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Bone is among the main sites of metastasis in breast, prostate and other major

cancers. Bone metastases remain incurable causing high mortality, severe

skeletal-related effects and decreased quality of life. Despite the success of

immunotherapies in oncology, no immunotherapies are approved for bone

metastasis and no clear benefit has been observed with approved

immunotherapies in treatment of bone metastatic disease. Therefore, it is

crucial to consider unique features of tumor microenvironment in bone

metastasis when developing novel therapies. The vicious cycle of bone

metastasis, referring to crosstalk between tumor and bone cells that enables

the tumor cells to grow in the bone microenvironment, is a well-established

concept. Very recently, a novel osteoimmuno-oncology (OIO) concept was

introduced to the scientific community. OIO emphasizes the significance of

interactions between tumor, immune and bone cells in promoting tumor growth

in bone metastasis, and it can be used to reveal the most promising targets for

bone metastasis. In order to provide an insight into the current immuno-

oncology drug development landscape, we used 1stOncology database, a

cancer drug development resource to identify novel immunotherapies in

preclinical or clinical development for breast and prostate cancer bone

metastasis. Based on the database search, 24 immunotherapies were identified

in preclinical or clinical development that included evaluation of effects on bone

metastasis. This review provides an insight to novel immuno-oncology drug

development in the context of bone metastasis. Bone metastases can be

approached using different modalities, and tumor microenvironment in bone

provides many potential targets for bone metastasis. Noting current increasing

interest in the field of OIO, more therapeutic opportunities that primarily target

bone metastasis are expected in the future.
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1 Introduction

Metastases are the main cause of cancer-related deaths and

bone is among the major sites of metastasis in many cancers such as

breast, prostate, lung, renal, colon and bladder cancer and

melanoma (1). Notably, when bone metastases are observed, the

5-year survival rate drops to 5% as there are no effective treatments

available (2). Therefore, bone metastases are incurable and induce

severe skeletal-related effects such as pathological fractures, spinal

cord compression, bone pain and decreased quality of life (3).

Immunotherapies may give hope for bone metastatic patients

(4). Bone marrow is an important secondary lymphoid organ and

bone metastases develop a unique immune microenvironment.

Bone is a highly immunosuppressed microenvironment, as

recently demonstrated for prostate cancer (5), which may explain

why immunotherapies have not produced promising effects on

bone metastatic patients (6). Factors behind the development of

the immunosuppressed bone metastatic microenvironment include:

1) in the process of metastasis formation, cancer cells need to have

properties that allow them to avoid elimination by immune cells, 2)

even at healthy state, bone marrow has a lower number of cytotoxic

cells than other tissues, 3) immunomodulation of the pre-metastatic

niche to allow seeding of cancer cells to the growth-supporting

microenvironment, and 4) modulation of the metastatic

microenvironment through interactions of stromal cells.

The role of stromal cells in modulating the microenvironment is

often neglected. Stromal cell effects are especially important in bone

metastasis because bone cells are important regulators in promoting

tumor growth in a process called vicious cycle of bone metastasis

(7). The vicious cycle explains how cancer cells regulate the number

and activity of bone resorbing cells, which in turn results in

increased bone resorption and release of factors that promote

growth of bone metastases. Furthermore, stromal cells have a role

in modulating immune microenvironment (8). For example, bone-

resorbing osteoclasts can present antigens, inhibit T cells and

express immunosuppressive factors (9), which also occurs in bone

metastases (10).

A recently established novel osteoimmuno-oncology (OIO)

concept refers to interactions between cancer, bone and immune

cells (11). It is essential to understand these interactions in order to

develop effective and safe therapies for cancer patients with bone

metastases. The OIO concept is supported by years of research on the

role of interactions between cancer, bone and immune cells, and also

by observations in patients treated with different immunotherapies

who developed skeletal-related adverse events (SRAEs) such as

resorptive bone lesions, spinal cord compression and even fractures

(12). A recent study indicated that many musculoskeletal adverse

effects are observed in immunotherapy-treated patients, but

interestingly, patients experiencing musculoskeletal adverse effects

had a good anti-tumor response (13). This could be explained by

changes in the immune microenvironment that make the tumors

responsive to immunotherapies but at the same time disturb the

immune homeostasis in bone, leading to above-described adverse

events. Therefore, development of novel therapies with confirmed

efficacy on bone metastasis and without causing SRAEs should be
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prioritized especially for bone metastatic patients who already have

compromised bone health.

This review summarizes current immuno-oncology drug

development landscape for bone metastatic breast and prostate

cancer. Using a comprehensive oncology-focused drug development

database we identified drugs with preclinical or clinical data in the

context of bone metastasis. Approved immunotherapies were excluded

from this review as they have recently been discussed elsewhere (4).

Current treatment options for bone metastasis, all with limited efficacy,

include radium-223 dichloride, bisphosphonates such as zoledronic

acid, and the anti-RANKL antibody denosumab, that can be applied in

combination with standard-of-care cancer therapies.
2 Database search for immuno-
oncology drugs in development
for bone metastatic breast and
prostate cancer

This unique and comprehensive data review was performed

using 1stOncology database that contains detailed scientific, clinical

and commercial drug information on almost 20,000 oncology drugs

and 1,877 targets and covers more than 21,000 interventional

clinical trials in 391 indications (search results on November 18,

2022). The research concentrated on breast and prostate cancers

that have the highest incidence of bone metastases (14).

The search of active studies for breast cancer resulted in 1,498

drugs and 537 targets. Addition of ‘bone metastasis’ in the search

resulted in 242 drugs and 178 targets. Of these drugs, 67 were

immuno-oncology drugs that are of interest to this review, of which

36 were in clinical and 1 in preclinical development. In prostate

cancer, there were 746 drugs in active research, covering 356 targets.

