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The tumor microenvironment (TME) is modified by its cellular or acellular

components throughout the whole period of tumor development. The

dynamic modulation can reprogram tumor initiation, growth, invasion,

metastasis, and response to therapies. Hence, the focus of cancer research

and intervention has gradually shifted to TME components and their interactions.

Accumulated evidence indicates neural and immune factors play a distinct role in

modulating TME synergistically. Among the complicated interactions,

neurotransmitters, the traditional neural regulators, mediate some crucial

regulatory functions. Nevertheless, knowledge of the exact mechanisms is still

scarce. Meanwhile, therapies targeting the TME remain unsatisfactory. It holds a

great prospect to reveal the molecular mechanism by which the interplay

between the nervous and immune systems regulate cancer progression for

laying a vivid landscape of tumor development and improving clinical treatment.

KEYWORDS
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1 Introduction

Cancer, the leading cause of death worldwide, cannot simply be recognized as a single

illness but as a manifold group of diseases with diverse causes. As same as blood and

lymphatic vessels, nerve fibers transmit signaling molecules and convey nutrients in the

tumor microenvironment (TME). Theories of angiogenesis and lymphangiogenesis in

tumors thrive over the past decades, but the role of nerves in tumorigenesis is still little

known. Similar to the former two, the process tumors stimulate nerve innervation is termed

“neoneurogenesis” (1), yet the specific mechanism remains controversial. Some evidence

demonstrates that tumor cells can exploit nerve-derived factors to create a favorable

microenvironment for tumor survival. Simultaneously, tumors can also stimulate the

regeneration of nerve fibers by releasing neurotrophic factors like nerve growth factor
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(NGF) and axon guidance molecules like netrin-1. Early in 1926,

psychosocial factors were demonstrated to be involved in cancer

incidence and progression (2). The released neurotransmitters and

hormones from neuroendocrine cells transduce the same effects. b-
adrenergic agonists or adrenaline showed dose-dependent increases

in tumor metastases, while b-adrenergic antagonists and

indomethacin synergistically blocked the effects of behavioral

stress on lung tumor metastasis. In murine models of cancers,

sympathectomy via chemical reagents or surgical way and genetic

deletion of b2-adrenergic receptors (AR) repressed tumor

development in the early stage. Besides, prostate tumor

metastases can be abolished by blocking the stromal type 1

muscarinic receptor with medicine or genetic disruption (3),

which is the same in a murine model of gastric cancer (4).

Sensory neurons can play a role as well. For instance, a model of

pancreatic ductal adenocarcinoma has demonstrated that sensory

neuron ablation by neonatal injection of capsaicin alleviates

tumorigenesis and progression (5).

The immune system is never the minor character in this tug-of-

war competition. Stress or depression, the emotional feelings,

always do not induce the generation of tumors directly but

through psychoneuroimmunology (6). Intricate interplays

between neurons and immune cells existed during pancreatitis

and modulated inflammation and cancer growth (7). Under

chronic stress or depression, a durative-activated hypothalamic-

pituitary-adrenal(HPA) axis suppresses the immune response,

contributing to tumor development and progression in multiple

cancers (6). Specifically, stress and depression were both associated

with decreased cytotoxic T cell and natural killer (NK) cell activities

and hence influenced immune surveillance of tumors, underlying

the increased clinical susceptibility to malignant tumors. In animal

models, mental stress, such as swim stress, surgical stress, social

confrontation, and hypothermia, led to increased lung metastasis

from injected breast cancer cells by suppressing NK cell activity

(8–11).

In this review, we focus on discussing the neurotransmitters in

the TME and their roles in immune regulation and tumor growth,

progression, metastasis, and invasion, as well as their potential

opportunities in the clinical treatment of cancer.
2 Immunomodulatory
neurotransmitters

Immunology has long been studied along with microbiology

and pathology. It was generally identified as a self-regulated system

by immunologists. Emerging evidence gradually makes it a

consensus that the nervous system participates in immune

modulation physiologically. As the dominant component, the

central nervous system (CNS) regulates immune functions at the

whole organism level, moreover, the peripheral nerve endings may

also participate in modulating the CNS immune factors or the

immune-related neuroendocrine mediators (12). Recently, a

noteworthy shift in research focuses happened owing to the
Frontiers in Immunology 02
discovery that immune cells could produce and release

neuroendocrine factors and neuromodulators by themselves (13).

The interactions between the neuroendocrine and immune

systems imply a bidirectional circuit where the in-depth

mechanism is still obscure. Neurotransmitters, the major

modulators in the CNS and perineural system (PNS), have been

recognized as potential signaling molecules linking the two major

systems for maintaining homeostasis. A series of studies recognized

the immunomodulatory function of neurotransmitters that

transforms the course of cancer (Figure 1). The exact amount of

neurotransmitters in total is hard to calculate, but probably over

100, meanwhile their receptors are nearly 1000 (14). Despite the

diversity, these molecules can be categorized into two classes: small-

molecule neurotransmitters and neuropeptides. Neuropeptides are

transmitter molecules composed of 3 to 36 amino acids with neural

activity. Amino acids like acetylcholine, glutamate, gamma-

aminobutyric acid (GABA), and biogenic amines (including

dopamine, norepinephrine, epinephrine, serotonin, and

histamine) are much lower in molecular weight and recognized as

the classical neurotransmitters. In general, small-molecule

transmitters mediate rapid reaction, while neuropeptides are

prone to modulating slower responses (15).
2.1 Catecholamines

Catecholamines (CAs), the main effectors in the sympathetic

nervous system (SNS), are tyrosine-originated biogenic amines and

mediate the SNS-induced ‘fight-or-flight’ stress reaction. In

response to psychological stress, SNS activation elevates

catecholamines levels in circulation via the release of epinephrine

from the adrenal medulla or norepinephrine spill-over from the

neuro-muscular junction of sympathetic nerves (16–18). Generally,

an acute SNS activation is beneficial but chronic stress is

detrimental as it suppresses the activities of effector immune cells

and activates the immunosuppressive cells (19). T cells, as well as

macrophages and neutrophils, can synthesize catecholamines

themselves and regulate their function in an autocrine/paracrine

manner (20). Dopamine (DA), norepinephrine (noradrenaline,

NE), and epinephrine (adrenaline, E) are all included.

On the other hand, growing evidence suggests that catecholamines

play distinct roles in the regulation of angiogenesis (21–25), which has

been clarified as DA inhibits tumor angiogenesis and stimulates tumor

immunity while NE and E stimulate angiogenesis and inhibit immune

functions in cancer (26).

2.1.1 Norepinephrine and epinephrine
Norepinephrine and epinephrine, known as stress excitatory

neurotransmitters, are the main effectors in the sympathetic system.

Activated by a stress reaction, they could stimulate muscle

contraction, glycogen degradation, airway dilation, and stress-

induced tumor progression as well (15).

Norepinephrine and epinephrine perform their functions

through a1-,a2- and b-ARs on their target cells respectively. a1
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-AR upregulates the intracellular calcium level but a2- AR

decreases adenylate cyclase and inhibits intracellular cyclic AMP

(cAMP), exerting the opposing functions. There are three subtypes

of b-ARs, the G-protein-coupled receptors whose primary function

is transmitting information from the extracellular environment to

the interior cell and distributing it to the whole body (27).

