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Germ cell tumors (GCTs) represent a heterogeneous neoplasm family affecting

gonads and rarely occurring in extragonadal areas. Most of patients have a good

prognosis, often even in the presence of metastatic disease; however, in almost

15% of cases, tumor relapse and platinum resistance are themain challenges. Thus,

novel treatment strategies with both improved antineoplastic activity and minor

treatment-related adverse events compared with platinum are really expected. In

this context, the development and the high activity demonstrated by immune

checkpoint inhibitors in solid tumors and, subsequently, the interesting results

obtained from the use of chimeric antigen receptor (CAR-) T cell therapy in

hematological tumors, have stimulated research in this direction also in GCTs. In

this article, we will analyze the molecular mechanisms underlying the immune

action in the development of GCTs, and we will report the data from the studies

that tested the new immunotherapeutic approaches in these neoplasms.

KEYWORDS
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1 Introduction

Germ cell tumors (GCTs) represent a heterogeneous neoplasm family affecting gonads

and rarely occurring in extragonadal areas, such as retroperitoneum, mediastinum and pineal

gland (1–3).

GCT is the most common neoplasm affecting young males between 15 to 44 years of age.

The vast majority of patients have a good prognosis with high cure rates even in the presence
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of metastatic disease (4). However, in a small percentage of cases,

GCTs deserve a poor prognosis with tumor relapse and resistance to

platinum-based chemotherapy, and are treated with aggressive

approaches including high-dose chemotherapy with support of

hematopoietic progenitor cells (5–7). In addition, because of young

age at diagnosis and high cure rate, many patients experience long-

term survival related problems, including physical and psychosocial

issues, most of which related to previous antitumor treatments, in

particular chemotherapy (8–10). Thus, novel treatment strategies

with both improved antineoplastic activity and minor treatment-

related adverse events compared with platinum are really expected

(11, 12). In this context, the development and the high activity

demonstrated by immune checkpoint inhibitors in solid tumors

and, subsequently, the interesting results obtained from the use of

chimeric antigen receptor (CAR-)T cell therapy in hematological

tumors, have stimulated research in this direction also in solid

tumors, and more recently in GCTs (13). In this article, we will

analyze the molecular mechanisms underlying the immune action in

the development of GCTs, and we will report the data from the

studies that tested the new immunotherapeutic approaches in

these neoplasms.
2 Rationale for immunotherapy in GCTs

GCTs represent a highly curable neoplasm, but almost 15% of

patients experienced recurrence; the exact mechanism of platinum

resistance is not fully understood, but it is believed to have a

multifactorial origin (14). One reason could be hided into

relationship between GCT cells and surrounding tumor

microenvironment (TME), which is currently under investigation.

Stromal cells and the extracellular matrix (ECM) can promote

neoplastic proliferation and inhibit apoptosis mechanisms. In turn,

cancer cells can influence TME activity (15, 16 Indeed, the latter is not

constitutionally a protumoral environment, but surrounding

conditions may transform an immune TME into a immune

suppressive status and viceversa (17). In testis, microenvironment

has an critical role during both developmental process and neoplastic

transformation (18). The testis structure is divided into seminiferous

tubules and interstitium. The testicular interstitial zone is composed

of fibrocytes, androgen-producing Leydig cells, and immune cells,

including lymphocytes, macrophages, mastocytes, natural killer, and

dendritic cells (19–21).

Testis represents an immunologically privileged organ in

mammals, because of its immune TME-mediate protection against

autoimmune attack and its deficitary response to antigens. This

“prerogative” is probably also involved in spermatogenesis and

steroidogenesis mechanisms (22). In literature, spontaneous GCT

regression cases are rarely reported, probably due to both the patient’s

immune TME and the alteration in tumor vascularization (23).

Moreover, GCT patients have been described to activate specific

CD8+ and CD4+T cell-mediated immune responses against cancer/

testis antigens. T cells are strongly present only in conjunction with

the expression of these antigens, while they are much less numerous

after treatment (24). However, it is currently unclear whether
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immunological privilege is implicated in GCT development (25).