Limiting down to those associated with bone metastasis resulted in

206 drugs and 180 targets. Of these drugs, 73 were in the immuno-

oncology category, of which 47 in clinical and 2 in preclinical

development. These search results are summarized in Table 1, and

these 86 drugs (36 + 1 for breast and 47 + 2 for prostate cancer)

were the starting population for a more detailed search for efficacy

data on bone metastasis. The more detailed search included relevant

scientific results published in major scientific events. After going

through all drugs identified in the initial search it was concluded

that 20 drugs in clinical development had published data available

about effects on bone metastasis that can be discussed in this review.
3 Immuno-oncology drug
development for bone metastasis

3.1 Overview of immuno-oncology drugs
in clinical development

Table 2 lists the 20 prostate cancer therapies in clinical

development with published data on bone metastasis effects.

Notably, even though the initial search identified therapies also
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TABLE 2 Immuno-oncology drugs in clinical development for prostate cancer in the context of bone metastasis.

ASSET
NAME

TARGET
(S)

MODA-
LITY

TRIAL SELECTED ELIGIBILITY CRITERIA
AND OUTCOME MEASUREMENT

TRIAL
STATUS

DEVELOPER/
SPONSOR

INCLUSION OUTCOME

Imifoplatin
(PT-112)

Pyrophos-
phate-
platinum
conjugate

Small
molecule

NCT02266745,
ph1/2

Progressive disease measured
by physical examination or
imaging (RECIST v1.1 or
PCWG3 or by informative
tumor markers)

Secondary: rPFS, disease
control rate, objective
response rate, duration of
response, OS

Recruiting Promontory
Therapeutics/
Pfizer, EMD
Serono

P-PSMA-101 PSMA CAR-T NCT04249947, ph1
(in combination
with rimiducid)

Measurable disease by RECIST
1.1 or bone only metastases
with measurable PSA

Overall response rate,
percentage of patients with
complete or partial
response

Recruiting Poseida
Therapeutics

Pasotuximab
(BAY2010112)

PSMAxCD3 Bispecific
antibody

NCT01723475, ph1 Appearance of one more new
lesions in bone scan

Secondary: Tumor and
PSA response

Completed Bayer

MGC018 B7-H3 Antibody-
drug
conjugate

NCT03729596,
ph1/2
(combination with
anti-PD-1 will not
enroll)
NCT05551117,
ph2/3

In prostate cancer cohort,
patients with bone only disease
are eligible
One or more metastatic lesion,
present MRI, CT or bone scan

Secondary: OS, PFS, rPFS,
response rate
Primary: rPFS

Active,
not
recruiting
Not yet
recruiting

MacroGenics

DS-7300a B7-H3 Antibody-
drug
conjugate

NCT04145622,
ph1/2

CRPC participants with bone
only disease may be eligible on
a case-by-case basis

Anti-tumor activity Recruiting Daiichi Sankyo

MVI-118 Encode
AR LBD

DNA
vaccine

NCT02411786, ph1
(+/- GM-CSF)

Soft tissue and/or bone
metastases by radiographic
imaging

Secondary: Median and
18-month PFS

Completed Madison
Vaccines

MVI-816
(pTVG-HP)

Encode
AR LBD

DNA
vaccine

NCT01706458, ph2
(in combination
with sipuleucel-T)
NCT02499835,
ph1/2
(in combination
with
pembrolizumab)

Soft tissue and/or bone
metastases in imaging studies

Secondary: PFS, time to
radiographic progression

Completed
Active,
not
recruiting

Madison
Vaccines

Recombinant
Ad5 vaccine

PSA/MUC-
1/brachyury

Virus
vaccine

NCT03481816, ph1 Metastatic bone disease in an
imaging study

Secondary: OS, PFS Completed ImmunityBio/
NCI

Rilimogene
glafolivec

PSA, CD48,
CD80,
ICAM1,
KLK3

Virus
vaccine

NCT01322490, ph3
(+/- GM-CSF)

Radiological progression (new
or growing bone metastases or
new/enlarging lymph node
disease)

Primary: OS, number alive
without event after 6
months (event is two new
bone lesions or other
metastases)

Completed Bavarian Nordic

(Continued)
F
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TABLE 1 Database searches performed to narrow the scope of this review.

Database search Breast cancer Prostate cancer

All drugs in active development 1,498 drugs 746 drugs

Limiting to drugs with development related to bone metastasis 242 drugs 206 drugs

Further Limiting to immuno-oncology drugs only 67 drugs 73 drugs

Further Limiting to immuno-oncology drugs in clinical development (phase 1-3) 36 drugs 47 drugs

Drugs with published data available about effects on bone metastasis 0 drugs 20 drugs*
* Of the 20 drugs, 6 included both breast and prostate cancer as indication, but bone metastasis data is published only in prostate cancer bone metastasis.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1121878
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kähkönen et al. 10.3389/fimmu.2023.1121878
for breast cancer, none of the clinical trials in breast cancer

specifically addressed effects on bone metastasis. Inclusion criteria

for the trials listed bone metastases evaluated by imaging, and

outcome measurements varied largely between studies. Most of the

listed trials are currently in phase 1 or 2. Description of the main

findings in the context of bone metastasis for all listed therapies is

provided in the chapters below.
Frontiers in Immunology 04
3.2 Imifoplatin

Imifoplatin (PT-112) is a platinum-pyrophosphate compound

studied for the treatment of cancer. Due to the pyrophosphate

presence, imifoplatin localizes to bone tissues in high concentration

(15). Imifoplatin has been studied in patients with advanced solid

tumors including bone metastatic prostate cancer (clinical trial
TABLE 2 Continued

ASSET
NAME

TARGET
(S)

MODA-
LITY

TRIAL SELECTED ELIGIBILITY CRITERIA
AND OUTCOME MEASUREMENT

TRIAL
STATUS

DEVELOPER/
SPONSOR

INCLUSION OUTCOME

Bintrafusp alfa
(M7824) and
M9241

PD-L1-
TGFb
NHS-
IL12A

Fusion
protein
Fusion
protein

NCT04633252,
ph1/2
(in combination
with androgen
deprivation
therapy, prednisone
and docetaxel)

Metastatic disease, defined as at
least one lesion on TC99 bone
scan or at least one measurable
lesion per RECIST 1.1.

