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Orally administered
Lactiplantibacillus plantarum
OLL2712 decreased intestinal
permeability, especially in the
ileum: Ingested lactic acid
bacteria alleviated obesity-
induced inflammation by
collaborating with gut microbiota
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Introduction: Chronic inflammation caused by dietary obesity has been

considered to induce lifestyle-related diseases and functional ingredients with

anti-inflammatory effects are attracting attention. Although multiple studies on

obesity had proved the anti-inflammatory effects of ingestion of lactic acid bacteria

(LAB) and other functional ingredients on adipose tissue, the precise effects on the

intestine, especially on the individual intestinal segments have not been made

clear. In this study, we elucidated the mechanisms of Lactiplantibacillus plantarum

(basonym: Lactobacillus plantarum) OLL2712 in suppressing obesity-induced

inflammation using high fat diet (HFD)-fed mice obesity model.

Methods: We orally administered heat-treated LAB to HFD-fed mice model, and

investigated the inflammatory changes in adipose tissue and intestinal immune

cells. We also analyzed gut microbiota, and evaluated the inflammation and

permeability of the duodenum, jejunum, ileum and colon; four intestinal

segments differing in gut bacteria composition and immune response.

Results: After 3-week LAB administration, the gene expression levels of

proinflammatory cytokines were downregulated in adipose tissue, colon, and

Peyer’s patches (PP)-derived F4/80+ cells. The LAB treatment alleviated obesity-

related gut microbiota imbalance. L. plantarum OLL2712 treatment helps maintain

intestinal barrier function, especially in the ileum, possibly by preventing ZO-1 and

Occludin downregulation.

Discussion: Our results suggest that the oral administration of the LAB strain

regulated the gut microbiota, suppressed intestinal inflammation, and improved
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the gut barrier, which could inhibit the products of obesity-induced gut dysbiosis

from translocating into the bloodstream and the adipose tissue, through which the

LAB finally alleviated the inflammation caused by dietary obesity. Barrier

improvement was observed, especially in the ileum, suggesting collaborative

modulation of the intestinal immune responses by ingested LAB and microbiota.
KEYWORDS

obesity, proinflammatory cytokines, macrophages, gut microbiota, intestinal
permeability, lactic acid bacteria
1 Introduction

According to the WHO Fact Sheet, worldwide obesity has nearly

tripled since 1975, and the number of obese people is still rising due to the

increased availability of high-calorie foods and lack of exercise, and it has

become one of the most serious problems worldwide (1, 2). Multiple

studies have shown that obesity can cause chronic inflammation (3–5).

Persistent inflammatory conditions have been frequently reported to

induce an exacerbation of lifestyle diseases, contributing to elevated risks

of atherosclerosis, type 2 diabetes, and some cancers (6–8).

Gut microbiota, which represents the microorganisms in the

gastrointestinal tracts of the animals, is mainly regulated by

digested food. Gut microbiota is essential for the host metabolism,

relating to the immune system and the barrier function (9, 10).

Dysbiosis of gut microbiota is one of the key factors regulating

obesity-associated disorders (11), as shown in the observation that

germ-free mice do not show increased body fat mass or exacerbated

insulin resistance when fed a high-fat (HFD) diet, and this

phenomenon disappears after gut microbiota transplantation (12,

13). Multiple studies on gut microbiota in obese patients have

suggested that obesity changes the gut microbiota, and excessive

accumulation of adipose tissue is correlated with the composition

of the gut microbiota. In addition, dietary obesity is known to reduce

the diversity of the gut microbiota, followed by a disruption of the

metabolic equilibrium, which is normally maintained by diverse

components of the gut microbiota (14).

On the other hand, intestinal barrier dysfunction is also considered to

be related to the aggravation of chronic inflammation caused by obesity.

