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Adoptive cell therapy (ACT) has seen a steep rise of new therapeutic approaches

in its immune-oncology pipeline over the last years. This is in great part due to

the recent approvals of chimeric antigen receptor (CAR)-T cell therapies and

their remarkable efficacy in certain soluble tumors. A big focus of ACT lies on T

cells and how to genetically modify them to target and kill tumor cells.

Genetically modified T cells that are currently utilized are either equipped with

an engineered CAR or a T cell receptor (TCR) for this purpose. Both strategies

have their advantages and limitations. While CAR-T cell therapies are already

used in the clinic, these therapies face challenges when it comes to the

treatment of solid tumors. New designs of next-generation CAR-T cells might

be able to overcome these hurdles. Moreover, CARs are restricted to surface

antigens. Genetically engineered TCR-T cells targeting intracellular antigens

might provide necessary qualities for the treatment of solid tumors. In this

review, we will summarize the major advancements of the CAR-T and TCR-T

cell technology. Moreover, we will cover ongoing clinical trials, discuss current

challenges, and provide an assessment of future directions within the field.

KEYWORDS

genetically engineered T cells, cancer immunotherapy, adoptive cell therapy (ACT),
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1 Introduction

Cancer immunotherapies, specifically immune checkpoint inhibition (ICI), have

shown high efficacy in the treatment of an increasing number of cancer entities (1).

However, a significant portion of patients does not respond to ICI and there is an unmet

medical need in these patients for alternative treatment options. One promising new

avenue for the treatment of refractory tumors is the field of adoptive T-cell therapy with

hundreds of ongoing clinical trials (2). This cell-based personalized therapy either utilizes
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the patients’ own tumor-infiltrating lymphocytes (TIL) or uses

genetically modified T cells with engineered chimeric antigen

receptors (CAR) or T cell receptors (TCR) to target and kill

tumor cells. Its most prominent form is CAR-T cell therapy,

which shows great efficacy in certain hematological cancers and

several CAR-T cell therapies have already been approved by the

Food and Drug Administration (FDA) for the treatment of blood

cancers (2). CAR designs have undergone many iterations in a short

amount of time and led to impressive improvements over previous

generations of CAR formats. However, their effectiveness in the

treatment of solid tumors so far is limited. On the other hand, TCR-

T cell therapies have not yet been approved for clinical application

but are currently tested in early clinical trials (2). TCR-T cells are

not restricted to surface antigens and are more sensitive regarding

the level of antigens on the tumor cell compared to CAR-T cells (3).

Their dependence on a specific human leukocyte antigen (HLA)

composition of the patients, however, restricts this therapy to

specific patient populations. Here, we will give an overview of the

vast field of CAR-T and TCR-T cell therapy from the

manufacturing processes and their impact on the antitumor

activity of the T cell product to the feasibility of potential

strategies to improve the treatment of refractory tumors.
2 Design of engineered CAR and TCR
formats

Endogenous and engineered TCRs recognize peptide-HLA

complexes on target cells representing the antigen of interest.

Engineered TCRs in general do not deviate from the classical

TCR structure of an a-/b-chain heterodimer and are able to form

functional TCR-CD3 complexes (Figure 1, left). Upon antigen

recognition the two intracellular CD3z domains induce

downstream TCR signaling. In contrast, CARs are designed as
Frontiers in Immunology 02
single molecules that consists of a single-chain variable fragment

(scFV), a hinge domain, a transmembrane domain, and

intracellular costimulatory signaling domains (Figure 1, right).

Antigen recognition is facilitated by the scFV, a fusion protein of

the light and heavy chain variable regions of an antibody that are

connected by a peptide linker (4). Contrary to engineered or

endogenous TCRs, CARs cannot assemble CD3 complexes and

antigen recognition of surface antigens by the scFV is HLA-

independent. First-generation CARs proved the feasibility of the

concept by showing that coupling to an intracellular CD3z domain

is sufficient for downstream signaling upon antigen recognition (5).

The next iteration to the format included a costimulatory signaling

domain, CD28 or 4-1BB, proximal to the membrane to incorporate

both primary and costimulatory signaling with increased IL-2

production (6). To enhance antitumor activity and potentially

increase persistence of CAR-T cells, a second costimulatory

domain was added in third-generation CARs (7, 8). There is a

number of third-generation CAR-T cells currently tested in clinical

studies (NCT03676504 (9); NCT04049513 (10)) that showed good

safety profiles and will evaluate their persistence in patients with

CD19+ malignancies. One interesting finding in support of this

comes from a phase I clinical trial (NCT01853631) that observed

greater expansion and longer persistence of CD19 third-generation

(CD28 and 4-1BB) CAR-T cells compared to second-generation

(CD28) cells when infused simultaneously in patients with r/r NHL

(11). A new concept was applied in fourth-generation CARs or T

cells redirected for antigen-unrestricted cytokine-initiated killing

(TRUCKs). TRUCKs combine the introduction of a CAR with a

transgenic expression cassette consisting of synthetic nuclear factor

of activated T-cells (NFAT) response elements with an IL-2

minimal promoter and transgenes. CD3z-mediated signaling

ultimately leads to the phosphorylation of NFAT, its translocation

into the nucleus, and the expression of the transgenes (12). Because

the TRUCK concept is dependent on CD3z-mediated NFAT

translocation, it is applicable not only for CAR-T but also for
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FIGURE 1

TCR and CAR formats. Structure of an endogenous or genetically engineered T cell receptor (TCR)-CD3 complex (left). Generations of chimeric
antigen receptors (CARs) and their structural differences (right). First-generation (1st Gen) CARs only consist of a single-chain variable fragment
(scFV), a hinge domain/spacer, and an intracellular CD3z signaling domain. Second- (2nd Gen) and third-generation (3rd Gen) CARs include one or
two costimulatory domains, respectively. Fourth-generation (4th Gen) CARs or T cells redirected for antigen-unrestricted cytokine-initiated killing
(TRUCKs) include a transgenic expression cassette for nuclear factor of activated T-cells (NFAT)-mediated transgene expression. Next-generation
(Next Gen) CARs include a truncated intracellular domain of cytokine receptors with a STAT-binding motif for JAK/STAT signaling.
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TCR-T cells (13). The most common transgenic proteins for this

approach are IL-12 and IL-18 (14–17) but many other cytokines

and enzymes are currently explored (12). The TRUCK concept is of

particular interest for the treatment of solid tumors by combining T

cell-mediated killing with immune modulation of the tumor

microenvironment (TME) through the secretion of cytokines. IL-

12 and IL-18 secretion in the TME might augment the antitumor

cascade by attracting and activating macrophages and NK cells (13).