Secondary: Radiographic
response rates,
radiographic and
biochemical time to
progression

Recruiting Merck KGaA/
NCI

Vudalimab
(XmAb20717)

PD-1 x
CTLA-4

Bispecific
antibody

NCT05005728, ph2
(in combination
with carboplatin,
cabazitaxel,
olaparib

Progression of bone disease
(evaluable disease) or 2 or
more new bone lesions by bone
scan

Secondary: Objective
response rate by PCWG3,
bone scan and rPFS,
duration of response

Recruiting Vencor

Tremelimumab CTLA-4 Monoclo-
nal
antibody

NCT03204812, ph2
(in combination
with durvalumab)

Evidence of metastatic disease
to the bone seen in most recent
bone scan, CT scan and/or
MRI

Secondary: rPFS, median
OS

Completed Pfizer/MDA

BMS-986249 CTLA-4 Conditio-
nally
activated
antibody

NCT03369223, ph
1/2
(in combination
with nivolumab)

Measurable disease or
metastatic disease documented
by bone lesions in radionuclide
bone scan

Secondary: PFS, overall
response, duration of
response

Recruiting CytomX
Therapeutics/
Bristol-Myers
Squibb

Epacadostat
and
MVA-BN
Brachyury

IDO1
TBXT

Small
molecule
Protein

NCT03493945,
ph1/2
(in combination
with M7824 and
N-803)

Radiographically proven
metastatic or locally advanced
solid tumor of any type

Secondary: PFS Recruiting Incyte/NCI
Bavarian Nordic

Talabostat
mesylate
(BXCL701)

DPP4,
DPP8,
DPP9, FAP

Small
molecule

NCT03910660,
ph1/2
(in combination
with
pembrolizumab)

RECIST 1.1 measurable disease
or detectable bone metastases
by whole body bone
scintigraphy

Secondary: rPFS, median
OS, duration of response

Recruiting BioXcel
Therapeutics

Dendritic cell
vaccine

CTAG1B,
MAGEC2,
MUC1

Cell
vaccine

NCT02692976, ph2 Bone disease progression
defined by two or more new
lesions in bone scan as
described in PCWG2 criteria

Secondary: rPFS, OS Completed Radbound
University

MB-105 PSCA CAR-T NCT03873805, ph1 Radiographic evidence of new
metastatic foci in computed CT
or bone scan

Secondary: rPFS, OS Recruiting Fortress
Biotech/City of
Hope Med Cent

Reolysin
(pelareorep)

N/A Virus NCT01619813, ph2
(in combination
with docetaxel and
prednisone)

Metastatic or locally recurrent
disease, clinically and/or
radiologically documented
disease

Primary: Disease
progression, OS

Completed Oncolytic
Biotech
“Developer” refers to the original developer/owner, “Stage” refers to the highest development stage. “Inclusion” and “Outcome” columns include selected parameters relevant in the context of
bone metastasis. Detailed description of the drugs and the results are provided in the chapters below. All listed trials are for prostate cancer. AR, androgen receptor; B7-H3, B7 homolog 3; CAR-T,
chimeric antigen receptor, T cell; CD, cluster of differentiation; CRPC, castration-resistant prostate cancer; CTAG1B, cancer/testis antigen 1B; CTLA-4, cytotoxic T-lymphocyte-associated
protein 4; DPP, dipeptidyl peptidase; FAP, fibroblast activation protein; ICAM 1, intracellular adhesion molecule 1; IL12A, interleukin 12 A; KLK3, kallikrein related peptidase 3; LBD, ligand
binding domain; MAGEC2, MAGE family member C2; MRI, magnetic resonance imaging; MUC-1, mucin-1; OS, overall survival; PCWG3, prostate cancer working group 3; PD-1, programmed
cell death 1; PD-L1, programmed death-ligand 1; PFS, progression-free survival; PSA, prostate-specific antigen; PSCA, prostate stem cell antigen; PSMA, prostate-specific membrane antigen;
RECIST, response evaluation criteria in solid tumors; rPFS, radiographic progression-free survival; TBTX, T-box transcription factor T; TGFb, transforming growth factor beta. N/A,
Not available.
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identifier NCT02266745). The results were published in ASCO

Genitourinary Cancers Symposium 2020 (16, 17), showing

decrease in bone pain and reduction of serum alkaline

phosphatase (ALP, bone biomarker) in 9/10 and PSA in 3/10

patients. In a combination study (NCT03409458) with avelumab

in a cohort of metastatic castration-resistant prostate cancer

(mCRPC), 24/32 patients showed reduction in serum ALP and

improvement in patient-reported pain and quality of life (18),

suggesting marked therapeutic activity for imifoplatin in

bone metastasis.
3.3 P-PSMA-101

P-PSMA-101 is an autologous prostate-specific membrane

antigen (PSMA) -targeting Chimeric Antigen Receptor T cell

(CAR-T) therapy with a high percentage of stem cell memory T

cell (TSCM) phenotype initially associated with efficacy, safety and

bone homing. TSCM cells remain viable in hostile bone

microenvironment and the bone homing attribute makes it a

promising candidate treatment for bone metastasis. After

promising preclinical data in prostate cancer models, a phase I

clinical study (NCT04249947) was started in mCRPC patients. The

results were reported in ASCO Genitourinary Symposium 2022

(19). The study included 10 heavily pretreated patients, of which 7

had decreased PSA levels. Four patients showed marked CAR-T

uptake in bone metastases and post-treatment biopsy of one patient

showed infiltration of P-PSMA-101 CAR-T cells into the tumor, the

patient experiencing pathologic complete response. However,

enrollment was stopped in the study in November 2022 when the

company focused on developing their allogeneic platform.
3.4 Pasotuxizumab

Pasotuxizumab (BAY2010112) is a PSMA-targeting bispecific

T-cell engager (BiTE) antibody. BiTE molecules bind to both the

target cells and T cells, and they can recruit and activate T cells

without the need of any co-stimulatory signals. Phase I dose

escalation results in CRPC (NCT01723475) have been published

(20). The study does not state the exact number of patients with

bone metastases, but the majority of patients had advanced or

metastatic stage IV disease. When PSMA BiTE was administered to

patients intravenously, altogether 14/16 patients experienced a PSA

response. Two patients had a long-term PSA response in the study.