The gut is connected to the external environment for the absorption of

nutrients. In the gastrointestinal tract, especially in the large intestine,

there are large amounts of gut bacteria, as well as bacterial pathogens and

other harmful substances. The intestinal barrier functions to protect the

host from these harmful substances (15, 16). It has been reported that

obesity increases intestinal permeability, which allows the leakage of

inflammation inducible foreign substances such as lipopolysaccharide

(LPS), which is one of cell component derived from Gram-negative

bacteria. The leakage of Gram-negative bacteria and LPS into the

bloodstream could induce the infiltration of proinflammatory

macrophages in the adipose tissue and the liver tissue, inducing

systemic inflammation (17). Furthermore, recent studies have

suggested that dysbiosis results in intestinal inflammation in obesity (18).

Recently, functional ingredients with anti-inflammatory effects

have received attention, from which lactic acid bacteria (LAB) are a
02
diverse group of Gram-positive bacteria that produce lactic acid as the

major end product of the carbohydrate fermentation, and are often

considered as probiotics balancing the gut microbiota. As a LAB strain,

Lactiplantibacillus plantarum OLL2712 has been selected owing to its

capacity to accelerate the production of the anti-inflammatory cytokine

interleukin (IL)-10 in murine marrow-derived dendritic cells (DCs)

and peritoneal macrophages (19). Moreover, it has been reported that

oral administration of L. plantarum OLL2712 alleviates chronic

inflammation of adipose tissue in obese mouse models (20) and

reduces fasting plasma glucose and serum proinflammatory cytokine

concentrations in prediabetic individuals (21), suggesting that this

functional LAB could be used as novel pharmaceuticals.

In this study, our main purpose was to focus on the intestine,

especially on the different parts of the digestive tract. The anti-

inflammatory functions of OLL2712 on the adipose tissue had been

reported (19) but the pathways through which ingested OLL2712

exerted the anti-inflammatory effects on the adipose tissue remained

unclear. In this regard, the effects on the intestine were unknown. We

hypothesized that OLL2712 alleviated the adipocyte inflammation via

the intestine by suppressing inflammation or enhancing the gut barrier,

and we presumed that such functions were different among different

parts. We investigated the mechanisms of the anti-inflammatory effects

of the LAB strain, focusing on the gut microbiota and intestinal

function using HFD-fed mouse model. We found a mechanism by

which the oral administration of LAB regulated the gut microbiota,

suppressed intestinal inflammation, and improved the gut barrier. This

could inhibit bacterial harmful components, induced by obesity, from

translocating into the bloodstream and adipose tissue, through which

the LAB strain alleviated the inflammation caused by dietary obesity.

Furthermore, the improvement of barrier function was observed,

especially in the ileum of HFD-fed mice under the LAB treatment,

suggesting collaborative modulation of the intestinal immune responses

by the ingested LAB and microbiota.
2 Materials and methods

2.1 The LAB strain

L. plantarum OLL2712, which had been heat-treated by

incubation at 75°C for 60 min and lyophilized, after being cultured

in de Man, Rogosa, and Sharpe (MRS) broth (Becton Dickinson,

USA), and stored at -20°C.
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2.2 Mice and diet

C57BL/6 male mice were purchased from Charles River

Laboratories (Japan, RRID : IMSR_CRL:027). Mice were fed

sterilized (121°C, 20 min) water and maintained at an appropriate

temperature (23 ± 2°C) and humidity (50 ± 5%) with a 12-hour light-

dark cycle. All experiments were conducted with the approval of the

Experimental Animal Ethics Committee of the Graduate School of

Agriculture and Life Sciences of the University of Tokyo.

To create obese C57BL/6NCrl mice, mice were fed a HFD (60% kcal

from fat; Oriental Yeast, Japan) from 8-week-old, and mice in the control

group were fed a normal chow diet (AIN-93M; Oriental Yeast, Japan)

(Figure S1A). 6 individuals were used for each group to investigate the

proinflammatory changes induced by a 4-week HFD. The nutrient

composition of HFD-60 and AIN-93M is shown in Tables S1, S2.

