified, which merits further

investigation. Second, several RBPs have been shown to have

important roles in the regulation of ILC2s function, including

regnase-1, TTP, and RNA-binding protein 3 (RBM3) (124).

Specifically, regnase-1 and TTP have broad roles in mRNA stability

in ILCs and other cell subsets. However, RBM3 has a potentially

specific role in ILC2s because studies have shown that RBM3

deficiency has no effects on the numbers of NK cells, T cells, or B

cells in mice. Hence, RBM3 might be an ILC2s-specific RBP in

immune cells (124). Third, a few studies have reported that
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circRNAs can regulate downstream mRNAs stability in ILC3s

indirectly (125–127). Therefore, researchers need to demonstrate

the roles of mRNA stability on the regulation of ILC3s function.

Taken together, evidence suggests a novel molecular mechanism for

the regulation of ILCs functions, which may represent a new

intervention for ILCs-related diseases such as idiopathic pulmonary

fibrosis, allergic rhinitis, and cancer.
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