The first patient had a long-term stable disease, and the second

patient had a marked PSA decrease and experienced a near-

complete regression of lymph node lesions and bone metastases

with 500 days to disease progression.
3.5 MGC018

MGC018 is an anti-B7-H3 antibody-drug conjugate (ADC). B7-

H3, a member of the B7 family of immunomodulatory molecules, is
Frontiers in Immunology 05
overexpressed in a wide range of solid tumors (21). MGC018 is

comprised of the cleavable linker-duocarmycin payload, valine-

citrulline-seco duocarmycin hydroxybenzamide azaindole (vc-seco-

DUBA), conjugated to an anti-B7-H3 humanized IgG1/kappa

monoclonal antibody (22). A phase I/II study (NCT03729596)

will evaluate the effects of MGC018 in patients with advanced

solid tumors, including mCRPC with bone only metastases.

Preliminary results of the trial presented in ESMO 2021 congress

indicated that 55% of the patients experienced over 50% decrease in

PSA levels (23). The study included only mCRPC patients with

bone metastases, indicating a significant bone metastasis anti-tumor

effect for MGC018. The effects of MGC018 are currently evaluated

in advanced solid tumors, and a phase II/III trial (NCT05551117) in

mCRPC patients evaluating radiographic progression free survival

(rPFS) as a primary endpoint will be initiated.

B7-H3 is an interesting target for bone metastasis. A study in

patients with the primary bone cancer osteosarcoma demonstrated

that soluble B7-H3 levels were increased in patients with

osteosarcoma compared to healthy individuals, and high levels of

soluble B7-H3 correlated with tumor stage, metastases and shorter

overall survival (OS) (24). Also, high levels of B7-H3 correlated with

low number of CD8+ tumor-infiltrating lymphocytes (25).

Importantly for bone metastasis, B7-H3 has been shown to

regulate the differentiation and activity of bone-forming

osteoblast cells that are overactive in prostate cancer (26, 27).
3.6 DS-7300a

DS-7300a is an anti-B7-H3 antibody conjugated to DXd

(MAAA-1181), a novel derivate of a topoisomerase I inhibitor

exatecan (DX-8951f). The first results of the ongoing phase I/II

trial (NCT04145622) were presented in ASCO Genitourinary

symposium in 2022. Out of 29 patients treated with 6.4 to 16 mg/

kg of DS-7300, six patients experienced partial response and 15

resulted in stable disease with improvements in PSA and bone

metastases (28).
3.7 MVI-118

MVI-118 (pTVG-AR) is a plasmid DNA vaccine encoding the

ligand-binding domain of the human androgen receptor. In a phase

I study (NCT02411786), 55% of metastatic castration-sensitive

prostate cancer (mCSPC) patients had bone metastases and 68%

of the patients were progression-free at 18 months in groups

receiving the vaccine with or without granulocyte-macroghage

colony-stimulating factor (GM-CSF) adjuvant (29). Patients who

had immunological response with interferon gamma (IFNg) and/or
granzyme B had prolonged time to develop castration resistance.

The study did not include radiographic evaluation of patients even

though it included a high number of patients with bone metastases.

MVI-118 is currently evaluated in prostate cancer patients in

combination with pembrolizumab (NCT04090528) in a study

enrolling patients with bone metastases.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1121878
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kähkönen et al. 10.3389/fimmu.2023.1121878
3.8 MVI-816 (pTVG-HP)

MVI-816 (pTVG-HP) is an intradermal prostatic acid phosphatase

(PAP) encoding DNA plasmid vaccine. Eighteen mCRPC patients

were included in a phase II study (NCT01706458) evaluating effects of

sipuleucel T alone (Arm 1) or in combination with pTVG-HP (Arm 2).

The patients underwent CT/bone scan in 3 months intervals for the

two years follow-up period. Patients with bone metastases were

unevenly distributed between the two treatment arms (22% vs 56%

in Arms 1 and 2, respectively) and there were no differences between

the treatment arms in median time to radiographic progression (30).

However, two patients in Arm 2 seemed to be progression free until 9

to 12months. Overall, the number of responders was low and the study

was unable to recruit enough patients, and it was closed early as it was

unlikely to meet the primary immunological endpoint.

In another phase II study (NCT02499835) the effects of MVI-816

and pembrolizumab were evaluated in mCRPC patients on 6 months

progression-free survival (PFS) and time to radiographic progression.

In the study, 80-100% of patients had bone metastases and 32%

remained on trial without radiographic progression after 6 months.

Estimated rPFS rate was 44% and 62% in patients receiving a

combination of MVI-816 and pembrolizumab in two dosing

sequences (31). In the same study, the effects of pTVG-HP in

combination with pembrolizumab were studied by FLT PET/CT

imaging and different metastases were analyzed (32). Unfortunately,

bone metastases were not analyzed in this study due to high

background FLT uptake in PET/CT imaging from the proliferating

bone marrow. If it would have been possible to image bone metastases,

the study would have given important metastasis-specific information.
3.9 Recombinant Ad5 vaccine

A novel Ad5 vaccine uses adenovirus 5 vectors targeting tumor-

associated antigens PSA, MUC-1 and brachyury. The first-in-human

trial (NCT03481816) was performed in mCRPC patients that needed

to have incurable disease with radiographic progression defined either

by new or growing bone lesions or growing lymph node disease with

increasing PSA levels (33). Seventeen patients were included in the

study, of which one patient had a partial response, five had stable

disease for over six months, and five patients had confirmed decline in

PSA. The study did not outline what metastases the responders had,

which would have been helpful for better interpretation of the results.