To investigate the effects of oral administration of L. plantarum

OLL2712 in obese mice, C57BL/6NCrl mice were fed a HFD from 8-

week-old for 4 weeks. In the last 3 weeks, L. plantarum OLL2712,

suspended in the sterilized water to the concentration of 20 mg/mL,

was orally administered every day, 4 mg to each mouse (Figure 1A). 8

– 12 individuals were used for each group.

To investigate the effects of a short-term oral administration of L.

plantarum OLL2712 in mice, L. plantarum OLL2712, suspended in

the sterilized water to the concentration of 20 mg/mL, was orally

administered every day, 4 mg to each C57BL/6NCrl mouse from 9-

week-old (Figure S1B). 5 individuals were used for each group.
2.3 Cell preparation

Epididymal adipose tissue (EAT) and mesenteric adipose tissue

(MAT) were shredded into 2-3 mm pieces and dissociated with

collagenase type II (1 mg/mL; Sigma-Aldrich, USA, Cat#C6885) at

37°C for 45-60 min until the adipose tissue was almost dissolved, and

then the reaction was stopped with EDTA (10 mM) for 5 min. After

being filtered with a 115 µm nylon mesh (Tokyo Screen, Japan),

stromal vascular fraction (SVF) derived from adipose tissue was

treated with red blood cell lysis buffer, made from ammonium

chloride, potassium carbonate, and EDTA, for 5 min at room

temperature. After centrifugation, the EAT SVF and MAT SVF

were suspended in 10% FCS-RPMI.

Peyer’s patches (PPs) were treated with collagenase I (1 mg/mL;

FUJIFILM Wako Pure Chemical, Japan, Cat#032-22364) and 10 mg/mL

DNase I (Roche Diagnostics, Germany, Cat#10104159001) at 37°C for

60–90 min before being filtered with an 86 µm nylon mesh (Tokyo

Screen, Japan). The PP cells were centrifuged twice and suspended in

10% FCS-RPMI. 10% FCS-RPMI was prepared using RPMI 1640 (Nissui

Pharmaceutical, Japan, Cat#05918), containing 100 U/ml penicillin G

potassium (Meiji Seika Pharma, Japan), 100 mg/ml streptomycin sulfate

(Meiji Seika Pharma, Japan), 50 mM 2-mercaptoethanol (FUJIFILM

Wako Pure Chemical, Japan, Cat#137-06862), 0.03% L-glutamine

(FUJIFILM Wako Pure Chemical, Japan, Cat#074-00522), and 0.2%

sodium hydrogen carbonate (FUJIFILM Wako Pure Chemical, Japan,

Cat#191-01305), and 10% heat-inactivated fetal calf serum (Thermo

Fisher Scientific, Germany, Cat#173012).

After F4/80 MicroBeads Ultrapure (Miltenyi Biotec, Germany,

Cat#130-110-443) were added to PP whole cells, F4/80+ cells were
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isolated using a magnetic-activated cell sorting (MACS) system

(Miltenyi Biotec, Germany). The obtained F4/80+ cells were used

as macrophages.
2.4 Quantitative PCR

The intestinal contents were removed, and the intestinal tract was

washed with PBS (-), added to TRIzol (Invitrogen, USA, 15596026),

and homogenized using TissueRuptor (QIAGEN, Germany) until the

tissue was barely visible. The intestinal tissue was immediately frozen

in liquid nitrogen and stored at -80°C.

The intestinal tissue samples were thawed at 4°C. Then, 0.2 mL of

chloroform (FUJIFILMWako Pure Chemical, Japan, Cat#038-02606)

was added to 1 mL of the sample in TRIzol reagent, and the mixture

was stirred manually and kept at room temperature for 3 minutes.