Several studies have been conducted in order to describe any

difference in the immune response in case of GCT or GCT in situ:

it has been reported that, comparing GCT with non-oncological testis

diseases or in normal testis, T cells are ubiquitarious, whereas B cells

and dendritic cells have been detected in GCT samples. Furthermore,

pro-inflammatory cytokines, such as IL-6, IL-1b TNF-a), anti-
inflammatory cytokines (TGF-b1), Th1-related cytokines (IFN-g
and IL-2), and chemokines (CXCL-13, CXCL-10, and CCL-5) were

reported as strongly expressed only in GCTs (26). Notwithstanding,

Hvarness et al. did not report any active immune surveillance in

GCTs, with similar immune cell concentration in both GCT and

normal testis samples (27). Recently, Skowron et al. analyzed the role

of cross talk between GCT cells and TME, and demonstrated that this

interaction stimulated the expression of ECM proteins, such as

collagen I/IV and fibronectin, which in turn altered its structure,

leading to a pro-tumoral TME. In those conditions, the researchers

observed much more effective migration and adhesion properties in

GCT cells as well as enhanced platinum resistance. The latter study

suggests that targeting ECM (28) could become a novel therapeutic

option, especially in relapsed GCT patients.
3 Prognostic biomarkers and potential
new targets in GCTs

Among solid tumors, GCT represent an example of neoplasm

without any significant mutational burden, as confirmed by The

Cancer Genome Atlas (TCGA) (29). Several genome wide studies

has been conducted in GCTs: in 4–31% of seminomas, and up to 14%

of non-seminomas, driver mutations were detected in three genes

(KRAS, NRAS and KIT) (30–33). Since their low incidence in GCT, a

single universal mutation could not explain tumorigenesis in testis.

So, it has been suggested a polygenic influence in GCT genesis and

proliferation, involving an interaction among several susceptibility

genes (up to 50 risk loci has been detected to date) (34). A recent

study conducted in 137 GCT patients confirmed low mutation in the

three known mutated genes (KIT, KRAS, and NRAS) and reported a

frequency of 0.5 mutations per megabase (29). Similarly, to testicular

GCTs, primary mediastinal GCTs also have low mutational burden,

present mutations in RAS pathways, and since they are exclusively

non-seminomatous tumors, KIT mutations are rare. However, unlike

testicular GCTs, primary mediastinal tumors exhibit a higher

percentage of p53 mutations (35).

GCT subtypes represent the developmental steps from embryonic

stem cells toward more differentiated cells to somatic tissues. The

mapping of GCT DNA-methylation status (methylome) clearly

correlates with the state of differentiation in the GCT histotypes:

Seminomas are typically unmethylated or severely hypomethylated

tumors, Embryonal carcinomas demonstrate low to intermediate

levels of global DNA methylation; well-differentiated yolk sac

tumors and teratomas show high levels of DNA methylation (36).

Therefore, this histological variability correlates both with the

tumoral epigenetic heterogeneity, and with the epigenetic landscape

of healthy tissues: in fact, hypermethylated pattern has been reported
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in differentiated somatic cells as well (37–39). Non-CpG methylation,

acetylation, and methylation of histones are also involved in GCT

development, but they are scarcely understood to date, instead of the

microRNA (miR) signaling, which improved our knowledge about

GCT molecular biology. The overexpression of pluripotency markers

such as NANOG, OCT3/4 or a tissue stem cell factor KIT and its

ligand are correlated with the unique GCT germline origin (40–42).

Indeed, their expression has been linked to epigenetic regulation with

both DNA methylation and histone acetylation (43–46).