Median PFS was 22 weeks. All patients experienced mounted T cell

responses to at least one tumor-associated antigen, whereas about half

of the patients mounted immune responses to all three tumor-

associated antigens. Surprisingly, despite the promising anti-cancer

results, almost all currently active clinical trials of the Ad5 vaccine are

related to COVID-19 research.
3.10 Rilimogene glafolivec

Rilimogene glafolivec (PROSTVAC) is a therapeutic cancer

vaccine for mCRPC patients (34). It is a combination of two
Frontiers in Immunology 06
viruses encoding PSA and TRICOM co-stimulatory molecules

(CD80), leukocyte function associated antigen-3 (LFA-3) and

intracellular adhesion molecule-1 (ICAM-1 or CD54). The

patients are first given a vaccinia virus -based vector (rilimogene

galvacirepvec, PROSTVAC-V) for priming and later a recombinant

fowlpox virus -based vector (rilimogene glafolivec, PROSTVAC-F)

for boosting the immunity. A phase III study (NCT01322490)

evaluated efficacy of PROSTVAC alone and in combination with

GM-CSF over placebo in mCPRC patients. About 75% of the

patients had bone metastases in each cohort but there was no

effect in OS, and the most common event in patients was

radiographic progression and bone pain (35). Combinations with

rilimogene glafolivec are currently evaluated in 7 clinical trials for

different subsets of prostate cancer.
3.11 Bintrafusp alfa and M9241

Bintrafusp alfa (M7824) is a first-in-class bifunctional agent

targeting programmed death ligand 1 (PD-L1) moiety fused with

peptide linkers to ‘trap’ transforming growth factor beta (TGFb) in
the tumor microenvironment (36). In preclinical studies, bintrafusp

alfa inhibited breast cancer metastasis to lungs and its effects were

more profound than those of PD-L1 or TGFb alone, and it is also an
effective combination partner with chemo- and radiation therapy

(37), vaccines (38) and M9241 (NHS-IL12), an immunocytokine

composed of two IL-12 heterodimers fused to an antibody with high

affinity to DNA (39). Phase I clinical trials in advanced solid tumors

have been reported (40, 41).

As the role of TGFb is well established in regulating growth of

bone metastases (42), it would be of interest to evaluate if bintrafusp

alfa affects also bone metastasis. A trial evaluating effects of

binstrafusp alfa in combination with other therapies including

M9241 in mCSPC and mCRPC (NCT04633252) will perform

Tc99 imaging to confirm the extent of bone metastases and

follow up radiographic response rates and time to radiographic

progression with estimated study completion in 2023.
3.12 Vudalimab

Vudalimab (XmAb20717) is a bispecific antibody that engages

programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte

antigen-4 (CTLA-4) with limited amount of published data

available. Results presented in SITC 2020 concluded a preliminary

clinical finding of vudalimab in advanced solid tumors (43). This

study also included CRPC patients, and 2/7 patients responded to

the treatment with a more than 50% decrease in PSA and no

progression in bone scans. The effects of vudalimab will be studied

in combination with chemo- or targeted therapy in a phase II trial in

mCRPC patients (NCT05005728). In this trial, the patients will be

categorized into treatment groups based on molecular

characteristics of the tumors or previous treatment history. The

study will evaluate effects on bone metastases by evaluating rPFS,

with expected study completion in 2024.
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3.13 Tremelimumab

Tremelimumab is a fully-human IgG2 monoclonal antibody

targeting CTLA-4 and directed to treatment of advanced

melanoma, prostate, breast, colorectal and renal cancer. Especially

in combination with PD-1 targeting antibodies, tremelimumab has

produced long-term survival benefits in advanced patients (44). Of

interest to this review, tremelimumab has been studied in

combination with PD-1 targeting durvalumab in bone metastatic

CRPC (45, NCT03204812). rPFS was assessed with CT and Tc-99m-

MDP bone scintigraphy, and bone biopsies were collected to evaluate

immune cells at baseline and after 2 and 4 doses of treatment. The

study reported a rPFS of 3.7 months, and 1-, 2-, and 3-year OS were

96%, 55% and 35%, respectively. Stable disease lasting at least 6

months was observed in 6/25 patients (disease control rate of 35%).

Analysis of immune cell subsets in bone metastases showed no

difference in T cell populations, but the number of macrophages

and neutrophils was increased during the treatment period.

Effects of tremelimumab are currently evaluated in 112 clinical

studies in different cancer indications, and it was approved by FDA

in combination with durvalumab for unresectable hepatocellular

carcinoma in October 2022. Tremelimumab in combination with

durvalumab is currently studied in bone metastatic NSCLC patients

(46) and metastatic urothelial carcinoma (mUC) (47). In the

NSCLC study (NCT03057106), bone metastases were associated

with lower OS and PFS in patients, but the treatment had no

beneficial effect. The mUC study (NCT02516241) also confirmed

that patients with bone metastases had lower OS and PFS, and

patients with PD-L1 -high bone metastases treated with

tremelimumab, durvalumab or their combination had numerically

higher OS than patients with PD-L1 -low bone metastases.
3.14 BMS-986249

BMS-986249 is a probody composed of ipilimumab (anti-

CTLA-4 antibody) linked to a proprietary masking peptide that

covers the active antigen-binding site of the antibody through a

protease-cleavable linker (48). BMS-986249 is currently evaluated

in a phase I clinical study (NCT03369223) including patients with

advanced cancer in combination with nivolumab. Results published

in ESMO 2022 congress demonstrated that regardless of cancer

indication, 26/39 patients treated with BMS-986249 received partial

response and 16 or 38 out of 64 patients received complete or partial

response, respectively, when treated with combination of BMS-

986249 and nivolumab (49). The study is currently recruiting

patients, and one of the cohorts will be mCRPC patients where

bone metastases will be evaluated at inclusion by radionuclide bone

scan. The study is expected to complete in 2024.
3.15 MVA-BN Brachyury and epacadostat

MVA-BN Brachyury is a recombinant vaccine under

development for the treatment of patients with advanced cancers.