After centrifugation, the upper layer was transferred to a new tube,

and 0.5 mL of isopropanol (FUJIFILM Wako Pure Chemical, Japan,

Cat#166-04836) was added. After being kept at room temperature for

10 min, the sample was centrifuged. The sample was washed with 1

mL of 75% ethanol and dried at room temperature until the

precipitate turned translucent. The RNA solution derived from the

intestinal tissue was dissolved in sterilized water, and any DNA was

removed using an RNase-Free DNase (QIAGEN, Cat#79254).

Total RNA from cells was isolated using QIAshredder (QIAGEN,

Germany, Cat#79656), 2-mercaptoethanol (FUJIFILM Wako Pure

Chemical, Japan, Cat#137-06862), and an RNeasy mini kit (QIAGEN,

Cat#74106) according to the provided protocol. Complementary

DNA (cDNA) was synthesized using SuperScript VILO MasterMix

(ThermoFisher Scientific, USA, Cat#11755-050) and the GeneAmp

PCR System 9700 (Applied Biosystems).

Synthesized cDNA samples were added to a LightCycler 480

Multiwell Plate 96 (Roche Diagnostics), and quantitative PCR was

performed with a QuantiTect SYBR Green PCR Kit (QIAGEN,

Cat#204143) using a CFX Connect Real-Time PCR Detection

System (Bio-Rad, USA). The relative expression levels of each gene

were standardized against the gene expression levels of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The primer

sequences for quantitative PCR (qPCR) are shown in Table S3.
2.5 Measurement of intestinal permeability

Intestinal permeability in vivo, was measured using 4 kDa

Fluorescein isothiocyanate-dextran (FITC-Dextran) (Sigma,

Cat#46944). 4 hours after FITC-dextran was orally administered to

mouse (12 mg per mouse), the serum was collected and diluted in a

microplate reader (Greiner bio one, Austria), and the fluorescence was

measured at 485(ex)/528(em) nm using a SpectraMax iD5 (Molecular

Devices, Japan). The concentration of FITC-dextran was then calculated.

Intestinal permeability ex vivo was investigated according to a

previous report (22). The whole digestive tract from the stomach to

the final part of colon was collected. After MAT was removed, specific

intestinal sections were collected. A 4 cm segment under the stomach

was selected as the duodenum, a segment from the 5th to the 10th

centimetre below the stomach as the jejunum, a 5 cm intestinal

section proximal to the cecum as the ileum, and a 5 cm segment below
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the cecum as the colon (Figure 2B). The collected intestinal tracts

were washed by PBS (-) and the contents were gently removed

without breaking the intestinal tissues. A 1 mg/mL solution of 4

kDa FITC-dextran was injected into the selected intestinal sections

tied with surgical sutures, and each segment was moved to DMEM
Frontiers in Immunology 04
(Sigma-Aldrich, USA, Cat#11965092) and placed at 37°C (Figure

S1C). The concentration of FITC-dextran transported from the

lumen to the DMEM was measured every 30 minutes, and the

cumulative concentration (Qt) of the DMEM, collected at each time

point, was calculated using the following formula.
P

B C D

E F G H

I J K L

A

M N O

FIGURE 1

Oral administration of L. plantarum OLL2712 alleviated the inflammation of adipocytes, colon and PP macrophages in mice but changed neither the body
weight nor the adipose tissue weight. C57BL/6N male mice were fed a HFD (60% kcal from fat) for 4 weeks from 8 weeks of age. (A) In the last 3 weeks,
mice were administered OLL2712 daily (4 mg dissolved in 200 mL water per dose), and mice administered water simultaneously were used as a control
group (HFD). (B) Mice were weighed once per week. The weights of the epididymal adipose tissue (EAT) (C) and mesenteric adipose tissue (MAT) (D)
were measured after 3 weeks of treatment with OLL2712 and compared with the control group. The SVF cells were isolated from the MAT. The mRNA
expression of CCL2 (Ccl2) (E), IL-1b (Il1b) (F), TNF (Tnf) (G), and F4/80 (F4/80) (H) was measured by qPCR. The mRNA expression of CCL2 (Ccl2) (I), IL-1b
(Il1b) (J), TNF (Tnf) (K), and F4/80 (F4/80) (L) in colon tissue was measured by qPCR. Macrophages were isolated from PPs in the mice. The mRNA
expression of CCL2 (Ccl2) (M), IL-1b (Il1b) (N), TNF (Tnf) (O), and IL-6 (Il6) (P) was measured by qPCR. The results are representative of two independent
experiments and are shown as the mean ± standard deviation (n = 8 - 12). *p<0.05; **p<0.01; ***p<0.001 (assessed using Student’s t-test). HFD, high-fat
diet; LAB, lactic acid bacteria (L. plantarum OLL2712); MAT, mesenteric adipose tissue; SVF, stromal vascular fraction; PP, Peyer’s patch.
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Qt = (Ct*Vr) + (Ct sum*Vs), where:

Qt = Cumulative concentration at time t

Ct = Concentration at time t (ng/mL)

Vr = Volume at the receiver side (mL)

Ctsum = Sum of all previous Ct

Vs = Volume sampled (mL)

Qt versus time (t) was plotted and the slope (dQt/dt) was

calculated. And the apparent permeability (Papp) of each individual

intestinal sac was calculated using the following formula:

Papp = (dQt/dt)/(A*Co), where:
A = Area of tissue (cm2)

Co = Initial concentration (ng/mL)
2.6 Gut microbiota

The cecal contents were collected in 1.5 mL tubes and stored at -80°

C. The gut microbiota was analysed with next-generation sequencing

and amplicon sequencing by TechnoSuruga Laboratory (Japan). DNA

was extracted according to the method previously reported (23), using

an automated DNA isolation system (GENE PREP STAR PI-480

KURABO, Japan). The details of the analysis were provided by

TechnoSuruga Laboratory (Japan). The 341f/R806 primers and dual-

index method was used to amplify the V3-V4 regions of Bacterial 16S

rRNA (23–26). And then barcoded amplicons were paired-end

sequenced on 2×284-bp cycle using the MiSeq system with MiSeq

Reagent Kit version 3 (600 Cycle) chemistry. Paired-end sequencing

reads were merged by fastq-join ver 1.3.1 with default setting (27).

FASTX-Toolkit ver 0.0.13 was being used to extract joined-reads,

which had quality value score of ≥ 20 for more than 99% of the

sequence. After the chimeric sequences were deleted with usearch61

(28, 29), nonchimeric reads were submitted for 16S rDNA-based

taxonomic analysis using the Ribosomal Database Project ver 2.11

(RDP, RRID : SCR_006633). Finally, Metagenome@KIN Ver 2.2.1

analysis software (World Fusion, Japan) was used to perform the

identification with confidence ≥ 0.8.
2.7 Statistical analysis

The results are given as the mean ± SD, and Student’s t-test was used

for statistical analyses. A difference was considered significant at p<0.05.
3 Results

3.1 Four-week intake of a high-fat diet
caused inflammation in the SVF cells derived
from adipose tissue in mice

It has been frequently reported that diet-induced obesity is related

to chronic inflammation. A long period of intake of HFD, usually

more than 12 weeks, could cause abnormal cytokine production, a

disorder of lipid metabolism, and elevated blood glucose, followed by

disruption of the regulatory mechanism of adipocytokine production

(30). To investigate the inflammation in early obesity induced by a

short period of HFD ingestion, C57BL/6N mice were fed HFD (60%
Frontiers in Immunology 05
kcal from fat) for 4 weeks, and mice fed a normal chow diet (AIN-93

M) were used as a control group (ND) (Figure S1A). The mice were

weighed every 7 days, and it was found that the HFD group showed

increasing body weights (Figure 3A), followed by increasing weight of

their EAT and MAT (Figures 3B, C).