Associated signaling molecules have been summarized as b1- and
b2- ARs increase intracellular cAMP by activating adenylate cyclase

(27–33).

Both the innate and adaptive immune systems fight against the

neoplasms. b-ARs are widely expressed in immune cells, including

T lymphocytes, B lymphocytes, NK cells, monocyte/macrophage,

and dendritic cells (DCs), of which the activation generally
Frontiers in Immunology 03
inhibits lymphocyte, NK cell, and DC responses (34, 35). Innate

immune cells express the b2-, a1- and a2- ARs, while the b2
subtype is the main receptor on adaptive immune cells, except for

Th2 cells (35, 36). Focus has long been on the influence of

activated b2-ARs on CD4(+) T cells and B cells. Though CD8

(+) T cells express three times the quantity of b2-ARs on CD4(+)

T cells, it is still hard to elucidate how the b2-AR-mediated

modulation acts in CD8(+) T cells—the backbone of adaptive

immunity (37–40). Generally, b-adrenergic signaling significantly
suppressed the function of antigen-specific CD8(+)T cells,

including their proliferation, interferon-gamma (IFN-g)
production, and cytolytic killing capacity. This T-cell-selective

inhibitory effect does not disturb innate lymphocyte responses
FIGURE 1

Neurotransmitters exert the dual effects in the modulation of tumor-associated immune cells via specific receptors.
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(41). Moreover, blocked CD8(+) T cell metabolic reprogramming

via b-adrenergic signaling decreased the glucose uptake of T cells

and contributed to stress-induced immunosuppression (42). In

addition to suppressing lymphocyte function directly,

norepinephrine may downregulate anti-tumor response by

favoring the accumulation of immunosuppressive cells, which

can be abolished by propranolol in a murine spontaneous model

of melanoma (43). As for innate immunity, activated b-AR
decreases NK cell activity and permits tumor metastases in an

animal model (44, 45). Physiologically, the regulation of NK cell

function is closely related to SNS-mediated biological behaviors,

such as circadian regulation, exercises, stress, and social

engagement (46, 47), and rhythmic NE input to the rat spleen
Frontiers in Immunology 04
acts as the molecular clock of cellular activity in local NK cells

(48). Mobilization and redistribution of NK cells can be motivated

by epinephrine in the murine model with regular exercise, which

depends on the secretion of IL-6 (49). Endogenous E and

prostaglandins orchestrated the inhibition of cytotoxic T-

lymphocyte and NK cell responses and promote leukemia

progression in rats (50). The affected function of macrophages

via adrenergic receptors varies under different circumstances.

Both physiologic and pharmacologic doses of norepinephrine

suppressed wound macrophage phagocytic efficiency through a-
and b-AR signaling in a dose-dependent manner (51). With the

recruitment of CD11b(+)F4/80(+) macrophages into tumors, the

secretion of NE could increase the metastasis of breast cancer cells
FIGURE 2

The role of neurotransmitters in the TME and their clinical opportunities.
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TABLE 1 Immunomodulatory roles of neurotransmitters in the TME.

Neurotransmitter Receptors Roles in TME Supporting details Clinical opportunities

Catecholamine (CA) – DA inhibits tumor
angiogenesis and
stimulates tumor
immunity.
NE and E stimulate
angiogenesis and
inhibit tumor
immunity.

An acute SNS activation is beneficial but chronic
stress is detrimental generally as it suppresses the
activities of effector immune cells and activates the
immunosuppressive cells (18).
DA inhibits tumor angiogenesis and stimulates
tumor immunity while NE and E stimulate
angiogenesis and inhibit immune functions in
cancer (25).

In breast cancer, sympathetic denervation
surprisingly downregulated the expression
of immune checkpoint molecules (PD-1,
PD-L1, and FOXP3).

norepinephrine (NE),
epinephrine (E)

a1-, a2-, b-
adrenergic
receptors

NE/E triggers the
stress-induced tumor
progression.
NE/E promotes an
immunosuppressing
environment directly
or indirectly.
Affected function of
macrophages via
ARs: opposite
evidence.

a1-ARs regulate its function by increasing the
intracellular calcium level while a2- AR
downregulates adenylate cyclase and thus inhibits
cAMP (26).
b1-/b2- AR signaling activate adenylate cyclase to
increase intracellular cAMP (26–31).
Activation of b-ARs usually inhibits lymphocyte
responses, NK cell cytotoxicity, and DC functions
(33, 34).
b-AR stimulation suppresses NK cell activity(
related with SNS-mediated biological behaviors)
and impairs resistance to tumor metastases in an
animal model (45, 46).
b-adrenergic signaling significantly suppresses the
proliferation, IFN-g production, and cytolytic
killing capacity of antigen-specific CD8(+)T cells
and this inhibitory effect is selective to T cells (40),
decreasing the glucose uptake of T cells and
contributed to stress-induced immunosuppression
(41).
NE downregulates anti-tumor response by favoring
the accumulation of immunosuppressive cells,
which can be abolished by propranolol in a murine
spontaneous model of melanoma (42).
NE in physiologic and pharmacologic doses
suppressed wound macrophage phagocytic
efficiency through a- and b-AR signaling in a
dose-dependent manner (50).
With the infiltration of CD11b(+)F4/80(+)
macrophages into tumors, NE increased the
metastasis of breast cancer cells to distant sites
without affecting the growth of primary tumors by
indicating M2 macrophage differentiation (51).
Intestinal macrophages enhanced tissue-protective
programs on luminal bacterial infection via
activated b2-ARs (52).

Several retrospective epidemiological studies
have concluded that cancer patients taking
b-blockers tend to have better outcomes in
the prostate, breast, and colorectal cancer
(174–177).
b-blockers for the perioperative treatment
of cancer patients abolished the
postoperative immune suppression and
reduced the risk of tumor metastasis (179–
182) by recovering the decreased NK cells
cytotoxicity after surgery (183, 184).
inhibition of b-AR signaling in an
experimental murine model improved an
immunologically active TME with an
increased intratumoral frequency of CD8(+)
T cells, elevated Teffs cell to Tregs cell ratio,
and decreased expression of PD-1, which
raises the efficacy of anti-PD-1 checkpoint
blockade.
b-blockers can regulate immune response
by modulating the activation of MDSCs
and their expression of immunosuppressive
molecules(arginase-I and PD-L1).
The immunosuppressive function of
MDSCs tends to be mitigated by treating b-
blockers or enhanced with b-adrenergic
agonists (196).

Dopamine(DA) D1(D1 and
D5) ;
D2(D2, D3 and
D4)

DAs stimulate anti-
tumor immunity.
DRD1: agitates
tumor growth and
inhibits
immunosuppression,
but ultimately
displays the anti-
tumor effect
DRD2: upregulated
in malignant tumors
Different DA effects
on T cell functions
depends on DRs
level, composition, or
dopamine response
in various subtypes.
Regulate tumor
growth via prolactin
release.