Brachyury is a transcription factor expressed in many cancers and
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associated with metastatic process and chemotherapy resistance

(50). The vaccine is modified from two viruses encoding a transgene

for brachyury and it induces T cell responses against CEA and

MUC1. QuEST1 study (NCT03493945) evaluated effects of MVA-

BN Brachyury combined with M7824 (bintrafusp alfa, discussed

above), M7824 and ALT-803 (IL-15 superagonist), or M7824, ALT-

803 and epacadostat (discussed below) in CRPC patients who had

radiologically confirmed bone metastases or PSA progression (51).

Results of the QuEST1 study published in ESMO 2020 congress

indicated that 4/9 asymptomatic or minimally symptomatic CRPC

patients receiving the triple combination of the vaccine, bintrafusp

alfa and the IL-15 superagonist sustained PSA responses and 2/4 of

them had radiographic response, whereas a similar response was

only observed in 1/13 patients receiving the vaccine and bintrafusp

alfa (52). Furthermore, analysis of peripheral blood mononuclear

cells from these two study groups showed increase in NK cells, TCR

diversity and absolute lymphocyte count together with increased

serum levels of granzyme B, CD27 and CD40L, indicating

an established immune reaction to the vaccination (53).

Also, patients who experienced a PSA response had higher

numbers of CD4+ and CD8+ cells and decreased number of

immunosuppressive cells such as myeloid-derived suppressor cells

and monocytes, which could partially explain the observed anti-

tumor effects.

Epacadostat is an indoleamine 2,3-dioxygenase (IDO) inhibitor

intended to be used for treatment of cancer (54). Results of phase I/

II trials for epacadostat (55) and its combination with

pembrolizumab (56) in advanced solid tumors have been

published. As mentioned above, the effects of epacadostat are

evaluated in Arm 3 of QuEST1 trial (NCT03493945) for mCRPC

patients with the inclusion criteria metastasis to bone, organs or

lymph nodes, and will follow radiographic progression of the

disease with expected results by the end of 2023. We have

previously performed a preclinical bone metastasis study in triple-

negative breast cancer where epacadostat alone or in combination

with pembrolizumab had no effect on growth of bone metastases

(57). However, these results do not directly translate to prostate

cancer bone metastases as they may differ immunologically from

breast cancer bone metastases.
3.16 Talabostat mesylate

Talabostat mesylate is a small-molecule inhibitor of dipeptidyl

peptidases (DPPs) 4, 8 and 9, and fibroblast activation protein that

activates innate immunity (58). Effects of talabostat mesylate were

studied in combination with pembrolizumab in a phase II trial in

mCRPC patients (NCT03910660). In this study, 40% of the patients

had bone metastases, and even after a short 9-week follow-up time,

27% of the patients showed PSA reduction (59). Further results

were reported in ASCO genitourinary meeting in 2022 with similar

findings, demonstrating that in a mCRPC cohort that included 44%

of patients with bone metastases, 23% of all mCRPC patients had

complete response and 16% had partial response (60). Even though

the data does not yet indicate response rates separately for bone

metastatic patients, the observed 40% of patients with bone
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metastases will hopefully lead to discussing the issue when the full

results of the phase II study are published.
3.17 Dendritic cell vaccine

Radboud University is developing a novel dendritic cell vaccine

with subpopulations of myeloid dendritic cells (mDC) and

plasmacytoid dendritic cells (pDC) targeting CTAG1B, MAGEC2

and MUC1. Results presented in ASCO Genitourinary Cancers

Symposium 2018 reported rPFS data in mCRPC patients with

localized, lymph node and bone metastasis positive disease (61).

In this trial (NCT02692976) mCRPC patients received either mDC,

pDC or combined vaccination and their radiological responses were

assessed on 68GA-PSMA-PET-CT and MRI imaging for bone

metastases. The results showed that overall, 13/21 patients had no

radiological disease progression and at 12 months follow-up time 5/

11 patients had stable disease. Mean rPFS was 6.1 months. Results

published in ESMO 2019 congress reported that patients who had

non-progressive disease had more antigen-specific T cells (IFNg+)
compared to progressed patients (62). rPFS was 18.8 months in

patients with high IFNg+ cells and 5.1 months in patients with low

IFNg+ cells, indicating that immune activation as seen by an

elevated amount of IFNg+ cells would mediate prolonged rPFS

in patients.
3.18 MB-105

MB-105 is a prostate stem cell antigen (PSCA) -CAR T cell

therapy currently studied in mCRPC. Prostate cancer is an

immunologically cold tumor often infiltrated with abundant

macrophages, and infiltration of M2 macrophages correlates with

metastasis and poor prognosis. To study the effects of MB-105 at

preclinical stages, prostate cancer cells were intratibially injected

into ‘humanized mice’ with human immune cells to model the

immunosuppressed microenvironment in a bone metastatic disease

(63). PD-L1 expression was observed in tumor-associated

macrophages infiltrating tumors following the PSCA-CAR T cell

therapy. Importantly, treatment with anti-PD-L1 monoclonal

antibodies rescued anti-tumor activity of PSCA-CAR T cells in

the presence of M2 macrophages, suggesting that PD-L1 is a

mediator of M2 macrophage -driven immune suppression in

prostate cancer. PSCA-CAR T cell therapy is currently evaluated

in a phase 1 clinical trial (NCT03873805) in mCRPC patients with

PSCA-positive tumors. Results presented in ASCO Genitourinary

Symposium in 2022 (64) indicated that when given with prior

lymphodepletion at an optimized dose level, 3/3 patients had stable

disease. More patients need to be treated before making conclusions

about efficacy of the therapy.
3.19 Reolysin

Pelareorep (Reolysin), a naturally occurring oncolytic reovirus

is developed for treatment of cancer. The reovirus infects and kills
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cancer cells with activated Ras pathway (65). A phase II study

(NCT01656538) that included patients with bone metastases

showed 7 months improved OS in patients receiving combination

of pelareorep and paclitaxel compared to paclitaxel alone (66). A

previous study had already indicated safety in patients with

advanced solid tumors (67).