In GCT, carcinoembryonic antigen claudin 6 (CLDN6), a tight

junction associated membrane protein may represent an ideal

chimeric antigen receptor (CAR) antigen because of its extracellular

loop that can be targeted by T cells; moreover, it is silenced during

organogenesis, thus is not expressed in healthy cells but only in

various cancer cells, including GCT: indeed CLDN6 is expressed in

approximately 93% of GCT (47).
4 Immune-related biomarkers in GCTs

Since the first new checkpoint inhibitors were approved in the

oncology field, researchers have simultaneously begun to evaluate

new immunological markers in different tumor histologies, including

GCTs. Among these novel immune-related biomarkers,

programmed-death receptor axis, including (i.e. PD-1 and its ligand

PD-L1) was tested in GCT also; one immunohistochemistry study

conducted by Fankhauser et al. confirmed its activation: indeed, a

frequent PD-L1 expression in 479 GCT tissue samples was reported,

regardless of the histological subtype (73% of seminoma and 64% of

non-seminoma patients, respectively) (48). Analyzing data from

TCGA database, a surrogate signature of “T-cell inflamed genes”

was demonstrated in 47% GCT samples (49). Lobo et al. analyzed

both CTLA4 and PD-L1 expression in GCTs: albeit they found high

rates of CTLA-4 and PD-L1 expression in GCTs (96.3% and 85.5%,

respectively), no significant correlations were demonstrated either

between CTLA-4 expression and the GCT characteristics, such as

IGCCCG grouping, rete testis or lymphovascular invasion, staging,

nor between CTLA-4 intensity and recurrence-free survival (RFS) (p

= 0.934). Instead, they demonstrated a PD-L1 expression in 24.9% of

samples, with no significant differences between seminomas and non-

seminomas, although PD-L1 resulted more frequent in

choriocarcinomas than in teratomas. Curiously, they did not found

any differences in terms of RFS among PD-1 positive and negative

cases (50).

Another study applied a multiplicative quick score to evaluate

PD-L1 expression in a semi-quantitative manner, demonstrating a

correlation between scores and clinical outcome: in fact, significantly

better PFS (HR=0.40; P =0.008) and OS (HR=0.43; P =0.040) were

reported in GCT patients low PD-L1 expression levels (51). The

predictive role of PD-L1 expression was also confirmed by Chovanec

et al. The authors evaluated PD-L1 expression on tumor infiltrating

lymphocytes (TIL) – whose prognostic role was previously

demonstrated by Bols et al. (52) – and demonstrated that high PD-

L1 expression on TIL was correlated with a significantly better

prognosis than cases with lower levels (53). The same correlation
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was reported by Boldrini et al. (54) in the development of childhood

malignant extracranial GCTs. Cheng et al. reported that PD-L1–

positive TILs are detected in 85,9% of seminomas, 91% of embryonal

carcinomas, 60% of yolk sac tumors 54,5% of choriocarcinomas, and

35.7% of teratomas (55). Shah et al. detected T-cell–inflamed TME,

which is inversely correlated with AFP levels, more frequently in

seminomas than in other GCT (49). Analyzing immune cells other

than lymphocytes, similar differences in PD1 expression between

seminomas and non-seminomas has been highlighted by other

studies. Sadigh et al. detected PD-L1+ tumor-associated

macrophages (TAM) rather in seminomas than non seminomas

(56). Analyzing 22 types of immune TME, Song et al. demonstrated

high expression of CD8+ T-cells, macrophages, and dendritic cells in

GCTs compared with normal samples (57). Siska et al. reported an

activated CD3+ T-cell infiltration, PD-L1 hyperexpression, and

implemented PD-1/PD-L1 spatial interaction in seminomas; this

characteristics were correlated with the better prognosis of this

histotype, whereas high macrophage and neutrophil gene signatures

were more frequently shown in nonseminomas. In both cases,

decreased T-cell and NK-cell signatures,and elevated Treg,

neutrophil, mast cell, and macrophage signatures were reported in

advanced stage of GCTs (58).

More recently, in a Polish study conducted in a 180 GCT patient

cohort,a correlation among 1) lower expression of immune

checkpoint proteins V-domain Ig suppressor of T cell activation

(VISTA) and PD-L1 on TME, 2) elevated inflammatory marker

platelet-to-lymphocyte ratio and 3) higher risk of events was

reported, suggesting an involvement of both local and systemic

anti-tumor immune response in GCTs (59).