DA can stimulate the peritoneal macrophages, NK
cells, and cytotoxic T cells to perform its anti-
tumor function (15, 25, 61).
Immune cells, such as Tregs, can secrete DA to
activate immune function (73).
DRD1 signaling promoted HCC cell growth (58).
Catecholamines release of Tregs led to a reduced
production of interleukin-10 (IL-10) and
transforming growth factor-b (TGF-b) and
suppress its inhibition of Teffs proliferation, which
is selectively reversed by blockade of D1-like
receptors (59).
Inhibition of DRD2 in PDAC cells reduced
proliferation and migration, and slowed growth of
xenograft tumors in mice (55).
DA activates naïve or resting T cells by D1, D2,
D3, and D5 receptors, but inhibits activated T cells
by D1, D2, D3, D4, and D5 receptors (68, 69),
making their function dynamic.
Dopamine is a potent activator of resting Teffs by
direct Teffs activation or Tregs suppression .
Dopamine(~10-8M) activates resting or naïve Teffs

DRD1 agonists were proven to exert a
major anti-tumor effect in several
preclinical models (56, 57).
D1-like receptor agonists can potently
inhibit the suppressive function of MDSC
(203).
Paliperidone, a DRD2 antagonist, is
reported to inhibit GBM growth and
decrease the expression of programmed
death-ligand 1(PD-L1) in GBM (205).

(Continued)
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TABLE 1 Continued

Neurotransmitter Receptors Roles in TME Supporting details Clinical opportunities

and affects Th1/Th2/Th7 differentiation via ERK,
Lck, Fyn, NF-kB and KLF2 signaling cascades (79).
Dopamine significantly inhibits the proliferation
and cytotoxicity of CD4(+) and CD8(+) T cells in
vitro under a physiological concentration (71, 72).
DA can indirectly affect tumor growth by
regulating the production and release of prolactin
(84–86), which regulates the function of NK cells
and lymphokine-activated killer cells (78).

Serotonin/5-
Hydroxytryptamine

5-HT1R and 5-
HT5 R: Gi/o-
coupled to
adenylyl
cyclase and
downregulate
cAMP.
5-HT2R: Gq/11-
coupled to PLC
and lead to
intracellular
Ca2+ release.
5-HT5R:
derives from
pseudogene.
5-HT4, 5-HT6,
and 5-HT7Rs:
Gs-coupled to
adenylyl
cyclase and
upregulate
cAMP mostly.

a potent mitogenic
factor for various
tumor and non-
tumoral cells.
5HT induces the
immunosuppressive
microenvironment
for tumor growth.
5HT mitigates
macrophage-induced
in vivo immune
suppression and T
cell apoptosis.

Chronic stress promoted the progression of ovarian
cancer cell along with the significantly decreased
serotonin, and the effect was inhibited by
serotonin/HTR1E signaling (83).
TIAM2 provokes a pro-inflammatory immune
microenvironment permissive to colorectal
tumorigenesis through serotonin-induced
immunomodulatory effects (85).
5-HT itself modulated the polarization of
macrophages, maintaining an anti-inflammatory
state mainly via 5-HTR2B and 5-HTR7 (84).
5-HT1aR induced an immunosuppressive
environment in lung adenocarcinomas patients
with depression by activating the pSTAT3 and
autophagy signaling and upregulating PD-L1
molecules (86).
Inhibition of platelet-derived peripheral serotonin
is associated with decreased pancreatic and
colorectal tumor growth in mice, increased CD8(+)
T cell influx, and decreased PD-L1 expression in
tumors (87).

Fluoxetine, a classic SSRI, significantly
inhibits melanoma tumor growth with an
increased mitogen-induced T cell
proliferation (194) and suppresses the
progression of lymphoma via restoring NK
cell activity and cytotoxic T lymphocyte
activity with no noticeable systemic toxicity
(195).
Sertraline recovered the T cell stress-
induced deficiency, including strengthening
the infiltration of CD8(+) T cells in the
TME, upregulating the expression of IFN-g
and GzmB, and reducing the expression of
PD-1 on CD8(+) T cells (199).
Fluoxetine reduced macrophage
polarization in vivo by reversing tumor-
induced oxidative damage to macrophages
and consequent oxidative stress in
thymocytes (196, 197).
Fluvoxamine significantly suppressed the
migration and proliferation of tumor cells
and prompted infiltration of T lymphocytes
and M1-type macrophages with reduced
expression of PD-L1 in colon cancer
murine models (198).

Acetylcholine (Ach) mAChRs
nAChRs
(a7nAChR and
a4b2nAChR)

Ach upregulates PD-
L1 expression and
induced immune
escape.
mAChRs stimulate
immune response
nAChRs induce
immunosuppression
mainly

Triggered by perineural invasion, cholinergic
signaling favored tumor growth by promoting an
immunosuppressive environment characterized by
impaired CD8(+) T cell infiltration and a reduced
Th1/Th2 ratio (102).
Zimring JC et al. demonstrated M-1 muscarinic
receptors play a role in the differentiation of CD8
(+) T cells into cytolytic T lymphocytes (90).
Through nicotinic receptors, acetylcholine inhibited
the synthesis and release of TNF (91) and
stimulated IL-10 production in macrophages in an
auto/paracrine manner (92), implying its functional
role in immunosuppression.
a7nAChRs on cytokine-producing macrophages
and other immune cells have been identified as the
main mediator for the 'cholinergic anti-
inflammatory reflex’', a prototypical vagus nerve
circuit where a memory phenotype T cell
population producing acetylcholine was identified
(93).
Activated a7nAChR mediated PD-L1 expression in
normal human bronchial epithelial cells(HBECs)
via STAT3/NRF2 pathways (96).
a4b2nAChR, play opposing roles against
a7nAChR in cancer development and progression
(97).

Wang, ZL et al. found that acetylcholine
increased the self-renewal ability of CD133
(+) thyroid cancer cells and promoted the
expression of PD-L1 via the CD133-Akt
pathway (101).
The stimulation of a5nAChR promoted
PD-L1 expression and thus induced
immune escape via the pSTAT3, Jab1
signaling in lung adenocarcinomas (103).
a7nAChRs expressed on antigen-presenting
cells downregulated T cell differentiation by
inhibiting antigen processing, while those
expressed on CD4(+) T cells upregulated
differentiation into Tregs and Teffs,
regulating the intensity of immune
responses (94, 95).

Glutamate mGluRs:
group I
(mGluR1 and
mGluR5)
coupled to the

Glutamate facilitates
tumor progression,
and suppresses anti-
tumor immunity.
GLS1 suppresses

Tumor-derived glutamate leads to peritumoral
excitotoxic cell death and thus vacates space for
tumor expansion (108–111).
Activated mGluR2 and mGluR3 signals promote
U87MG human glioma cell growth in vivo (113).

Perturbations of GRM4 strengthened the
anti-tumor immunity by stimulating the
IFN-g production in CD8(+) T cells
through cAMP/CREB protein-mediated
pathway (112).

(Continued)
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TABLE 1 Continued

Neurotransmitter Receptors Roles in TME Supporting details Clinical opportunities

Gq proteins
and their
activation
stimulates PLC;
group II
(mGluR2 and
mGluR3)
groupIII
(mGluR4,
mGluR6,
mGluR7 and
mGluR8):
negatively
coupled to
adenylate
cyclase
iGluRs:
NMDARs,
AMPARs,
kainite
receptors

immune therapy and
promote tumor;
GLS2 contributes to
the p53 tumor
suppression
Glutamate in
SLC7A11-high
cancer prompts
immunosuppression

Downregulation of GLS diminishes cell-
autonomous tumorigenesis in an HCC mouse
model (114).
GLS2, identified as a p53 target gene, contributes to
the p53 tumor suppression via its antioxidant and
pro-apoptotic function (116).
Elevated extracellular glutamate derived from
glioblastoma with overexpressed SLC7A11
stimulated the activation and suppressive function
of Treg, and the expression of mGlutR1 (122).