Since CAR constructs do not have a specific domain for cytokine-

mediated signaling (also known as signal 3), novel developments

include CARs with a truncated intracellular domain of cytokine

receptors (e.g. IL-2 receptor b (IL-2Rb) domain) and a STAT3-

binding motif to induce JAK/STAT signaling (18). This approach

prevented terminal differentiation in vitro and showed increased

persistence and antitumor activity in preclinical tumor models

compared to second-generation CAR-T cells (18) but this format

likely needs further evaluation to prove its translational potential.

CAR-T cells have inherently lower antigen sensitivity compared

to canonical T cells and tonic CAR signaling has been associated

with CAR-T cell exhaustion (3, 19). This is likely at least in part due

to the differences in signaling modalities of a TCR-CD3 complex

that contains 10 immunoreceptor tyrosine-rich activation motifs

(ITAMs) compared to conventional CARs that only contain three

ITAMs (20). To engage the endogenous CD3 signaling complex

with antibody-mediated antigen recognition, a double-chain

chimeric receptor, termed synthetic TCR and antigen receptor

(STAR), fused the constant a and b domain to the light and

heavy chain variable regions of an antibody has been developed

(21). Upon antigen recognition, STAR has been demonstrated to

provide TCR-like signaling with superior antigen sensitivity and

antitumor activity compared to a second-generation CAR-T cell in

solid tumor mouse models. This might be an interesting new design,

however, a potential risk for increased on-target off-tumor toxicity

due to its enhanced antigen sensitivity could limit its clinical

application and needs to be investigated.
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FIGURE 2

Workflow for conventional CAR-T and TCR-T cell therapy. For most
conventional CAR-T and TCR-T cell therapies, autologous patient-
derived leukocytes are collected by leukapheresis at clinical centers
(top) and after cryopreservation shipped to manufacturing centers
(bottom). Enriched T cells are genetically engineered with either
CARs or TCRs and after expansion cryopreserved and shipped to the
clinical centers for infusion into the patients. Lymphodepleting
chemotherapy is generally recommended in the week before
infusion to increase engraftment of the genetically engineered T
cells (26).
3 Manufacturing of genetically
engineered T cells

Genetically engineered T cell products were initially developed

in open self-operated bioreactors that are common in academic

institutions. However, these systems require well-trained staff and

rigorous hygiene monitoring to avoid contaminations. Therefore,

with the clinical successes of CAR-T cell therapies, the production

has shifted not only in industrial facilities but also in academic

institutions more and more to closed and semi- or fully-automated

platforms (22–25). Most advances to the manufacturing platforms

for CAR-T cells are likely transferable for the production of TCR-T

cells with some modifications to the protocols. Therefore, TCR-T

cell therapies greatly benefit from the innovations in the ACT field

which were set in motion by the clinical approval of CAR-T cell

therapies. The general workflow of CAR-T and TCR-T cell therapy

is depicted in Figure 2 and will be summarized in this chapter

in detail.
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3.1 Cell collection and handling

For the generation of genetically engineered T cells, leukocytes

are collected either from patients (autologous) or healthy donors

(allogeneic). Notably, all FDA-approved CAR-T cell therapies to

date are using patient-derived autologous cells but there is a number

of clinical trials investigating the use of donor-derived allogeneic

cells (2). Leukapheresis is the method of choice for the collection of

leukocytes due to its availability at health care centers, patient

tolerability, and its high yield of T cells for manufacturing (27, 28).

Collected cells are either used fresh for direct manufacturing or

more commonly cryopreserved for later handling. Cryopreservation

takes place at the clinical center or in some cases at the

manufacturing center. Although, cryopreservation has an impact

on cell viability, on-site manufacturing of genetically engineered T

cells is often not feasible – with the exception of a few academical

clinical studies (NCT03676504 (9)) – and CAR-T cell generation

can be achieved with frozen cells (29). There are differences of the

cryopreservation procedure across clinical and manufacturing

centers for different T cell products, regarding freezing media

composition and durations, but their impact on the final product

quality has not yet been comparably assessed.
3.2 Impact of starting cell composition on
antitumor immunity

The cellular composition of the starting material is paramount

for the success to engineer a functional CAR-T cell product with
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long-lived antitumor properties. Enrichment of T cells from the

leukapheresis product can be achieved with magnetic separation

beads and all approved CAR-T cell therapies to date either use

CD4+ and CD8+ T cells in a combined or a separate culture setting.

Thus, CAR-T cell therapies are not limited to only generating CD8+

CAR-T cell responses but also utilize CD4+ CAR-T cells to improve

their antitumor response in a synergistic fashion (30, 31). CD4+ T

cells show more plasticity compared to CD8+ T cells and are

comprised of T helper (Th) subsets and regulatory T (Treg) cells

(32). Perturbation of CD4+ subsets and generation of Treg cells in

particular might have an impact on the clinical response. In a recent

study, the expansion of CAR-Treg cells has been associated with

resistance to CD19 CAR-T cell therapy (33). Therefore,

differentiation of CD4+ T cells to an “optimal” antitumor

phenotype and limited generation of CAR-Treg cells during

manufacturing might be essential to improve ACT. Separate

manufacturing and administration of CD4+ and CD8+ T cells is

already applied for the CD19 CAR-T cell therapy Breyanzi to

reduce variability between the CD4+ and CD8+ CAR-T cell

composition and to administer it in a dose-defined manner (34).

In a clinical trial of a CD22 CAR-T cell therapy in children and

young adults with CD22+ B-cell neoplasms, the change of the

manufacturing protocol to CD4+ and CD8+ T cell selection

improved manufacturing feasibility and reduced variability,

however, this led to increased inflammatory toxicities and

warranted dose de-escalation (35). The overall complete

remission rate was still very high with 70% but may indicate

CAR-T cell-induced toxicities based on the ratio of CD4+/CD8+

cells in the CAR-T cell product. In some cases separate

manufacturing of CD4+ and CD8+ CAR-T cells could

compromise CAR-T cell expansion. This has been the case in a

third-generation CD20 CAR-T cell therapy where changing from

CD4+/CD8+ selection to a combined culture setting improved

manufacturing feasibility and clinical response rates (36).