In spite of this, PD-L1 expression level does not seem to be

predictive of response to immune-checkpoint inhibitors. This

uncertainty in PD-L1 predicting response is quite common in

several tumors. In fact, using PD-1/PD-L1 inhibitors, a significant

response was more often reported in cases with PD-L1 expression, but

some responses in PD-L1 negative tumors were described as well (60).

To date, in GCT patients, PD-L1 expression in tumor and TIL

correlates with an abundant immunogenic microenvironment but

not with immunotherapy response. Perhaps, this incongruence could

be only due to our incomplete knowledge on immune machinery.

A comprehensive molecular characterization conducted by Shen

et al. did not demonstrated a significant neoantigen signal in GCT, so

the disappointing results of immune check-point inhibitors in GCT

could be partly due to very low mutational burden (29).

Two other studies evaluated the role of a systemic-immune

infi l t ra t ion index (SII) , a marker of proinflammatory

microenvironment, which is obtained from total neutrophils count,

lymphocytes, and platelets. The first one evaluated several markers

(i.e., low albumin and hemoglobin, high leukocytes, neutrophils, CRP,

neutrophils to lymphocyte ratio, and SII) and demonstrated their

correlation with poor prognosis in GCT (61). The second study

confirmed a correlation between higher SII levels and poor

prognosis in two independent GCT patient cohorts. The authors

also evaluated the combined prognostic value of SII and PD-L1

expression on TIL, and reported a better prognosis in cases with

low SII and high PD-L1 on TIL (62). Both the research group
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demonstrated the prognostic significance of SII regardless of the

standard IGCCCG risk criteria (61, 62). Recently, these results were

confirmed by Ribnikar et al. (63). Interestingly, poor prognosis in

cases with high SII levels could be the prove that proinflammatory

mechanisms stimulated by an aggressive tumor microenvironment

represent the effect of an unsuccessful fight of the human immune

system against the tumor progression (36). More recently, another

study confirmed the prognostic role of SII in GCTs treated with high-

dose chemotherapy (64).

Regarding other TME elements, Tumor Associated Fibroblasts

(TAFs) have been shown to stimulate proliferation and metastasis in

several tumor types (65–68). Indeed, TAFs secrete several soluble

factors, which promote ECM to produce further soluble factors,

including VEGF, HGF, TGFb, IL6, CXCL12, and CCL2 (69), which

are involved in tumor proliferation. Moreover, GCT cells shown a

significant miR-125b expression, which stimulates secretion of

tumor-derived chemokines, such as CSF1 and CX3CL1, which in

turn increase TAM recruitment (70). Other soluble factors, in

particular IL-8, can lead to an increase in NF-kB and ABCB1,

which are responsible of reduced Cisplatin sensitivity: this

mechanism, described in gastric cancer cells, could be applicable to

GCTs as well (71). It is therefore interesting to note that precisely the

destruction of tumor cells mediated by platinum-based chemotherapy

could at the same time stimulate the secretion of protumoral factors

in the tumor stroma (72).

Another study evaluated the prognostic role of proinflammatory

cytokines, like as IFN-a2, IL-2Ra, or IL-16, demonstrating their

correlation with high risk clinical characteristics and poor survival in

GCT (73). Another interesting cytokine is IL13RA2, strongly

expressed in normal testicular cells and currently studied as a

potential CAR target against other tumor types, such as

glioblastoma multiforme (74).

Moreover, some researchers evaluated the prognostic role of b-
1,4-galactosyl transferase-I (B4GALT1) in GCT. BAGALT1 is an

enzyme involved in interaction and adhesion of immune cells; its role

in disease control in stage I non-small cell lung cancer patients was

reported by Lu et al. (75). Nilius et al. demonstrated that high

B4GALT1 expression in peripheral T cells represents a marker of

lower risk of relapse in GCT patients underwent salvage high-dose

chemotherapy and peripheral stem cell transplant. The authors

suggest that activated peripheral T cells may be crucial in cancer

control. In fact, lectin stimulation of mononuclear cells with

Concanavalin A determined a B4GALT1 upregulation from CD4+

T cells, which was correlated with IL-10 hyperexpression. The latter

was in turn correlated with better outcome in GCT patients (76).