GLS1 repression enhanced the therapeutic
efficacy of anti-PD-L1 therapy, with
reduced arginase 1(+) myeloid cells and
increased CD8(+)/IFNg(+)/granzyme B(+)
T cells, and delayed tumor growth in an
ICB-resistant mouse model (115).
SLC7A11 repression can be a synergistic
anti-tumor mechanism in combination with
checkpoint blockade (123).
IFN-g secreted from CD8(+) T cell reduced
GSH synthesis in fibroblasts through
transcriptional repression of system Xc- via
the JAK/STAT1 pathway, and ultimately
abolished the ovarian tumor resistance to
platinum-based chemotherapy (124).
Weimin Wang et al. found that PD-L1
blockade therapy-activated CD8 (+)T cell
downregulated the expression of SLC7A11,
impaired the cystine uptake of tumor cells,
and hence accelerated tumor cell lipid
peroxidation and ferroptosis through IFN-g
(125).

Gamma-aminobutyric
acid (GABA)

ionotropic
receptors
(GABA(A) and
GABA(C)):
metabotropic
receptor(GABA
(B)):

GABA(A)Rs:
suppress tumor
growth and promote
anti-tumor immunity
GABA(B)Rs(
contradictory
evidence): impair
tumor growth;
activate tumor
proliferation and
promote
immunosuppression

Benzodiazepines, a drug that can enhance GABA
(A)R-mediated anion transport, could depolarize
melanoma cells and reduce tumor growth, as well
as potentiate radiation and immune checkpoint
inhibitor response by promoting direct anti-tumor
activity and infiltration of CD8(+) T cell (134).
Baclofen, a GABA(B) receptor agonist, inhibits
human HCC growth through the downregulation
of intracellular cAMP level and upregulation of p21
(WAF1) (135).
GABA(B) receptor 1 signaling impaired the
migration and invasion of colorectal cancer (CRC)
cells by inhibiting EMT and the hippo/YAP1
pathway (136).

B cell-derived GABA promotes monocyte
differentiation into IL-10(+) macrophages,
an anti-inflammatory subtype, to limit anti-
tumor immunity by inhibiting CD8(+) T
cell killer function (133), establishing a
suppressive TIME via modulating
macrophages differentiation.
GABA(B) receptor activated by tumor-
derived GABA inhibits GSK-3b activity,
enhances b-catenin signaling, and leads to
stimulation of tumor cell proliferation and
suppression of CD8(+) T cell intratumoral
infiltration (137).

Substance P (SP) NK1R,
NK2R

SP promotes tumor
progression as a
mitogen.
NK1R signaling
activates the immune
response by
stimulating DCs, T
cells, etc.
NK1R antagonists
inhibit tumor
metastases and
modulate the
oxidative state of
TIME.

SP may act locally on memory T cells to amplify
inflammatory responses by inducing IL-1b, IL-23,
and TNF-like 1a expression from monocytes (145).
SP upregulated TLR-4 and contributed to the
increase of tumor cell biological activity (149).
NK1R signaling inhibits IL-10 secretion and thus
promotes immunostimulatory DCs capable of
biasing type 1 immunity (144).
NK1R antagonists suppress inflammation and
metastasis of breast carcinoma cells metastasized
into the liver (151).
Aprepitant, a kind of NK1R antagonist, prevents
macrophages from LPS-induced oxidative stress by
reducing the production of ROS and the expression
of NOX-4, which may modulate the oxidative state
of the TIME (152).

Anti-SP therapy could strongly suppress
cell growth and induce apoptosis in breast,
colon, or prostate cancer cell lines and
decrease the steady state of Her2 and EGFR
(150).
DCs, the target of immunotherapy
protocols aimed at the stimulation of
cellular immune responses, do not always
function ex vivo. Signaling via NK1R can
rescue DCs from apoptosis due to the lack
of GM-CSF and IL-4 for ex vivo generation
of immune-stimulatory DCs (143).

opioid peptide BEP inhibits tumor
growth involving
increased NK cell
and macrophage
activities.
Controversial roles of
MENK in cancer and
tumor immunity.

b-endorphin(BEP) fights against cancers through
the suppression of sympathetic neuronal function,
which resulted in increased peripheral NK cell and
macrophage activities (156).
The BEP neurons-transplanted rats displayed
increased immune functions and reduced growth
and metastasis of mammary carcinoma, involving
increased peripheral NK cell and macrophage
activities, increased plasma levels of anti-
inflammatory cytokines, and reduced plasma levels
of inflammatory cytokines (157).
MENK promotes the migration of breast
carcinoma cells (147) but inhibits the cell cycle

The opiate antagonist naloxone, the beta-
receptor agonist metaproterenol, or the
nicotine acetylcholine receptor antagonist
methyllycaconitine can all reverse anti-
metastatic effects and the stimulation of NK
cells and macrophages (157).
Chronic opioid use also alters human CD8
(+) T cell subsets balance, including
significant decreases in T effector memory
RA(+) cells (158).

(Continued)
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progression of pancreatic, colon, and head and
neck cancer cells (160).
MENK exerts anti-tumor effects by enhancing anti-
tumor immune response or directly inhibiting
tumor cell proliferation (161, 162).
In CRC, MENK increased the infiltration of M1-
type macrophages, CD8(+)T cells, and CD4(+) T
cells, and decreased the proportions of G-MDSCs,
M-MDSCs, and M2-type macrophages (161, 162).
The pro-tumor role of MENK was emphasized by
its inhibition of T and B cell proliferation,
promotion of tumor cell growth, and the
desensitization of lymphocytes via opioid receptors
(163).
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to distant sites, including the lymph nodes and lungs, without

affecting the growth of primary tumors (52). However, intestinal

macrophages enhanced tissue-protective programs on luminal

bacterial infection via activated b2-ARs (53).

2.1.2 Dopamine
Dopamine is an inhibitory stress neurotransmitter in the brain

and the precursor for norepinephrine and epinephrine synthesis as

well. Though it does not translocate across the blood-brain barrier,

dopamine can be detected in the urine, implying its derivation from

peripheral tissues. At least three sources of dopamine have been

identified: sympathetic neurons, adrenal medulla, and

neuroendocrine cells.

Five different seven-transmembrane G-protein-coupled

dopamine receptors(DRs) are categorized into two groups: D1

class (D1 and D5) and D2 (D2, D3, and D4) class of receptors on

target cells (16, 54). Activated dopamine receptor D1 (DRD1) class

increases intracellular cAMP, whereas the dopamine receptor D2

(DRD2) class inhibits intracellular cAMP (54).

Regulation mediated by diverse dopamine receptors is complicated

in cancers. In breast and colon cancer preclinical models, dopamine

made anti-cancer drugs efficient through an anti-angiogenic effect (55).