Pelareorep received Fast Track Designation from FDA in 2017

for metastatic breast cancer, and its effects are currently evaluated

for other metastatic cancers. Pelareorep was studied in mCRPC

(NCT01619813) by CT, bone scans and bone biomarkers to

evaluate the extent and response on bone metastases (68). The

results were negative, and patients receiving pelareorep, docetaxel

and prednisone vs patients receiving docetaxel and prednisone had

no effect on survival. A recent meta-analysis in advanced or

metastatic cancer patients indicated that other oncolytic

virotherapies may be more effective than pelareorep (69).
3.20 IMM-101

IMM-101 is a vaccine derived from heat killed mycobacterium

and developed for the treatment of cancer, including prostate

cancer (70). A summary of case reports of 6 prostate cancer

patients treated with IMM-101 demonstrated decreased PSA

levels in 3 patients with symptomatic bone metastases after

starting IMM-101 treatment (71). Bone metastases remained

stable, or decreased in one patient who also received zoledronic

acid. In these patients the disease remained stable for 2 to 9 years.

These results showed that at least some patients do respond to

IMM-101 with a positive response. Current clinical development of

IMM-101 seems to be directed to melanoma, pancreatic and

colorectal cancers.
3.21 Preclinical-stage assets

Database search identified three preclinical-stage therapies

showing effects in bone metastasis models, rAd.DCN, EMU-116

and DUET-02. To the best of our knowledge, no clinical studies

have been posted for these therapies up to date.

University of Illinois at Chicago develops an oncolytic

adenovirus-expressing decorin, rAd.DCN, for the treatment of

cancer. Decorin is a natural inhibitor of TGFb that has multiple

pro-metastatic and immunomodulatory properties (72). Studies of

rAd.DCN in breast cancer bone metastasis models indicated that

the treatment did not prevent colonization to bones but

significantly decreased tumor growth in bone (73).

EMU-116 is an orally bioavailable small-molecule CXCR4

antagonist under development for the treatment of cancer.

CXCR4 has been a promising cancer target for years and it is an

especially interesting anti-metastatic target as it is one of the factors

involved in bone-homing of cancer cells (74). Recent preclinical

data shows that EMU-116 was effective in a prostate cancer bone

metastasis model when combined with docetaxel (75).

DUET-02 (CpG-STAT3ASO) is a Signal Transducer and

Activator of Transcription 3 (STAT3) antisense oligonucleotide
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(STAT3ASO) conjugated to immunost imulatory CpG

oligodeoxynucleotides that is currently being explored for the

treatment of cancer. STAT3 is an oncogenic transcription factor

that plays an important role in both prostate cancer progression and

sustaining immune suppression in the tumor microenvironment.

At preclinical stages, DUET-02 effectively prevented tumor growth

and improved survival in an intratibial (tumor growing in bone)

bone metastasis model (76).
4 Discussion

Based on the database search we identified 24 therapies in

development that were evaluated in the context of bone metastasis.

It is challenging to draw conclusions of which therapies could be most

successful in the future, because these experimental therapies are in

different stages of development, they have been tested in different

patient populations, different modalities have been studied, and some

of them are evaluated in combination with other therapies.

Three of the identified therapies were specifically related to tumor

growing in bone metastatic microenvironment and their clinical

evaluation followed outcomes in bone metastatic patients with

relevant outcome measurements. These therapies included a first-

in-class platinum-pyrophosphate conjugate small molecule

imifoplatin (see chapter 4.2), an autologous PSMA-targeting CAR-

T therapy P-PSMA-101 (chapter 4.3), and a B7-H3 targeting ADC

MGC018 (chapter 4.5). Imifoplatin has affinity for bone

(osteotropism) ensuring specific accumulation to bone metastases.

It causes immunogenic cell death leading to recruitment of tumor-

infiltrating lymphocytes (17) and it has been studied in combination

with anti-PD-L1 in mCRPC patients, highlighting the rationale for

the studied combination (18 ASCO). P-PSMA-101 has TSCM

phenotype (19), which has been considered important for its bone

marrow homing, surviving and tumor eliminating properties in

mCRPC patients with bone metastases. The properties of bone

homing and survival can be considered essential features for an

effective therapy. However, despite of the promising phase I results,

winding down was recently announced for this autologous CAR-T

program and transition to an allogeneic platform. B7-H3 is a cell

surface immunomodulatory glycoprotein expressed during prostate

cancer progression and in the majority of patients with mCRPC (77).

Interestingly, B7-H3 has been reported also to affect differentiation

and activity of bone-forming osteoblast cells that are overactive in

osteoblastic bone metastases typical for prostate cancer (26, 27). This

indicates that targeting B7-H3 could potentially prevent the

formation of pathologic osteoblastic bone lesions in mCRPC,

currently an unmet medical need. Taking into account B7-H3

expression in tumor and immune cells with potential activity also

in osteoblasts, B7-H3 can be considered as a potential OIO target in

prostate cancer patients with bone metastases.

Some other clinical-stage therapies identified in this review have

shown potential efficacy on bone metastases, including for example

MVI-118, the dendritic cell vaccine and pasotuximab. However,

comparison of these therapies is very difficult as the studies

evaluated responders differently and used different outcomes, for

example PFS or OS that do not evaluate efficacy for bone metastases
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as such. It is also important to acknowledge that not all therapies

have shown good effects on bone metastases. For example, the study

of rilimogene glafolivec addressed efficacy on bone metastases but

failed to show effects on survival, bone metastasis progression or

bone pain. Furthermore, different bone metastatic cancers can have

differential efficacy on a therapy as shown in the case of reolysin that

received fast track designation from the FDA for metastatic breast

cancer but showed no efficacy on metastatic prostate cancer when

both studies included patients with bone metastases. The immune

microenvironment can be very different in breast and prostate

cancer bone metastases, being affected by the osteolytic or

osteoblastic nature, respectively, which could explain the results.