Hinsch et al. evaluated the immunohistochemic expression of T

Cell immunoreceptor with Ig and ITIM domains (TIGIT) in 78

seminoma samples, and reported frequent expression of this

immune checkpoint receptor, albeit with high variability in the

relative prevalence of TIGIT+ and PD-1+ cells (77).

Two other promising therapeutic targets in immunotherapy are

T-cell immunoglobulin and mucin domain-3 (TIM-3) and

lymphocyte activation gene-3 (LAG-3): the first one is involved in

T-cell exhaustion, which in turn could determine a failure of PD-1

monotherapy blockade or adaptive resistance to anti-PD-1 agents (78,
Frontiers in Immunology 04
79). The second one is involved in immune homeostasis through an

inhibition of T cell activation and cytokine secretion. In addition,

higher LAG3 expression on TILs was correlated with higher PD-L1

expression (80). In spite of this, LAG3 and TIM3 expression in GCT

cells were not higher than in nearby normal cells (81).

Recently, mismatch-repair (MMR) deficiency has been

significantly related to PD-L1 expression, in different tumor types,

including GCT (50). This deficiency makes the tumor more immune

sensitive, and more prone to express higher levels of PD-L1. In GCTs,

a correlation between MMR-deficiency, microsatellite instability

(MSI) and platinum resistance was reported by Honecker et al.

(82). More recently, the correlation between low MMR proteins

expression and lower platinum sensitivity was confirmed in

GCTs (83).
5 Immunotherapeutic approaches to
GCT treatment

The potential immunotherapeutic strategy in GCT was investigated

in several case reports and small patient cohorts (Figure 1).
5.1 PD1/PD-L1 axis

Most of the studies testing immunotherapeutic strategies against

GCTs are based on PD-L1 checkpoint inhibitors (84, 85).

One trial reported a 33% of tumor volume regression based on

RECIST version 1.1 and a 49% regression based on immune-related

response criteria in a small cohort of embryonal cell carcinoma

underwent a single dose of anti-PD-1 immune therapy (49).

Zschäbitz et al. evaluated a series of seven platinum-refractory

GCTs underwent high-dose chemotherapy and stem cell

transplantation, and subsequently treated with anti-PD1 Nivolumab

or Pembrolizumab. Four of them experienced rapid tumor

progression and died after single-dose of immunotherapeutic drug.

Only one PR was shown in one of the other three enrolled patients,

but they underwent concomitant etoposide (86). Chi et al. reported a

durable (radiographic and beta-HCG) response to Nivolumab in a

pretreated poor risk metastatic choriocarcinoma (87). In another case

report, one patient with choriocarinoma was treated with

Pembrol izumab, but he experienced a rapid PD, thus

immunotherapy was prematurely stopped (88). A phase II, single-

arm trial (NCT02499952) tested anti-PD1 Pembrolizumab in 12

platinum-refractory GCT patients, enrolled regardless of PD-L1

expression. No OR was reported, with only SD in two patients for

approximately 7 months and 5 months, respectively (89). Another

phase II clinical trial (NCT02721732) was conducted in a small cohort

of 12 GCT patients (10 men, 2 women) treated with Pembrolizumab.

The drug was well tolerated. A SD was reported in 3 patients, but no

OR was shown. The median PFS was 2.4 months and the median OS

was 10.6 months (90).

Overall, these studies demonstrated a very limited antitumor

activity of anti-PD-1 inhibitor monotherapy in GCTs (Table 1).