In gastric cancer, activated DRD2 inhibits insulin-like growth factor

(IGF)-I-induced tumor cell proliferation (56). However, the

upregulation of DRD1 agitates tumor growth and meanwhile inhibits

immunosuppression, but displays an anti-tumor effect in preclinical

models (57, 58). DRD1 signaling promoted hepatocellular carcinoma

(HCC) cell growth (59). Catecholamines release of CD4(+)CD25(+)

regulatory T lymphocytes (Tregs) decreased interleukin-10 (IL-10) and

transforming growth factor-b (TGF-b) and inhibited Treg-dependent

inhibition of effector-T lymphocytes(Teffs) proliferation, which is

selectively reversed by pharmacological blockade of D1-like

receptors (60).

SNS has an abundant innervation in the immune system, including

most secondary lymphoid organs. Most immune cells or organs

express DR, including the thymus and the immune effector cells(e.g.,

lymphocytes, monocytes, neutrophils, and DCs), suggesting its

potential role in modulating the whole immune system (16, 61–65).

Both central and peripheral DA have an impact on tumor growth and

progression by unbalancing immune homeostasis (66–68). DA can
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stimulate the peritoneal macrophages, NK cells, and cytotoxic T cells to

perform its anti-tumor function (16, 26, 62). Especially, DA has unique

and opposite effects on T cell functions, which depends on different

DRs level, composition, or dopamine response in various cell types. It

was demonstrated that DA activates naïve or resting T cells by D1, D2,

D3, and D5 receptors, but inhibits activated T cells by D1, D2, D3, D4,

and D5 receptors (69, 70), making their function dynamic. Dopamine

itself is a potent activator of resting effector T cells (Teffs) via two

independent ways: direct Teffs activation and indirect Teffs activation

by suppression of Tregs. Dopamine(~10-8M) activates resting or naïve

Teffs(CD8(+) far outweighs CD4(+)) and affects Th1/Th2/Th7

differentiation via ERK, Lck, Fyn, NF-kB and KLF2 signaling

cascades (71). However, dopamine in a physiological concentration

can significantly inhibit the proliferation and cytotoxicity of CD4(+)

and CD8(+) T cells in vitro, especially for CD8(+)T cells (72, 73).

Except for being an effector, immune cells can be the initiator to secrete

DA, such as Tregs (74) aimed at balancing immune homeostasis and

influencing the course of disease (75). Activated Tregs produce more

dopamine than Teffs in general. In addition, DA can indirectly affect

tumor growth by regulating the production and release of prolactin

(76–78), which regulates the function of NK cells and lymphokine-

activated killer cells (79).
2.2 Serotonin/5-Hydroxytryptamine

5-Hydroxytryptamine (5-HT), also named serotonin, is a

monoamine neurotransmitter synthesized in the serotonergic

neurons within the CNS and the enterochromaffin cells of the

intestine (80). More than 90% of the body’s 5-HT is synthesized by

the intestine enterochromaffin cells and then stored in platelets.

Besides cognitive and behavioral works in the CNS (81), 5-HT also

exerts essential roles in peripheral aggregating platelets, provoking

immune responses, promoting bone development, regulating

insulin secretion, and sustaining systemic energy homeostasis (82,

83). Ovarian cancer progression due to chronic stress was

significantly associated with decreased serotonin and inhibited by

serotonin/HTR1E signaling (84).

5-HT performs its functions via seven different subtypes of

receptors (5-HT1-7) coupled to multiple signaling pathways. All of
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the seven belong to the family of G-protein-coupled receptors

except for 5-HT3—a ligand-gated ion channel. Gi/o receptors(5-

HT1 and 5-HT5) coupled to adenylyl cyclase decreased cAMP. Gq/1

receptors(5-HT2) coupled to phospholipase C (PLC) promoted

intracellular Ca2+ release. Gs receptors(5-HT4, 5-HT6, and 5-HT7)

coupled to adenylyl cyclase increased cAMP mostly (81, 82).

The multiple effects of 5-HT on depression and the tumor is still

far from conclusion. 5-HT itself modulated the macrophage

polarization with a sustained anti-inflammatory state

predominantly through 5-HT2BR and 5-HT7R (85). T cell

lymphoma invasion and metastasis 2 (TIAM2) promoted

colorectal tumorigenesis by maintaining a pro-inflammatory state

via serotonin-induced immunomodulatory effects (86). 5-HT1aR

induced an immunosuppressive environment in lung

adenocarcinomas patients with depression by activating the p-

signal transducer and activator of transcription 3(pSTAT3) and

autophagy signaling, as well as upregulating its downstream PD-L1

molecules (87). Specifically, 5-HT1aR on T cells is critical for

expanding the group of CD4(+)CD25(+)Foxp3(+) Treg cells and

reducing the ratio of Th1/Th2 cells, and 5-HT1aR on tumor cells is

inversely related to cytotoxic lymphocytes activity. Inhibition of

platelet-derived peripheral serotonin is associated with decreased

pancreatic and colorectal tumor growth in mice, increased CD8(+)

T cell influx, and decreased PD-L1 expression in tumors (88).
2.3 Acetylcholine

Acetylcholine (Ach), a predominant neurotransmitter of the

parasympathetic system, is synthesized and secreted by neurons or

nonneuronal cells, such as epithelial cells, mesothelial cells,

endothelial cells, immune cells, cancer cells, etc. Apart from the

brain, peripheral organs also have an abundant cholinergic

innervation, involving a complicated interplay between autonomic

nerves and immune cells. Gautron L. et al. found cholinergic fibers

in mice gut are close to immune cells, including macrophages,

plasma cells, and T cells (89), suggesting a potential role of the

cholinergic system in neuroimmune interaction.

Ach receptors can be classified into the nicotinic acetylcholine

receptor (nAchR) and the muscarinic receptor (mAchR) (90).

Muscarinic receptors provoke immune activities, including

lymphocyte mitogenesis, cytotoxic responses, and mast-cell-

derived cytokines release. Zimring JC et al. demonstrated M-1

muscarinic receptors improve CD8(+) T cells differentiating into

cytolytic T lymphocytes (91). Through nicotinic receptors,

acetylcholine inhibited the secretion of tumor necrosis factor

(TNF) (92) and stimulated IL-10 production in macrophages in

an auto/paracrine manner (93), implying its functional role in

immunosuppression. a7nAChR and a4b2nAChR are the

evolutionarily oldest nAChRs. a7nAChRs on cytokine-producing

macrophages or other immune cells are regarded as the main

mediator for the ‘cholinergic anti-inflammatory reflex’’, a

prototypical vagus nerve circuit where a memory phenotype T

cell population producing acetylcholine was identified (94).

Mashimo M et al. identified that a7nAChRs expressed on

antigen-presenting cells(APCs) downregulated T cells
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differentiation by impairing antigen processing, while those

expressed on CD4(+) T cells upregulated differentiation into

Tregs and Teffs, regulating the intensity of immune responses

(95, 96). Activated a7nAChR also mediated PD-L1 expression in

normal human bronchial epithelial cells (HBECs) via STAT3/NRF2

pathways (97). Another classical nAChR, a4b2nAChR, play

opposing roles against a7nAChR in cancer development and

progression (98). The two counterparts are in a delicate balance

that can be easily broken when the synthesis or release of

neurotransmitters or the expression of receptors alters in cancer.