Moreover, enrichment and differentiation of specific memory T

cell subsets, like multipotent T memory stem (TSCM) cells, may

improve the antitumor responses of CAR-T cells (37, 38). This

might be due to a certain level of stemness of the T cells that comes

with higher T cell persistence and less susceptibility to exhaustion

(39–41). Overall, the impact of the cellular composition during

manufacturing on the antitumor efficacy of T cell therapies still

needs to be compared in future clinical studies.
3.3 Activation conditions during
manufacturing

T cells are activated for efficient gene transfer and expansion

which is commonly achieved by using anti-CD3/CD28

paramagnetic beads for viral transduction (42). However, this

approach was reported to favor the expansion of CD4+ T cells

over CD8+ T cells in non-enriched products (43) and could lead to

even inefficient expansion of CD8+ T cells in some cases (44). This is

likely due to the importance of CD28-mediated signaling in CD4+ T

cells while 4-1BB costimulation is superior for the expansion of

CD8+ memory T cells (44). To overcome this, current protocols
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have introduced cytokine cocktails in addition to anti-CD3/CD28

beads to support the expansion and to skew the differentiation into

a phenotype with inherent good antitumor characteristics (45–49).

For example, the cytokine IL-2 is used in standard protocols for its

mitogenic effects on T cells and its potential benefits on T cell

effectiveness in the context of tumor immunity (50).

In addition, the activation conditions and strength of the stimuli

during manufacturing could also determine if the genetically

engineered T cells are prone to exhaustion upon encountering

their cognate antigen on the tumor cells. Soluble anti-CD3

antibodies together with mononuclear cells have been shown to

result in a similar expansion efficacy of CD8+ T cells compared to

anti-CD3/CD28 beads but induced a less terminally differentiated

phenotype as well as less antigen-induced cell death and more

expansion in previously activated CD8+ T cells (51). Acquisition of

terminal differentiated effector functions during manufacturing

actually may lead to impaired antitumor immunity in vivo (52).

Due to the sensitive nature of T cell activation and differentiation

and their impact on antitumor immunity and longevity of the

genetically engineered T cells, new methods are constantly

investigated. The Expamer technology is an interesting new

approach for time-controlled initiation and termination by using

soluble Strep-Tactin multimers that can be assembled with Twin-

Strep-tag conjugated anti-CD3 and anti-CD28 Fab fragments and

dissociated by adding non-toxic D-biotin (53). Soluble addition and

inactivation of Expamer components for T cell activation is

particularly attractive for large-scale production and might be

useful to avoid overstimulation and subsequent apoptosis. On the

other hand, less rigid surfaces for immobilization of anti-CD3/

CD28 binders might be a better alternative since they have been

shown to induce higher IL-2 production and expansion of CD4+

and CD8+ T cells ex vivo (54). Consistent with this, an antigen-

presenting cell (APC)-mimetic scaffold that consists of a fluid lipid

bilayer supported by mesoporous silica micro-rods and attached

with anti-CD3/CD28 antibodies promoted two- to tenfold greater

expansion compared to anti-CD3/CD28 paramagnetic beads (55).

However, lipid bilayer systems might be less appealing compared to

bead-based approaches for activation when it comes to large-scale

manufacturing due to their increased technical complexity

regarding handling and ease of removal. More studies that

compare the effects of different activation conditions on the final

T cell product for ACT will be necessary in the future in order to

understand their impact on the clinical efficacy.
3.4 Gene transfer methods

Viral vectors are used for all approved CAR-T cell therapies and

most clinical trials for CAR- and TCR-T cell therapies due to their

efficiency for stable gene transfer (56). Lentiviral (LV) and g-
retroviral vectors are the vectors of choice for cell engineering

since they can carry larger genetic constructs and integrate the

target gene into the genome of the engineered T cells compared to

other viral vectors (57, 58). However, streamlining the generation of

large quantities of viral vectors for manufacturing is a challenge and

ensuring that no residual viral vectors or accidently transduced
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malignant cells are given to the patients comes with extensive and

costly safety testing (59, 60). This presents difficulties for scaling out

manufacturing and for making these therapies more affordable to

meet the increasing demand for ACT. Therefore, non-viral

approaches are currently investigated in early trials. Transposon-

based gene delivery approaches, such as Sleeping Beauty (SB) or

PiggyBac (PB) transposons, are cheaper and can carry larger genetic

constructs compared to viral vectors while still integrating their

target gene (61). SB transposition has already been used successfully

for the manufacturing of CD19 or SLAMF7 CAR-T cells in early

clinical trials without severe toxicity (62–65). In addition,

automation of SB transposition was feasible and could be very

attractive for large-scale manufacturing (25). Although PB

transposition was also successful for the manufacturing of CAR-T

cells and even showed an inclination to promote the generation of

desired TSCM CAR-T cells (66, 67), a recent clinical trial observed

the formation of CAR-T cell lymphoma in two out of ten patients

(68, 69). This presented the first cases of malignant lymphoma

derived from CAR-T cells and the investigators of the study caution

for regular follow-ups of the patients receiving CAR-T cell

therapies, especially when new methods for gene transfer are

applied (69). The underlying causes for the observed malignant

transformation in this study using the PB system is not fully

understood yet. Insertional mutagenesis did not seem to be the

cause since the pattern of integration of the CAR transgene was

comparable to other studies using PB and in line with studies using

viral systems (68). However, transcriptional upregulation of

surrounding regions by the transgene promotor was observed but

how these alterations may be involved in malignant transformation

needs to be further addressed. The authors of the study do not think

that this finding is an inherent problem with the PB system but

rather it might be based on their manufacturing methodology with

high-voltage electroporation and high concentration of transposon

and transposase (69). Understanding the underlying mechanisms

will help to develop safer manufacturing protocols and better safety

readouts in the future.

Genome editing is a promising novel approach not only for the

generation of genetically engineered autologous but also for “off-

the-shelf” allogeneic T cells that might solve manufacturing

challenges and excessive cost that are inherent to autologous T-

cell therapies. In particular, clustered regularly interspaced short

palindromic repeat (CRISPR)-Cas9 has already been used for the

generation and clinical application of CAR-T cells with tolerable

adverse events in cancer patients (70, 71). Multifactorial genome

editing holds great potential for ACT with genetically engineered T

cell in the future but will need further optimization and extensive

safety monitoring to assess the risks for harmful off-target events.