Other researchers tested anti-PD-L1 inhibitors.
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A phase II clinical trial tested the PD-L1 inhibitor Avelumab in

eight patients with relapsed/refractory GCT. Avelumab was well

tolerated but with a limited activity in this small patient cohort

(91). In another open label, phase II clinical trial, the PD-L1

inhibitor Durvalumab, alone or in combination with the anti-

CTLA4 inhibitor Tremelimumab, was administered in a cohort of

22 GCT patients (11 underwent Durvalumab alone and 11

combination of both treatments). However, 72.7% of patient cohort

treated with Durvalumab monotherapy experienced rapid PD, thus

that arm was prematurely closed. One case of PR and one of SD was

reported in the combination arm. PD-L1 expression was not

correlated with tumor response (92).
5.2 Brentuximab vedotin

The poor results obtained with anti-PD1/PD-L1 inhibitors

prompted researchers to focus on new immunological targets, for

example on conjugated antibodies, such as brentuximab vedotin.

This is an anti-CD30 antibody conjugate comprising a chimeric

antibody bound to cell-surface antigen CD30 covalently conjugated

to the cytotoxic antitubulin agent monomethylauristatin E. In a
Frontiers in Immunology 05
phase II study (NCT01461538), the researchers enrolled seven

relapsed/refractory CD30-positive GCT patients, which underwent

brentuximab-vedotin every 3 weeks. The authors reported two OR

an one CR, which persisted for more than 4 years after four

treatment cycles. In the other patient, a PR was demonstrated

after 2 cycles, but after the fourth one, this patient experienced a

rapid PD (93). In another study, Brentuximab Vedotin was

administered in a cohort of 24 CD30-positive GCT patients.

Eleven of them experienced a serum tumor markers reduction,

whereas 11.1% of them reported a 3-month PFS and 85.7% of

them 6-month OS. In a case report, a combination of Brentuximab

Vedotin and Pembrolizumab in a highly pretreated patients with

GCT led to a CR but at the cost of severe toxicities (grade 3 immune-

mediated hepatitis, grade 3 polyneuropathy) (94).
5.3 CAR-T in GCTs

CAR-T cells are genetically engineered T cells, which display

antigen-specific receptors on its external cell membrane. They are

composed of four domains: (1) on the external extremity, a single-

chain antibody fragment (scFV) also known as the antigen-binding
TABLE 1 Trials presenting anti-PD-1 inhibitor in GCTs.

Trial Agent Phase Patients enrolled (n) Status

NCT02499952 (88) Pembrolizumab II 12 Terminated (Lack of Efficacy)

NCT02721732 (90) Pembrolizumab II 12 Active, Not recruiting

NCT03403777 (91) Avelumab II 8 Terminated (lack of efficacy)

APACHE trial (92) Durvalumab + Tremelimumab II 22 Terminated (lack of efficacy)
FIGURE 1

The different immunotherapeutic strategies tested against GCTs. Created with Biorender.
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domain; (2) a hinge region, which links scFV with the (3)

transmembrane region; and (4) an intracellular region, which

comprises the signal transduction part of the TCR, linked with one

or two costimulatory domains (95).

Compared to other types of immunotherapy, CARs provide the

following advantages: first of all, the immune mechanism of action

depends on a surface–antigen interaction. Thus it is not MHC

restricted, and that allows to use CAR-T cell strategy also in tumors

without significant MHC expression (96). Moreover, The low antigen

affinity in TCRs can determine off-target toxicities (97). In addition,

CAR-T cells also provide T-cell lytic property (98).

To date, compared with haematological neoplasms, the road to

using CAR-T cell therapy approach in solid tumors is much more

complex; this is due to various problems, the most important being

intra-tumor heterogeneity and TME-mediated protumoral activity

(99). Indeed, no CAR-T cell therapy is approved in solid tumors.

Recently, four early-phase studies presented at ESMO Congress

2022 could represent a step forward in the development of CAR-T cell

therapy into solid tumors (Table 2). Different approaches were tested:

in two studies CAR-T cell therapies (100, 101) were used, a vaccine-

targeted therapy in a third trial (102) and a T-cell receptor T-cell

therapy in the fourth one (103), respectively. Among them, only one

enrolled GCT patients (100).