Nonneuronal Ach has been identified as a regulator

participating in cell proliferation, differentiation, apoptosis,

migration, angiogenesis, and immune response (99–101).

Especially, tumor cell-derived Ach can promote tumor

progression in an autocrine manner. Wang, ZL et al. found that

acetylcholine increased the self-renewal ability of CD133(+) thyroid

cancer cells and promoted the expression of PD-L1 via the CD133-

Akt pathway (102). The pro-tumoral effect of cholinergic signaling

was triggered by perineural invasion by sustaining an

immunosuppressive environment typical of a reduced CD8(+) T

cell infiltration and Th1/Th2 ratio (103). Zhu, P et al. have

demonstrated the stimulation of a5nAChR promoted PD-L1

expression and thus induced immune escape via the pSTAT3,

Jab1 signaling in lung adenocarcinomas (104).
2.4 Glutamate

Glutamate, the principal CNS excitatory neurotransmitter, is

associated with affective, sensory, motor, and synaptic plasticity,

and is also engaged in learning and memory. Abundant glutamate

in the TME nourishes cell growth facilitates tumor progression and

suppresses anti-tumor immunity. However, some evidence

emphasizes that glutamate is also essential for the development

and activation of effector T cells to exert anti-tumor function in

STK11-/Lkb1-deficient lung cancer (105).

Two classes of glutamate receptors have been identified: the

metabotropic receptors(mGluRs) and the ionotropic receptors

(iGluRs). According to sequence homology, and pharmacological

and intracellular signaling mechanisms, the mGluRs, belonging to

the superfamily of GPCRs, are further categorized into three groups.

Group I mGluRs(mGluR1 and mGluR5) are coupled to the Gq

proteins and their activation stimulates PLC. Whereas, group II

(mGluR2 and mGluR3) and III(mGluR4, mGluR6, mGluR7 and

mGluR8) are negatively coupled to adenylate cyclase (106). Based on

structural similarities, the iGluRs are divided into three subgroups

named by the type of synthetic agonist that activates them: N-methyl-

D-aspartate(NMDA) receptors, a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionate(AMPA) receptors, and 2-carboxy-3-

carboxymethyl-4-iso-propenylpyrrolidine(kainate) receptors (107).

Functional iGluRs and mGluRs expressed on normal, tumor, and

autoimmune human T cells mediate the activation of many critical cell

functions(e.g., adhesion, migration, proliferation), intracellular Ca2+

fluxes, and outward K+ currents, mainly under a low physiological 10-

8M to 10-5M concentration of glutamate (108). Tumor-derived
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glutamate leads to peritumoral excitotoxic cell death and thus vacates

space for tumor expansion (109–112). Metabotropic glutamate

receptor 4(GRM4) plays a novel role in suppressing anti-tumor

immunity. Perturbations of GRM4 strengthened the anti-tumor

immunity by activating NK, CD4(+) T, and CD8(+) T cells.

Specifically, GRM4(-/-) stimulated the IFN-g production in CD8(+)

T cells through cAMP/CREB protein-mediated pathway (113). Various

cancers depend on glutamate to an unusual degree for its contribution

to metabolic building blocks and the energy supply. Activated mGluR2

and mGluR3 signals promote U87MG human glioma cell growth in

vivo (114). Downregulation of glutaminase(GLS)—the critical enzyme

converting glutamine into glutamate and regulating glutathione

synthesis—diminishes cell-autonomous tumorigenesis in an HCC

mouse model (115). GLS1 repression promoted the therapeutic

efficacy of anti-PD-L1 therapy with less arginase 1(+) myeloid cells

and more CD8(+)/IFNg(+)/granzyme B(+) T cells, which is also

effective in an immune checkpoint blockade(ICB)-resistant mouse

model (116). However, GLS2, identified as a p53 target gene,

contributes to the p53 tumor suppression via its antioxidant and

pro-apoptotic function (117).

An antiporter system X−
c on the cell surface can import cystine

into cells with a 1:1 counter-transport of glutamate, regulating the

processes of redox homeostasis and cell growth. Solute Carrier

Family 7 Member 11(SLC7A11) or xCT, the light chain subunit of

system X−
c , serves as the primary transporter (118). Physiologically,

imported cystine and intracellular glutamine are converted into

cysteine and glutamate respectively, serving as precursors for

glutathione(GSH) synthesis, which protects cells from oxidative

stress (119). Elevated extracellular glutamate derived from

glioblastoma with overexpressed SLC7A11 stimulated the

activation and suppressive function of Treg, and the expression of

mGlutR1 (120). SLC7A11 repression can be a synergistic anti-

tumor mechanism in combination with checkpoint blockade

(121). IFN-g secreted from CD8(+) T cell reduced GSH synthesis

in fibroblasts through transcriptional repression of system X−
c via

the JAK/STAT1 pathway, and ultimately abolished the ovarian

tumor resistance to platinum-based chemotherapy (122).

Similarly, Weimin Wang et al. found that PD-L1 blockade

therapy-activated CD8 (+)T cell inhibited SLC7A11 expression,

diminished the cystine intake into tumor cells, and hence

accelerated tumor cell lipid peroxidation and ferroptosis through

IFN-g (123).
2.5 GABA

GABA, a primary inhibitory neurotransmitter in the CNS, is

produced from glutamate by the glutamate decarboxylase 1/2

(GAD1/2) enzymes and is catabolized by GABA-transaminase

(ABAT). GABA is also widely expressed in the peripheral

endocrine organs , including the pitui tary , pancreas ,

gastrointestinal tract, testes, ovaries, placenta, uterus, and adrenal

medulla but at a lower level than in the brain (124, 125), and is

upregulated in autoimmune diseases and certain solid tumors, such

as gastric, pancreatic, and breast cancers (126–129). Three types of

GABA receptors include the ionotropic receptors(GABA(A) and
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GABA(C)) and metabotropic receptors(GABA(B)), inducing

different effects on cancer growth (130).

A 2021 publication in Nature has identified B cell-derived

GABA promotes monocyte differentiation into IL-10(+)

macrophages and limits anti-tumor immunity by inhibiting CD8

(+) T cell killer function (131), establishing a suppressive TIME via

modulating macrophage differentiation. Krummel DAP, et al.

demonstrated that benzodiazepines, a drug that can enhance

GABA(A)R-mediated anion transport, could depolarize

melanoma cells and reduce tumor growth, as well as potentiate

radiation and immune checkpoint inhibitor response by provoking

direct anti-tumor activity and infiltration of CD8(+) T cell (132).

Activated GABA(B) receptor shows contradictory effects on human

cancer progression. Baclofen, a GABA(B) receptor agonist, inhibits

human HCC growth through the downregulation of intracellular

cAMP level and upregulation of p21(WAF1) (133). However,

GABA(B) receptor 1 signaling impaired the colorectal tumor cells

migration and invasion through blocked EMT and the hippo/YAP1

pathway (134). GABA(B) receptor activated by tumor-derived

GABA inhibits GSK-3b activity, enhances b-catenin signaling,

and leads to stimulation of tumor cell proliferation and

suppression of CD8(+) T cell intratumoral infiltration, suggesting

its distinct role of being targeted pharmacologically to reverse

immunosuppression beyond its traditional function as a

neurotransmitter (135).
2.6 Substance P

Substance P(SP), a member of the tachykinin family, is an eleven-

amino acid neurotransmitter expressed in CNS or PNS and affects

emotional behavior (15). SPs are expressed on the macrophage,

neuronal, endothelial, and epithelial cells (136). SP acts on

neurokinin-1/2 receptors(NK1/2R), and blocking the neurokinin-1

receptor(NK1R) can inhibit NK1/2R signaling for the treatment of

anxiety and depression disorders (137). As the chief receptor for the

tachykinin family peptides, NK1R, an inflammation-related G protein-

coupled receptor, is widely expressed in the CNS and peripheral tissues.