More information about CRISPR-Cas9 genome editing for the

generation of engineered T cells is reviewed in (72, 73).
3.5 Shortening manufacturing time of
genetically engineered T cells

An important avenue for optimizing the manufacturing process

of genetically engineered T cells is reducing the manufacturing time.
Frontiers in Immunology 05
This will reduce the cost and will scale-up manufacturing due to a

faster turn-around of the engineered T cells. Most importantly, it

might reduce mortality of patients with rapidly progressing cancers

by reducing the vein-to-vein time. Standard protocols for CAR-T

cell therapy culture CAR-T cells for 11 to 24 days which leads to a

high number of harvested CAR-T cells (45–48). Interestingly,

reducing the culture time of CD19 CAR-T cells to only 3 days

increased their antitumor activity even at a 6-fold lower dose in a

human xenograft model of acute lymphoblastic leukemia (ALL)

(74). This could be due to an enriched proportion of stem-like T

cells in the CAR-T product at reduced culture times. Remarkable

manufacturing times haven been achieved with the FastT CAR-T

next-day manufacturing platform, that was recently evaluated in a

clinical trial for B-cell ALL (NCT03825718 (75)). Next day

manufacturing with activation, LV transduction, and without

expansion was feasible for all 25 patients with a tolerable safety

profile and promising efficacy. Moreover, CD19 FasT CAR-T cells

showed less exhaustion and a younger cellular phenotype compared

to conventionally manufactured CAR-T cells in vitro but evaluation

in larger clinical studies is needed. In addition, the T-Charge

platform was used for manufacturing of CD19 CAR-T-cells in a

phase I study with promising efficacy and safety profile

(NCT03960840 (76)). The manufacturing time was less than 2

days and culturing time only took 24 hours. This approach also

preserved naïve T and TSCM cells in the final CAR-T cell product

which might increase the persistence of the genetically engineered T

cells in patients. Rapid manufacturing of CAR-T cells was even

demonstrated without activation and expansion within 24 hours

and showed improved anti-leukemic activity in mouse xenograft

models when compared to their conventionally manufactured

counterparts (77). These new approaches seem to have great

potential to reduce the vein-to-vein time which would greatly

benefit the patients. However, since most of the T cell expansion

takes place in the patients, this could mean that adverse events

might be more difficult to predict in a temporal fashion upon

therapy administration. Therefore, these new methods will have to

be thoroughly tested in clinical trials with rigorous monitoring to

ensure non-inferiority in efficacy and safety in comparison to

standard long-time manufacturing procedures. Improving and

standardizing manufacturing protocols for genetically engineered

T cells, with every step potentially having an extensive impact on

the antitumor activity and safety, is especially difficult since in-

depth manufacturing protocols of approved CAR-T therapies are

not publicly available. This will present a challenge for the future

but overcoming this roadblock by greater exchange could fuel

innovation and accessibility of these groundbreaking new therapies.
4 Targeted gene delivery in vivo

Due to the high cost of ex vivo T cell manufacturing, long vein-

to-vein times which are problematic for highly progressive cancers,

and the risk of manufacturing failure, targeted in vivo programming

of T cells could be a viable alternative. DNA-carrying nanoparticles

have been demonstrated to translocate into the nucleus of T cells

followed by CAR expression in the targeted T cells (78). In addition,
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in vivo administration of mRNA nanocarriers for the delivery of

antitumor CARs or antiviral TCRs showed transient expression in T

cells and comparable disease regression in mice compared to their

ex vivo manufactured counter parts (79). These carrier systems are

inexpensive and can be manufactured in large scale for broader

distribution but their safety profile and efficacy regarding long-term

disease remission is still largely unclear. The transient expression

will likely reduce certain safety concerns, such as programing of

malignant cells by accident and rendering them resistant to therapy

(59) or the formation of CAR-T lymphoma (69). However, the lack

of long-term T memory formation could hinder the efficacy of the

treatment and might lead to earlier relapses compared to ex vivo

manufactured T cells. Thus, their efficacy compared to more

established approaches, such as bispecific T cell engagers (BiTEs),

might not be superior.

Viral approaches have also been tested for long-term

programing of T cells in vivo. Adeno-associated virus (AAV)

vector achieved introduction of CARs in humanized mice and

resulted in tumor regression (80). The AAV-based gene therapy

LUXTURNA for the treatment of patients with RPE65-mediated

inherited retinal dystrophy (81) is the first of its kind that received

FDA approval, which could increase the interest for AVV vectors

also for the clinical application of T cell programming in vivo for the

treatment of cancer. A strategy for targeted in vivo engineering of a

CD19 CAR was shown in a study using CD8a-chain targeted LVs

(82). Although the specificity for CD8 T cells was good with this

approach, NK and NKT cells also showed transduction for the

CD19 CAR since they are also expressing the targeted CD8a-chain.
LV targeting to CD3+ T cells was also feasible by using bispecific

antibody tandem fragments that bind the mutant E2 glycoprotein

on Sindbis pseudotyped lentiviral vector (SINV-LV) and CD3 on T

cells, achieving specific in vivo introduction of a CD19 CAR into T

cells with good antitumor efficacy in a human B cell tumor

xenograft model (83). Despite the early preclinical and clinical

successes of viral in vivo transduction for cell engineering and gene

therapy, this strategy comes with much higher safety risks

compared to ex vivo manufacturing of genetically engineered T

cells and it remains to been seen if it can meet the high

safety requirements.
5 Specific requirements of gene
transfer techniques for TCR-T cells

Many advances of the manufacturing processes for CAR-T cell

therapies are likely transferable to TCR-T cell therapies. However, one

specific problem for the generation of TCR-T cells is that introduction

of an engineered TCR into a T cell can cause mispairing of the

engineered a- or b-chains with the endogenous chains. This presents

an unpredictable risk since mispaired TCRs have unknown reactivity

that never went through thymic selection and could result in the

formation of TCRs against self-peptides and thereby autoimmunity or

graft-versus-host disease (GvHD) (84, 85). Although earlier clinical

trials with TCR-T cells that retained their endogenous TCR did not

observe GvHD (86), ways to prevent the safety risk of mispairing would
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be beneficial. Therefore, a number of strategies have been developed to

avoid mispairing events with varying success as illustrated in Figure 3.

Insertion of an extra disulfide bond into the constant domains,

murinization of the constant domains or domain swapping all led to

the reduction of mispairing events but could not prevent it

completely (Figures 3B–D (85, 87, 88)). Only CD3z fusion chains

or single-chain TCR (scTCR) constructs abolished mispairing but

do not form a TCR complex with the endogenous CD3g, d, and e
subunits (Figures 3E, F (89, 90)). Further elimination of the

constant b domain and the addition of an intracellular

costimulatory CD28 or 4-1BB domain has been reported which

resembles the CAR structure and signaling modalities (Figure 3G

(91, 92)). However, this altered structure has reduced sensitivity

compared to the native TCR-CD3 complex as is the case for

conventional CARs (3). Therefore, a more recent scTCR scaffold

tried to incorporate the assembly of the native CD3 complex to

harness the benefits of classical TCR signaling (Figure 3H (93)).

This 3-domain scTCR consists of a va-linker-vb fragment fused to

the cb-domain and utilizes co-expression of the ca-domain with

very little mispairing occurring. In addition, insertion of a disulfide

bond between the va-domain and a linker residue in close

proximity to the vb-domain was sufficient to prevent residual

mispairing (93). Although this might provide a safe alternative for

the introduction of engineered TCRs without the danger of

mispairing events, the design of stable scTCRs could present a

technical challenge for a number of TCRs. Stability engineering

might be a potential solution for this limitation, since distinct

regions in the va- and vb-domains have already been shown to

be critical for surface expression and stability of scTCRs (94, 95).