BNT211-01 trial is a phase I first-in-human trial which tested

BNT211, i.e. a CAR-T cell targeting CLDN6 both as monotherapy

and in combination with a CLDN6-encoding CAR-T cell-

amplifying RNA vaccine (CARVac) in patients with CLDN6-

positive relapsed/refractory solid tumors (100). Twenty-two

patients with GCT (n=13), ovarian (n=4), endometrial (n=1),

fallopian tube (n=1), gastric cancer (n=1), sarcoma (n=1), and

unknown primary (n=1) underwent CAR-T cell therapy at two

different dose levels. 1 complete response (CR), 6 partial response

(PR), 7 stable disease (SD) and 5 progressive disease (PD) were

reported, with an overall response rate (ORR) of 33% (7/21) and a

disease control rate (DCR) of 67% (14/21). Even more encouraging

responses were observed in GCT cohort, with an ORR of 57% and a
Frontiers in Immunology 06
DCR of 85% (1 CR, 3 PR, 2 SD). A CR, in terms of both negative

PET-CT scan and tumor markers was reported. Moreover, an

abundant persistence of CAR-T cells was observed for >100 days,

and in some cases for >200 days. Two patients had dose-limiting

toxicities, including pancytopenia after lymphodepletion for the

CAR T-cel l monotherapy cohort , and hemophagocytic

lymphohistiocytosis for the combination cohort, respectively. To

date, the generation of CLDN6-based CAR-T cells has been

switched to an automated process and dose escalation is

ongoing (100).
6 Conclusion

In solid tumors, currently the most common immunotherapy is

immune checkpoint blockade, which maintain the activity of T cells

through the linkage with CTLA4 or PD1/PD-L1 molecules (104).

The clinical response to these antibodies is generally more

significant in tumors that carry a high mutational burden, albeit

the response varies among single cases (105). CAR T-cell therapy is

a novel fascinating strategy for non-responders to immune

checkpoint inhibitors and for less immunogenic neoplasms, and

demonstrated sensational results in some hematological tumors

(106, 107). Curiously, in GCTs the current situation is the opposite:

indeed, studies testing immune checkpoint inhibitors have led to

disappointing findings, whereas CAR-T cell therapy showed

promising results in a cohort of 13 GCT patients. This guarantees

further investigation with a larger sample size. Should the role of

CAR-T cell therapy in GCTs be confirmed, this would represent a

significant step forward in this category of patients who are so

young, for whom only chemotherapy is currently approved.

Furthermore, young age should represent an element in favor of

good tolerance to treatment, regardless of any known side effects

related to CAR-T cell therapy (95). Furthermore, a better

understanding of the mechanisms of activation of the immune

system, including epigenetic influence in immune checkpoint
TABLE 2 Ongoing clinical trials with adaptive cell therapies on solid tumors presented at ESMO 2022.

Trial Agent Target Mechanism of Action Phase Patients
enrolled/
estimated
enrolling

NCT04503278
(100)

BNT211 CLDN6 CAR-T I 22 (13
testicular
cancer)/96

NCT05028933
(101)

IMC001 EpCAM CAR-T I 7/48

NCT03953235
(102)

GRT-C903
GRT-R904

Version 1 (V1) neoantigens from KRAS, TP53, b-catenin,
and BRAF.
Version 2: only targeted KRAS neoantigens (G12C/D/V,
Q61H).

Vaccine–targeted therapy
+/- checkpoint inhibitors

I/II 26 (expected
144)

NCT04044859
(103)

ADP-
A2M4CD8

MAGE-A4 T-cell receptor T-cell therapy +/- checkpoint
inhibitors

I 29/90
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1118610
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schepisi et al. 10.3389/fimmu.2023.1118610
expression (108), could also lead to a reconsideration of therapy

with immune checkpoint inhibitors against GCTs.
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