These findings highlight the heterogeneity of bone metastases and

the need to study effects on different cancer types separately, and

not only rely on data obtained from one cancer type.

This data search resulted only in three preclinical-stage

immunotherapies that have been tested in preclinical bone

metastasis models. These therapies include rAD.DCN, DUET-02,

and EMU-116 in combination with docetaxel that decreased bone

metastasis growth in animal models. None of these experimental

therapies appear to have proceeded to clinical trials yet. It will be

interesting to see how the preclinical efficacy translates to clinical

effectiveness on bone metastases. On the other hand, almost none of

the clinical-stage therapies listed in this review have published results

available on preclinical data supporting continuation to clinical studies

for treatment of patients with bone metastases, with the exception of

MB-105 that has reported data available from bone metastasis animal

models and early data from a phase 1 clinical trial. Some other drugs

had data showing effects for inhibiting or decreasing growth of lymph

node or lung metastases, but these metastases are very different from

bone metastases and results obtained on other metastases are usually

not translatable to bone metastases. One reason for the lack of

preclinical studies in bone metastasis models could be the special

expertise needed to carry out studies in these technically challenging

models (78). We have recently published results on how effects of

immunotherapies can be addressed in proper metastasis models (79,

80) and we hope that metastasis models would be extensively used at

preclinical development stages to confirm the efficacy before initiating

clinical studies. This approach would lead to selecting most promising

drug candidates for bone metastases to proceed to clinical trials, which

would decrease the currently very high 97% failure rate in oncology

clinical trials (81), and allow faster entrance of truly efficacious new

oncology drugs to the market.

Considering that bone metastases are a high unmet medical need, it

is surprising how few relevant studies finally address the efficacy of novel

therapies on bone metastases either in preclinical or clinical studies. In

fact, the efficacy of novel therapies on bone metastases should be

specifically addressed as bone metastases are associated with very low

response rates to therapies and shorter PFS and OS rates (46). For this

reason, it has been proposed that bone metastases should be considered

as a new important stratification factor for clinical trials evaluating

effects of immunotherapies (46). Guidance on how to study and

evaluate effects of therapies on bone metastases in clinical trials is not

well established. The RECIST criteria often advise to exclude bone

metastases in monitoring the response of experimental therapies.

PCWG3 criteria, that are often used to evaluate responses in prostate
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cancer, advise bone imaging as part of evaluating effects on bone

metastases, but states that more data is needed to understand the data

collected by imaging tools in evaluating responses on bone metastases.

In fact, results of bone scans can be sometimes misleading. New bone

scan lesions may represent osteoblastic bone healing defined as bone

pseudoprogression and mistakenly diagnosed as disease progression

(82). Bone-related biomarkers have been developed and used in bone-

related diseases for a long time, but they remainmainly unexplored with

bone metastases (83). In our opinion, bone turnover markers should be

more widely studied and used in clinical trials for early detection of bone

metastases and evaluating efficacy of therapies. Furthermore, there are

some promising developments for bone metastasis -specific biomarkers

such as DKK-1 (84). The use of hormone-deprivation therapies, either

anti-estrogens or anti-androgens, induces bone changes in patients,

further complicating the analysis of bone metastasis results. These and

other complexities in the follow-up together with the limited guidance

are probably among the main reasons why there are so few studies

evaluating specific effects on bone metastases. In this review we

identified concrete evidence on these issues. The initial data search

was performed for breast and prostate cancer, but a more detailed

evaluation of the data showed that only clinical trials in prostate cancer

studied effects on bone metastases. Besides breast and prostate cancer,

many other common cancers such as lung, colon and bladder cancer

and melanoma have a high incidence of bone metastases, and bone

metastasis -specific evaluation should be applied to all these cancer

indications in studies that include bone metastatic patients.

This review provides important timely insights to new and

emerging immunotherapies with evidence for effects on bone

metastases. Publication strategies of drug development companies

heavily depend on intellectual property right issues. Therefore, studies

are often published during later development phases and data sources

are important tools to follow real-time drug development. Most of the

data that was used for preparing this manuscript was obtained from

non-peer-reviewed sources such as meeting abstracts, and readers

should consider this when making interpretations of the data

presented. We previously performed a search for clinical bone

metastasis studies and immuno-oncology drug development

publications and concluded that the number of peer-reviewed

publications in this area is very low (85). However, considering

importance of this topic and knowing there are opportunities in

development, we wanted to perform an expanded data search using a

database with a tailor-made filter for finding therapies with data

available for bone metastasis from more abundant information

sources such as news, patents and meeting abstracts that include

latest published data available.

In summary, this review provides insights to novel immuno-

oncology drug development for bone metastasis. Because OIO is
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still a largely unexplored area, conducting clinical trials in bone

metastasis setting is challenging. Publication practices during drug

development provide their own challenges for obtaining

information, but we were able to identify novel therapies with

targets or properties relevant to bone metastasis with promising

data obtained during early-stage development. According to this

review, bone metastases can be approached using different

modalities and the tumor microenvironment in bone provides

many potential targets in immune, bone and tumor cells. In the

future, we will hopefully see more therapies with bone metastasis

specific targets that have provided both preclinical and clinical

proof-of-concept for efficacy on bone metastases.
Author contributions

TK: writing the first version of the manuscript, manuscript

modification and finalization. GM: adaptation of the database

machine learning algorithms to identify associations and

relationships to bone metastasis within IO drug trials. RA: subject

expertise on the database, commenting and confirming that

statements related to the database are correctly presented. JH:

commenting and modifying the manuscript, language corrections.

JB: concept for the manuscript, commenting and confirming that

the data is properly presented. All authors contributed to the article

and approved the submitted version.
Conflict of interest

Authors GM and RA are employees of BioSeeker Group AB

who has developed the 1stOncology database that was used to

generate the data described in the manuscript. Authors TK and JH

are employed by the company OncoBone Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References

1. Coleman RE, Croucher PI, Padhani AR, Clézardin P, Chow E, Fallon M, et al.
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