Alterations from the native TCR structure could lead to a higher

immunogenicity and reduced persistence of genetically engineered

T cells if the constructs deviate greatly from the native format. Thus,

another approach to avoid mispairing without altering the TCR

structure is to knock-out the endogenous a- and b-chain.
Orthotopic TCR a- and b-chain replacement (OTR) was done by

CRISPR-Cas9 genome editing and was recently used in a phase I

clinical trial to achieve endogenous TCR replacement with

neoantigen-specific TCRs (neoTCRs) in 16 patients with

refractory solid cancers (Figure 3I (70, 96, 97)). Insertion of the

engineered TCR construct into exon 1 of the TRAC locus disrupts

the endogenous a-chain and CRISPR-mediated knockout of the

TRBC locus causes disruption of the endogenous b-chain. Another
advantage of OTR is that there is no competition for the CD3

subunits with the endogenous TCR to form core TCR-CD3

complexes (98). However, cell-surface expression of the

introduced TCRs can be inefficient in some cases with this editing

approach. In the recent trial mentioned above, out of the 37

neoTCRs generated for 16 patients, cell-surface expression of

neoTCR positive cells ranged from 1.9 to 46.8% of the live cell

product (97). This might potentially be a matter of protocol

optimization since changes to the medium formulation and the

electroporation device increased the knock-in efficiency from 13.4%

to 23% in the same study. Moreover, chromosomal aberrations at

the chromosome 7 and 14 target sites were observed and are an

indication for potential TRAC : TRBC translocations. Off-target

editing and on-target mutagenesis present a major concern for
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CRISPR-mediated approaches since they could lead to functional

alterations or even malignant transformation of the edited cells (99,

100). Close monitoring of patients will be crucial for these newer

approaches and further efforts will be necessary to understand and

to reduce unwanted DNA aberrations for clinical application (101).
6 Genetically engineered allogeneic T
cells

To date, all approved CAR-T cell therapies are utilizing

patient-derived autologous T cells. However, since only heavily

pretreated patients are applicable for immunotherapy with CAR-T
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cells, their T cell compartment is often compromised (27). This

can result in reduced fitness or even manufacturing failure of the

autologous CAR-T cell product (102, 103). Moreover,

personalized production for each patient is challenging and very

costly (as described above) and does not allow for mass

production to meet the increasing demand for ACT. “Off-the-

shelf” allogeneic T cells could be an approach to overcome these

limitations. Because unaltered allogeneic T cells could lead to

GvHD but also elimination of the genetically engineered T cells in

the patient, a number of strategies have been developed to reduce

these risks.

For the treatment of relapsed or refractory (r/r) B-cell ALL an

allogeneic CD19 CAR- (NCT02808442 and NCT02746952) and a
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FIGURE 3

Strategies to avoid TCR mispairing. (A), Native structure of a T cell receptor (TCR) a:b heterodimer (CD3e, CD3d, and CD3g subunits are not shown
here). (B), Engineered TCR a:b heterodimer with an extra disulfide (SS) bond between the constant a and b domain. (C), Engineered TCR a:b
heterodimer with murine constant a- and b-domain. (D), Engineered TCR a:b heterodimer with a- and b-domain swapping of the variable (left),
constant (middle) or transmembrane (right) domains. (E), Engineered TCR a:b heterodimer with a fused intracellular CD3z domain. (F), Engineered
single-chain TCR with a fused intracellular CD3z domain. (G), Engineered single-chain TCR with a hinge domain instead of a constant and
transmembrane b domain and inclusion of a costimulatory (Costim) and a CD3z domain. (H), Engineered 3-domain single-chain TCR with an extra
SS bond between the constant a and b domain and the variable a domain and a linker residue in close proximity to the variable b domain. A
constant a domain is co-expressed with the 3-domain single-chain TCR. (I), Orthotopic TCR a- and b-chain replacement with CRISPR-Cas9 gene
editing. Engineered TCR construct is introduced into exon 1 of TRAC with a left homology arm (LHA) and a right homology arm (RHA). The
endogenous TRAC locus is disrupted by the insertion of the engineered TCR construct and the endogenous TRBC1/TRBC2 gene locus is disrupted
with another guide RNA (gRNA).
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CD19/CD22 dual-targeting CAR-T cell therapy (NCT04154709) have

shownmanageable safety profiles and anti-leukemic activity (104, 105).

CRISPR-Cas9 genome editing was used to disrupt the TRAC andCD52

gene locus allowing severe lymphodepletion with alemtuzumab prior

to adoptive T cell transfer to reduce the risk for elimination of

allogeneic engineered T cells by the host. In another first-in-human

phase I clinical trial (NCT04637763), early positive results of an

allogeneic CD19 CAR-T cell therapy for the treatment of r/r B cell

non-Hodgkin lymphoma (B-NHL) were reported (106). Cas9 and

CRISPR hybrid RNA-DNA (chRDNA) guides were used for reduced

off-target editing (107) to introduce the CD19 CAR into the TRAC

gene locus and disrupt it in the process (108). In addition, PD-1 was

knocked out with the aim to improve persistence and antitumor

activity of the genetically engineered T cells. No GvHD was observed

and the therapy was generally well tolerated with promising clinical

response rates. Another targeted approach is the use of a TRAC-

specific ARCUS nuclease for site-specific introduction of the construct

and disruption of the endogenous TCR to avoid GvHD (109). An

allogeneic CD19 CAR-T cell therapy using this editing approach

showed promising results in a Phase I/IIa clinical trial

(NCT03666000) for the treatment of r/r B-NHL and B-cell ALL and

could potentially be used for the treatment of relapsed patients with

lymphomas that previously received autologous CAR-T cells. All 11

patients showed an objective response rate (ORR) after six months but

no reported GvHD.

Genome editing also allows for the generation of fratricide-resistant

CAR-T cells. This has been shown in a phase I clinical trial

(NCT04538599) for a CD7 CAR T cell therapy for the treatment of

T-cell lymphoma and CD7-expressing acute myeloid leukemia (AML)

(110). Because CD7 is also expressed on normal T cells, CD7 was

knocked-out to avoid fratricide and a number of additional edits

(knock-out of TCR and HLA-II, knock-in of an NK cell inhibitor)

were performed to avoid GvHD of the allogeneic CAR-T cell product.