NK1Rs participate in physiological responses such as pain

transmission, vasodilation, endocrine and paracrine factors secretion,

and cell proliferation (138).

Generally, the stimulatory effects of SPs on immunity consist of

accelerating lymphocyte proliferation and the activation of

phagocytic cells, bone marrow, and platelets for cytotoxicity (139,

140). DCs, the target of immunotherapy protocols aimed at the

stimulation of cellular immune responses, do not always function ex

vivo. Signaling via NK1R can rescue DCs from apoptosis due to the

lack of GM-CSF and IL-4 for ex vivo generation of immune-

stimulatory DCs (141). Moreover, the interaction between SP and

proinflammatory cytokines modulates the activation of an immune

response. NK1R signaling inhibits IL-10 secretion and thus

promotes immunostimulatory DCs capable of biasing type 1

immunity (142). To amplify inflammatory responses, SP may

function on memory T cells at a local level by inducing the level

of IL-1b, IL-23, and TNF-like 1a in monocytes (143).
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SP is also a mitogen. Concerning tumor biology, SP stimulates

tumor migration in the colon (144) or breast carcinoma cells (145)

and induces chemotactic properties in small-cell lung carcinoma

cells (146). SP via NK1R upregulated toll-like receptor-4 (TLR-4)

and contributed to the increase of tumor cell biological activity

(147). Anti-SP therapy could strongly suppress cell growth and

induce apoptosis in breast, colon, or prostate cancer cell lines and

decrease the steady state of Her2 and EGFR (148). NK1R

antagonists can also suppress inflammation and metastasis of

breast carcinoma cells metastasized into the liver (149).

Aprepitant, a kind of NK1R antagonist, prevents macrophages

from LPS-induced oxidative stress by reducing the production of

ROS and the expression of NOX-4, which may modulate the

oxidative state of the TIME (150). Concerning the few available

evidence, it is hard to define the exact effects of SP or NKR on anti-

tumor immunity now. Clinical administration of NK1R

antagonists/agonists still requires abundant examinations.
2.7 Opioid peptide

Endorphin, encephalin, and dynorphin, known as endogenous

opioids or opioid peptides, are processed from the precursor

proopiomelanocortin via post-translational cleavage. Leucocyte

subsets express proopiomelanocortin (151) and release the

products at sites of inflammation, contributing toimmune

regulation in pain control (152).

Opioid substances exerted a chief immunosuppressive effect on

anti-tumor immunity according to early research (153). However,

views differ among the subsequent studies. b-endorphin(BEP), a
chemokine for immune cells and small-cell lung carcinoma cells

(146), fights against cancers via inhibited SNS function and elevates

peripheral NK cell and macrophage activities. The effects also

involve alterations in the TME, including altered DNA repairs,

cell-matrix adhesion, angiogenesis, and epithelial-mesenchymal

transition (154). Sarkar, DK et al. transplanted in-vitro-generated

BEP neurons into the hypothalamic of rats enduring breast

carcinogenesis. The BEP neurons-transplanted rats displayed

increased immune functions and reduced growth and metastasis

of mammary carcinoma, such as activated peripheral NK cells and

macrophage, higher anti-inflammatory cytokines, and lower

inflammatory cytokines. The opiate antagonist naloxone, beta-

receptor agonist metaproterenol, or nicotine acetylcholine

receptor antagonist methyllycaconitine can all inactivate NK cells

and macrophages, reversing the effects of anti-tumor metastasis

(155). Chronic opioid use also alters human CD8(+) T cell subsets

balance, including significant decreases in T effector memory RA(+)

cells (156).

A clinical investigation on two independent samples involving

1,929 and 1,569 middle-aged women found that the low fasting

plasma concentration of encephalin precursor (pro-ENK) is

associated with an increased risk of future breast cancer in middle-

aged and postmenopausal women (157). According to existing

evidence, the function of opioid peptides varies in different cancer,

such as methionine enkephalin (MENK) is reported to promote
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breast carcinoma cells migration (145) but inhibit the cell-cycle

process of pancreatic, colon, and head and neck cancer cells (158).

Tumor heterogeneity cannot be exclusive of the reason, but nomatter

the location, the roles of MENK in tumors invariably courted

controversy. Multiple pieces of evidence have clarified that MENK

exerts anti-tumor effects by enhancing anti-tumor immune response

or directly inhibiting tumor cell proliferation (159, 160). In CRC,

MENK elevated the M1-type macrophages and T cells infiltration

and reduced the groups of myeloid-derived suppressor cells(MDSCs)

andM2-type macrophages (159), contributing to a pro-inflammatory

state. In a CRC murine model, MENK invigorated immune response

by markedly suppressing MDSCs and strengthening T cell activities,

thus preventing colon carcinoma progression, which brings light to

the development of adjuvant therapy for tumors (160). However, a

certain report emphasizes the pro-tumor role of MENK by inhibiting

T and B cell proliferation, promoting tumor cell growth, and resulting

in the desensitization of lymphocytes via opioid receptors (161).
3 Clinical opportunities
of neurotransmitters in
anti-tumor immunity

Immune cells within the TME, named tumor-associated

immune cells(TAIs), can defend against proliferation aberrances

or conversely induce variations, suggesting their dual role in

modulating tumor progression, which generally involves neural

stimulation. A highly activated metabolic and energy-consuming

state in tumors makes the neuroimmune interaction network more

complicated and intensive (Figure 2). The administration of b-
blockers and antidepressants on cancer patients is initially for other

complications besides cancer, such as hypertension, heart disease,

stress, or depression. But with the expanded application, these drugs

are demonstrated to influence tumor progression or prognosis.

Several typical cases are listed below:
3.1 b-blockers

b-adrenergic receptors, the chief messengers of sympathetic

functions, can activate adenylyl cyclase and accumulate the second

messenger cAMP (162) along with accelerated tumor growth (163–

165). Overexpressed b-ARs were found in breast and ovarian cancer

cells (163, 166), and b2-AR was the dominant subtype on them.

According to a large case-control study about prostate cancer patients

with simultaneous anti-hypertensive medication, only b-blocker-
applied groups have a significant association with reduced cancer

risk (167). A cardiovascular patients cohort study showed that the

administration of b-blockers resulted in a 49% decrease in cancer risk

to never-using relatively (168). Whereas, there is no large population-

based case-control study that has confirmed altered risk in invasive

breast carcinoma with b-blockers use (169). Activated b2-ARs also

enhance the IgE response via a PKA-dependent, p38 MAPK-mediated

pathway (170). AR regulation is important for cancer vaccine therapy.
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The role of b2-AR in an effective DC-based cancer vaccination was

evaluated in the murine E.G7-ovalbumin(OVA) model and turns out

that blocking b2-AR together with the activation of TLR2 at the

position of DC inoculation could either promote tolerogenesis or

enhance anti-tumor effects (171).