Allogeneic TCR-T cells were also successfully tested in an

investigator-initiated Phase I/II clinical trial (NCT01640301) for

patients with AML receiving allogeneic hematopoietic cell

transplantation (HCT) with high risk of relapse (111). Epstein-Bar

virus (EBV)-specific CD8+ T cells from the HCT donor were

transduced with a TCR that recognizes the AML-associated

intracellular antigen Wilms’ Tumor Antigen 1 (WT1). Patients with

HLA-A*0201 expression that received an allogeneic HCT and had no

detectable disease at day 28 post-HCT were given engineered WT1-

specific T cells prophylactically. All 12 patients showed relapse-free

survival at a median of 44 months and compared very favorable to a

similar risk group of 88 patients with 54% relapse-free survival. These

results encourage the use of allogeneic consolidating ACT as a strategy

for the prevention of AML relapses after HCT. In addition, allogenic

HA-1-specific TCR-T cell therapy for the treatment of HLA-A*0201

positive patients with r/r ALL after allogeneic HCT is currently

explored in a dose-escalation study (NCT03326921).

Preliminary results from early clinical studies with allogeneic

engineered T cells that we described here are encouraging regarding

their efficacy and risk of GvHD, however, this approach is still in its

early stages and we will need to wait out larger clinical studies to

assess its clinical value in the future.
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7 Current challenges and potential
strategies to improve CAR-T and TCR-
T cell therapies

CAR-T cell therapies showed remarkable efficacy in certain B cell

malignancies but struggle when it comes to myeloid malignancies and

solid tumors. Challenges for CAR-T and TCR-T cell therapies that

limit their clinical efficacy are severe adverse events, limited tumor

infiltration, and persistence of genetically engineered T cells, as well as

tumor immune evasion by loss of antigen. In particular, the complex

nature of the immunosuppressive TME in solid tumors (112) is

limiting T-cell infiltration and is promoting their exhaustion through

presentation of inhibitory ligands on the tumor cells. There are a

number of approaches with the aim to improve ACT by overcoming

tumor antigen escape and increasing tumor specificity, and a selection

of strategies will be highlighted here (Figure 4).
7.1 Adverse events associated with
genetically engineered T cells

Immunotherapies with genetically engineered T cells are often

accompanied by moderate to severe adverse events, limiting their

clinical application in certain cases. The most common and severe

adverse event of therapies with engineered T cells is cytokine release

syndrome (CRS), which was first observed in clinical studies and

did not occur in preclinical models at the time (113). Moreover,

immune effector cell-associated neurotoxicity syndrome (ICANS),

often referred as neurotoxicity, is very common in patients

receiving CD19 CAR-T cells (114). Symptoms of CRS range from

mild fever to life-threatening manifestations up to multi-organ

system failure (115). Follow-up of patients receiving engineered T

cells and monitoring for signs of CRS is vital to manage moderate to

severe cases of CRS with anti-IL6 receptor agonist tocilizumab alone

or in combination with corticosteroids, together with extensive

supportive care (116). Symptoms of ICANS include headache,

encephalopathy, tremor, and seizures, that are usually self-

limiting, but rare lethal cases have been reported as well (117).

Severe cases are often managed with corticosteroids, while

tocilizumab is mostly ineffective in the treatment of ICANS,

contrary to its effectiveness in CRS (116). Cross-talk between the

engineered T cells and other immune cells, especially macrophages,

can lead to the induction of systemic inflammation in the form of

CRS which might cause leakiness of the blood brain barrier and

symptoms of ICANS (116). Therefore, ICANS is often associated

and correlates with the severity of CRS in patients, but it has also

been reported in some cases in the absence of CRS (117).

On-target off-tumor toxicity is another challenge for adoptive

T-cell therapies. In contrast to CRS and ICANS, this adverse event is

not caused indirectly by associated endogenous immune cells but

directly by the engineered T cells recognizing their cognate antigen

or a cross-reactive antigen on healthy tissues. In particular, TCR-T

cells warrant careful screening to avoid severe toxicity caused by

autoreactivity due to lethal cases of tissue damage in the heart and
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brain in two early clinical trials targeting MAGE-A3 positive

cancers (118, 119). As these TCRs were affinity enhanced, on-

target off-tumor toxicity was likely increased. However, recent

studies with affinity enhanced TCRs targeting MAGE-A4 showed

clinical efficacy in the absence of severe TCR-T cell-mediated

toxicity (120–122), indicating the necessity to investigate each

single modified TCR for such risks although also non-modified

TCRs have the potential for cross-reactivity. These cases highlight

the difficulties of screening methods for TCR candidates to exclude

potential common and individualized severe autoreactivity, which

is highly difficult to be tested sufficiently at the preclinical level, but

also indicate that TCRs have the potential to represent safe

therapies with promising efficacy.

For the use of allogeneic CAR-T and TCR-T cells, a potential

additional adverse event risk is allo-reactivity of allogeneic

engineered T cells against foreign MHC molecules or minor

histocompatibility antigens on host cells that can lead to GvHD.

As described above, early clinical trials suggest that gene editing for

the removal of the endogenous TCR is a viable strategy to avoid

GvHD. Moreover, the use of allogeneic engineered T cells post-

HCT, HLA-matching of the donor cells, and the use of non-ab T

cells are potential strategies (123). However, it remains to be seen

how durable the persistence of allogeneic engineered T cells with
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these strategies is compared to their autologous counterparts, since

elimination of the allogeneic T cells by the host immune system is a

serious concern here.

Moreover, accompanying therapies, such as lymphodepletion

prior to T-cell therapy, can add to hematological toxicities like

cytopenia, which is a common adverse event with often unknown

origin (26). Overall, this highlights the complex clinical landscape in

regard to adverse events of CAR-T and TCR-T cell therapies and

the need for better preclinical models to predict them early on (113).
7.2 Persistence of genetically engineered T
cells

Persistence of CD19 CAR-T cells for up to 10 years has been

reported in two patients with chronic lymphocytic leukemia after

remission (124). While CD8+ CAR-T cells were abundantly found

in the initial response, it was almost exclusively CD4+ CAR-T cells

that were present during long-term remission. However, poor T cell

persistence has been reported in many CAR-T (125) and TCR-T

cell (97) clinical trials against a variety of tumor entities and is often

likely the reason for limited clinical efficacy or relapses. Therefore,

administration of lymphodepleting regimens is commonly
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FIGURE 4

Strategies to improve adoptive T-cell therapy for the treatment of tumors. (A), Strategy to overcome tumor antigen escape by using bi-specific dual
or tandem CAR-T cells. (B), Strategy for increased tumor specificity and reduced off-tumor toxicity with a synthetic Notch (synNotch) receptor.
Encounter of a primary antigen (purple) leads to translocation of a transcription factor (TF) into the nucleus and expression of a CAR that recognizes
a secondary antigen (red) on the tumor cell. T cell activation and tumor cell killing only occurs in the presence of both antigens and spares healthy
tissues that only express the primary antigen. (C), Targeting of intracellular antigens by using genetically engineered TCR-T cells. Peptide-major
histocompatibility complex (MHC) tumor-associated or tumor-specific antigens of mutated intracellular proteins are promising targets for the
treatment of solid tumors. Tumor surface antigens are often expressed to some extent on healthy tissues and can cause severe off-tumor toxicity.
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performed prior to the engineered T-cell therapy to increase T cell

persistence (26).

Preclinical studies observed less exhaustion and improved

antitumor activity of CAR-T cells with PD-1 knock-out (126,

127). Therefore, PD-1 knock-out is currently explored for the

treatment of tumors with CAR-T (108, 125) and TCR-T cells (70)

as a strategy to protect the engineered T cells from exhaustion and

to enhance their persistence. Stadtmauer et al. used CRISPR-Cas9

genome editing to remove the endogenous TCR and PD-1 and

introduced an engineered TCR specific for the cancer-testis

antigens (CTAs) NY-ESO-1 and LAGE-1 to treat two patients

with refractory melanoma and one with sarcoma. Engineered T

cells trafficked to the sites of the tumor and reduction of the target

antigens, likely as a response to the immune pressure of the TCR-T

cells, was observed for both melanoma patients. Interestingly, no

toxicity was observed and persistence of the TCR-T cells was

increased in all three patients with at least 9 months compared to

previous trials with T cells that retained their endogenous TCR and

PD-1 expression. However, the number of patients in this first-in-

human phase I clinical trial is low (NCT03399448) and expansion

of the study is necessary. It also remains to be elucidated if the

prolonged persistence is based on the ablation of PD-1 or in part on

the removal of the endogenous TCR. Moreover, PD-1 ablation was

also reported to cause increased functional exhaustion and cell

death along greater activation in a CD19 CAR-T cell therapy (128).

Results from knock-out experiments of PD-1 in mice with a chronic

lymphocytic choriomeningitis virus (LCMV) infection showed that

CD8+ T cell exhaustion can not only occur in the absence of PD-1

but PD-1 even protected the cells from overstimulation and

terminal differentiation to an exhausted effector phenotype at the

site of infection (129). Suggesting that PD-1 could be relevant to

fine-tune T cell responses in certain environments, such as high

antigen load as is the case in viral infections. In that context,

transient blockade of PD-1 with ICI could be superior over PD-1

ablation but our understanding how PD-1 signaling modulates gene

expression during T cell responses remains enigmatic and needs to

be further elucidated. A recent study showed that genes associated

with survival and proliferation are resistant to PD-1-mediated

inhibition while effector functions are regulated by it based on the

TCR signal strength (130). Due to the context-dependent functions

of PD-1 signaling, it remains to be seen if PD-1 ablation of

genetically engineered T cells is an effective way of improving T

cell persistence depending on the tumor entity and antigen load.

Moreover, a number of costimulatory switch receptors have

been reported to prevent exhaustion of genetically engineered T

cells and might increase their persistence (131–133). Switch

receptors consist of the extracellular portion of an inhibitory

receptor (e.g. PD-1, TIGIT, TIM-3) and the intracellular signaling

domain of a costimulatory receptor (e.g. CD28, 4-1BB). Reports

from the preclinical studies are encouraging with improved

antitumor activity and persistence of genetically engineered T

cells armored with these switch receptors, however, these

signaling axes are complicated in nature. Tipping the scale from

exhaustion to activation and not just balancing it as is the case with

anti-PD-1/PD-L1 ICI might lead to overstimulation and a

dysfunctional T cell phenotype.
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Tonic endogenous TCR signaling was also associated with

improved persistence of CAR-T cells in recent studies (125, 134).

Removal of the endogenous TCR and PD-1 in mesothelin (MPTK)-

specific CAR-T cells for the treatment of solid tumors resulted in

poor persistence of the TCR-deficient CAR-T cells beyond 6 weeks

in a phase I clinical trial with 15 patients (NCT03545815 (125)).

Surprisingly, it was the TCR-positive CAR-T cells that became the

main fraction after infusion in three patients despite their rare

presence in the infused cell product. The authors replicated these

findings in mice and hypothesized that tonic TCR signaling plays a

beneficial role in CAR-T cell persistence. Off note, this was in the

scenario of low-level engraftment and might be different when

using lymphodepletion to increase engraftment. In line with these

observations, another study also observed reduced persistence for

TCR-deficient CD19 CAR-T cells in animal models (134). The role

of tonic TCR signaling for the longevity of CAR-T cells (19) needs

to be further addressed especially in the context of allogenic CAR-T

cell therapies, where the removal of the endogenous TCR is already

common practice to prevent GvHD (108, 109). TCR-T cells with

endogenous TCR replacement are likely not affected due to tonic

signaling of the introduced TCR as indicated by the results from

Statdmauer et al.
7.3 Potential strategies to overcome tumor
antigen escape

A common form of tumor resistance to ACT is tumor antigen

escape by loss or downregulation of surface antigens or peptide-

HLA complexes (135). Targeting multiple antigens by engineering

T cells with a dual CAR or a tandem CAR could reduce the risk of

tumor antigen escape (Figure 4A). Preliminary results from a phase

I study (NCT03233854) with a CD19/CD22 bispecific CAR showed

clinical efficacy but antigen escape in relapses was mostly observed

for CD19 and not CD22 antigen, suggesting that there was less

immune pressure of the CAR-T cells on the CD22 target (136). This

is supported by the observation that CD22 scFV ligation in the

bispecific CAR showed less cytokine secretion than for CD19 scFV.

Another bispecific CD19/CD22 CAR that uses a tandem approach

showed good efficacy in 6 patients with r/r B-ALL and observed one

relapse of blast cells with loss of CD19 antigen and diminished

CD22 expression 5 months after treatment (NCT03185494 (137)).

The single construct approach for multi-specific CAR-T cells might

affect the antigen binding capabilities based on the design of the

linkers and it could be favorable to use a bi- or tricistronic design

that expresses individual CAR molecules on the same cell to avoid

these problems. This has been done for tricistronic CD19/CD20/

CD22 tri-specific CAR-T cells that were able to target B-lineage ALL

independent of CD19 expression in vitro and in animal models

(138). Results from a phase I study (NCT03289455) with bicistronic

CD19/CD22 bispecific CAR-T cells for the treatment of 15 patients

with r/r B-ALL showed 86% CR and one-year overall survival and

event-free survival of 60% and 32%, respectively (139). Dual

targeting of B7-H3 and CD70, which are overexpressed in a

variety of solid tumors, with a tandem CAR elicited superior

tumor control and overall survival in a lung cancer and
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melanoma xenograft model (140). Moreover, infusing patients with

a mixture of mono-specific CAR-T cells or TCR-T cells with

different specificity could also be a viable option and has recently

been done for patients with solid tumors that received up to three

neoTCR-T cells with different specificity (97).