Drug repurposing has been a hot issue in recent years. Concerning

the immunomodulatory function mentioned above, b-blockers
repurposing may improve the immunotherapies’ efficacy in cancer

patients. Several retrospective epidemiological studies have concluded

that cancer patients administrated with b-blockers tend to reach better

outcomes in prostate, breast, and colorectal cancer (172–175).

Similarly, in the murine model, administrating b-blockers can

reverse immunosuppression and significantly improve the efficacy of

response to checkpoint inhibitor immunotherapy (19). b-blockers can
also regulate immune response bymodulating the activation ofMDSCs

and their expression of immunosuppressive molecules(arginase-I and

PD-L1). The immunosuppressive effects of MDSCs tend to be

alleviated by treating b-blockers or reinforced by b-adrenergic
agonists (176). b-blocker for the perioperative treatment of cancer

patients abolished the postoperative immune suppression and reduced

the risk of tumor metastasis (177–180) by recovering the decreased NK

cells cytotoxicity after surgery (181, 182). With this combined method,

b-blockers are still warranted because the main factor of surgery-

induced recurrence is associated with the postoperative stress

response (183).
3.2 Antidepressants

Antidepressant drugs are widely used for the clinical treatment

of depressive symptoms in cancer patients, modulating tumor

growth partly by targeting the immune system (184–186).

Monoamine oxidase A(MAO-A), an enzyme first discovered in

the brain, can promote the degradation of monoamine

neurotransmitters such as serotonin and dopamine (187). By

inhibiting monoamine oxidase to increase available serotonin,

MAO inhibitors(MAOIs) enhance anti-tumor T cell activity via

autocrine serotonin signaling (188) and depolarize alternatively

activated immunosuppressive tumor-associated macrophages

(TAMs) through the reduction of ROS production (189),

suggesting its promising role against tumor-induced immune

resistance. With depolarizing TAMs, MAOI treatment could raise

the efficacy of other ICB therapies by serving as a TME-engineering

therapy. Unfortunately, due to overstimulated serotonin receptors

in immunotherapeutic doses, MAOIs may induce aggressive

behavioral side effects, which limits their application in anti-

tumor therapies (190). Thus, a recent study established a

nanoformulation MAOI phenelzine(PLZ) to optimize the

administration of MAOIs (191).

Several investigations reveal that SSRIs may inhibit tumor

growth through their immune-modulatory actions through the

modulation of monoaminergic systems. Fluoxetine, a classic SSRI,

significantly inhibits melanoma tumor growth with an increased

mitogen-induced T cell proliferation (192) and suppresses the

progression of lymphoma via restoring NK cell activity and
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cytotoxic T lymphocyte activity with no noticeable systemic

toxicity (193). Fluoxetine also reduced macrophage polarization

in vivo by reversing tumor-induced oxidative damage and

consequent oxidative stress in thymocytes (194, 195). Moreover,

fluvoxamine significantly suppressed the migration and

proliferation of tumor cells and prompted infiltration of T

lymphocytes and M1-type macrophages with reduced PD-L1

molecules in colon cancer murine models (196). Sertraline

recovered the T cell stress-induced deficiency by strengthening

CD8(+) T cell infiltration, upregulating IFN-g and Granular

enzyme B(GzmB) levels, and reducing PD-1 on CD8(+) T cells,

indicat ing i ts potent ia l to ra ise the efficacy of ICB

immunotherapy (197).

Tricyclic antidepressant imipramine enhanced autophagy in

glioblastoma (GBM) cancer cells and surprisingly reprogrammed

immunosuppressive TAMs by suppressing histamine receptor

signaling to be immunostimulatory. The combination of

imipramine with vascular endothelial growth factor (VEGF)

pathway inhibitors orchestrated the infiltration and activation of

T cells, supporting anti-PD-L1 therapeutic effects in several GBM

mouse models (198).
3.3 DRD agonists or antagonists

DA has been demonstrated to play a protective role in cancer

patients. According to several epidemiological studies, the

compared incidents of cancer between Parkinson’s syndrome(a

hypodopaminergic disease) (68) and schizophrenic patients with

a probable hyperactive dopaminergic system (199, 200) show the

decrease of dopamine are generally followed by higher cancer rates.

Contrary to the controversial role of DRD1 in promoting tumor

growth but also inhibiting immunosuppression, DRD1 agonists

were proven to exert a major anti-tumor effect in several preclinical

models (57, 58). Similarly, D1-like receptor agonists can potently

inhibit the suppressive function of MDSC, suggesting that

dopaminergic signaling tends to modulate tumor growth through

strengthening anti-tumor immunity (201). An increased number of

breast cancer has been observed in patients treated with DRD2

antagonists (202). However, paliperidone, a DRD2 antagonist, is

reported to inhibit GBM growth and decrease the expression of

programmed death-ligand 1(PD-L1) in GBM (203), suggesting

different roles of DRD2 in different types of cancer.
3.4 Cancer immunotherapy
and neurotransmitters

Cancer immunotherapy with ICB is based on the inhibition of

tumor-mediated immune resistance, instead of directly exerting

cytotoxic effects on tumor cells (204). Anti-programmed death-1

(PD-1)/programmed death ligand-1(PD-L1) therapy, which

circumvents T cell exhaustion due to the immunosuppressive TME

by blocking PD-1/PD-L1 checkpoints binding, has been approved by

the FDA as a clinical treatment for solid tumors. Considering the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1118637
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xiao et al. 10.3389/fimmu.2023.1118637
major role of T cells in immune defense, the scope of anti-PD-1/PD-

L1 therapy is expanding rapidly in clinical practice. However, tumor

immune resistance diminishes the efficacy of ICB considerably and

becomes an urgent problem to be solved (205).

Neurotransmitters, which prompt immunosuppression, can

be potential targets for abolishing immune resistance. For

example, cholinergic signaling mainly upregulated the

expression of PD-L1 and thus mediated immune escape in vitro,

inducing an immunosuppressive environment characterized by

impaired CD8(+) T cell infiltration and a reduced Th1/Th2 ratio

(102, 104). Benzodiazepines, a GABA(A)R activator, potentiated

radiation, and ICB response by promoting direct anti-tumor

activity and infiltration of CD8(+) T cell (132). Several neural

signals show the potential to improve the efficacy of ICB as an

adjuvant therapy. In breast cancer, sympathetic denervation

surprisingly downregulated the expression of immune

checkpoint molecules (PD-1, PD-L1, and FOXP3) (206). In an

experimental murine model, the inhibition of b-AR signaling

favored an immune-active TME with increased infiltration of

CD8(+) T cells, elevated Teffs cell to Tregs cell ratio, and

decreased expression of PD-1, which raises the efficacy of anti-

PD-1 checkpoint blockade (207). Further research on the

involvement of neurotransmitters in TME immunomodulation

will be of great interest in improving the efficiency of cancer

immunotherapies in the future.

In this review, we discussed the modulatory function of the

neurotransmitters in the tumor immune microenvironment

(TIME) and their promising application in tumor treatment

(Table 1). With the further exploration of neuroimmune

interactions in the TME, we expect to approach the opportunities

for the clinical application of related inhibitors or agonists.
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