Multi-targeting of different antigens seems to be viable strategy

to overcome tumor antigen escape and preliminary results suggest

that it might increase antitumor immunity against tumor cells that

co-express multiple antigens. However, this approach is limited so

far by the number of known promising tumor antigens and will

benefit from the discovery of additional tumor-associated and

tumor specific antigens in the future.
7.4 Potential strategies for the treatment of
solid tumors

The treatment of solid tumors is one of the most difficult areas

in the field. Limited T-cell infiltration into the tumor as well as T

cell exhaustion due to the immunosuppressive TME poses a high

risk for an insufficient response to the treatment. In addition, the

heterogeneity of antigen expression and the lack of truly tumor-

specific surface antigens in solid tumors (112) can cause severe off-

tumor toxicity in healthy tissues. Due to the difficulty of identifying

tumor-specific surface antigens on solid tumors as targets for CAR-

T cell therapies, strategies with higher specificity and less off-tumor

toxicity have been developed, such as the synthetic Notch

(synNotch) receptor designs (Figure 4B). Recognition of a

primary antigen by the synNotch receptor cleaves an orthogonal

transcription factor from the cytoplasmatic tail and induces the

expression of a CAR that can recognize a secondary antigen on the

tumor cell (141). T cell activation and tumor cell killing only occurs

if both antigens are expressed on the tumor cell. This concept has

been applied in a number of preclinical studies for solid tumor

models and demonstrated improved specificity for the treatment of

solid tumors (142, 143). SynNotch circuits can also be used to

improve the specificity of engineered TCRs for selective killing of

tumor cells, which has been demonstrated for a SynNotch-TCR

against melanoma cells in vitro (144).

TCR-T cells are inherently equipped for the recognition of

intracellular antigens through peptide-HLA presentation which

opens up a treasure trove of tumor-associated or tumor-specific

antigens that could be exploited for TCR-T cell therapy of solid

tumors (Figure 4C). As mentioned above, a preliminary study

showed the feasibility and efficacy of TCR-T cells in two

melanoma and one sarcoma patient (70) and clinical trials for the

treatment of MAGE-A4 positive solid tumors showed clinical

efficacy in subset of patients with an ORR of 24% (9/38) (121).

Foy et al. demonstrated recently the feasibility of TCR-T cell

therapy targeting personalized neoantigens (97). A combinatorial

screening approach with whole exome sequencing (WES) and RNA

sequencing of the patients’ tumors was used to predict potential

neoantigens. In a next step, multimeric labeled peptide-HLA

complexes were generated for reactivity assessment of the

predicted neoantigens in peripheral blood of patients and

neoTCRs were identified and manufactured for 16 patients.
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Despite this impressive demonstration of feasibility of such a

complex workflow in a clinical setting, efficacy and T cell

persistence was limited. However, there are over a hundred

clinical trials with adoptive TCR-T cell transfer registered in

clinicaltrials.gov with the majority of them for the treatment of

solid tumors (145). Hurdles for TCR-T cell therapy include its

dependency on a specific HLA genotype, restricting it to a specific

patient population in most cases, and its susceptibility to HLA-

downregulation. Moreover, intracellular antigens can also be

targeted with TCR-like CARs that use scFV molecules that

recognize specific peptide-MHC complexes. Recently, a phase I

clinical trial with a TCR-like CAR T-cell therapy targeting MAGE-

A4 peptide-HLA-A*02:01 complexes for the treatment of solid

tumors has been initiated (146) and evaluation of the clinical

efficacy of more TCR-like CAR formats in clinical trials will be of

great interest for the use of this concept. Overall, combinatorial

approaches with a variety of different interventions will likely be

necessary for the treatment of solid tumors in the future in order to

overcome their complex mechanisms of immune evasion.
8 Future perspective

Adoptive immunotherapies with genetically engineered T cells

for the treatment of refractory tumors is a new breakthrough

therapy with promising efficacy in certain cancers. However, its

application is held back by manufacturing difficulties, severe

adverse events, regulatory challenges, and extremely high costs.

There are a number of strategies how limitations are currently

addressed. Automated and expedited manufacturing processes

might have an impact on both product quality as well as costs.

Approaches with allogeneic donor T cells may improve availability

but also provide “off-the shelf” therapies and therefore substantially

result in cost reduction. Due to the HLA-restriction of TCR-T cell

therapies, it seems unlikely that companies will go through the

expensive process of testing this type of therapy in tumor types

where CAR-T cell therapies are already showing good efficacy at

this point. Therefore, TCR-T cells are mostly tested in solid tumors

where the lack of good surface targets limit CAR-T cell therapy. At

the moment, TCR-T cells are usually targeting tumor-associated

antigens but first tumor-specific studies have demonstrated their

feasibility and personalized approaches might be more prevalent in

the future. Improving tools to predict potential on-target off-tumor

toxicity is especially crucial for TCR-T cells due to their higher

antigen sensitivity compared to CAR-T cells, especially for affinity

enhanced TCRs. This is in particular important for time-saving

clinical translation of newly identified, optimized or personalized

TCR constructs. Additionally, the development of novel preclinical

models for the prediction of associated adverse events like CRS and

ICANS is necessary to develop novel strategies to exclude most

severe adverse events before clinical testing in the future (113). The

number of clinical studies exploring new strategies and the speed

the field is innovated upon is impressive. However, it is difficult for

the regulation of these novel and complex therapies to keep up with

this speed, and standardization of certain manufacturing steps will

likely be necessary to ensure safety and comparability of T cell
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products for patients in the future. To make these therapies more

commonly available and explore their benefit not only for refractory

tumors but also at earlier stages of disease, their costs and resources

for manufacturing must become more sustainable for the health

care system (60, 147).

One of the major challenges is the development of novel strategies

in case of resistance. Personalized combinatorial approaches to target

multiple antigens and to neutralize the immunosuppressive TME

probably will be necessary for the treatment of solid tumors but also

resistant hematological malignancies in the future.

While ACT with genetically engineered T cells is mainly used as a

therapy for cancer, its potential for the treatment of other diseases is

more and more realized. Preliminary results of CD19 CAR-T cell

therapy in patients with refractory systemic lupus erythematosus (SLE)

showed that it was well tolerated and highly effective (148). Exploring

its use for other autoimmune but also genetic diseases might open up

effective novel options for treatment failures in the future.
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