We isolated SVF, which contained immune cells, from the EAT

and MAT, and the gene expression of proinflammatory cytokines in

the EAT SVF and MAT SVF of mice was measured by qPCR (Figures

S2A–C, 3D–F). And the gene expression of F4/80 (F4/80), as a marker

of macrophages, was measured simultaneously (Figures S2D, 3G).

Cytokine chemokine (C-C motif) ligand 2 (CCL2; Ccl2), as a

macrophage-specific chemokine, increased with a 4-week HFD diet

in EAT SVF and MAT SVF (Figures S2A, 3D). Nevertheless, other

major proinflammatory cytokine such as IL-1b (Il1b) and TNF (Tnf),

and macrophage marker F4/80 (F4/80) did not show a remarkable

change (Figures S2B–D, 3E–G). These data suggested that a short-

term of HFD feeding could induce increases in body weight and fat

mass, followed by slight increase in inflammation in the adipose-

derived SVF by inducing CCL2 (Ccl2).
3.2 Four-week intake of a HFD induced
significant changes in the intestinal
microbiota composition of mice

Many previous studies have reported that both obese patients and

obese mice show an increase in Firmicutes and a decrease in

Bacteroidetes in their gut microbiota (31, 32). We collected the

contents of the cecum from mice fed a HFD for 4 weeks and

analysed the gut microbiota composition using next-generation

sequencing applications. The relative abundance of Firmicutes was

found to increase in the HFD group compared to normal diet (ND)

group (Figure 4A), which is a relevant marker of gut dysbiosis, and we

detected a descending tendency in the relative abundance of

Bacteroidetes (Figure 4B), although there was no change in the

Firmicutes/Bacteroidetes ratio (Figure 4C). At the genus level, the

mice in the HFD group showed an obvious distinction from the ND

group (Figure 4D). The HFD group exhibited a decreasing tendency

in the relative abundance of Lactobacillus (p = 0.06, Figure 4E) and the

relative abundance of Lactococcus, Lachnospiracea incertae sedis, and

Peptococcus which was almost absent in the cecum of the control

group, was found to increase with a HFD feeding (Figures 4F, H, J).

Although Pseudoflavonifractor did not change (Figure 4I), an

increasing tendency induced by HFD was detected in the relative

abundance of Clostridium cluster XIVa (p = 0.08, Figure 4G). These

data indicated that a short-term HFD feeding had already resulted in

a substantially different gut bacterial flora compared with the ND

group, which could be involved in inflammation-associated diseases.
3.3 Oral administration of L. plantarum
OLL2712 alleviated inflammation in SVF cells
derived from adipose tissue

To explore the anti-inflammatory effects of L. plantarum

OLL2712, we orally administered the heat-treated strain to mice on

a HFD during the last 3 weeks (Figure 1A). We were unable to detect a
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significant difference in body weight or fat mass between mice treated

with L. plantarum OLL2712 and those treated with sterilized water

(Figures 1B–D). Nevertheless, in the EAT SVF, the gene expression of

F4/80 (F4/80) decreased significantly in the LAB-treated mice (Figure

S3D). Although not significant, the gene expression of CCL2 (Ccl2)

showed a declining tendency with the LAB treatment (p = 0.05)
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(Figure S3A), while there was no change found in the gene expression

of IL-1b (Il1b) and TNF (Tnf) (Figures S3B, C). Simultaneously,

remarkable changes were found in the MAT SVF, as the gene

expression of proinflammatory cytokines, CCL2 (Ccl2), IL-1b (Il1b)

and TNF (Tnf), and macrophages marker, F4/80 (F4/80), decreased in

the LAB group (Figures 1E–H).
B

C D E F

G H I

J K L

A

FIGURE 2

L. plantarum OLL2712 exhibited the ability to decrease intestinal permeability, especially in the distal intestine. (A) C57BL/6N male mice were treated with
OLL2712 (4 mg dissolved in 200 mL water for each dose) for 7 days, and mice treated with water simultaneously were used as a control group (Ctrl) (n =
5). The concentration of FITC-dextran in serum was measured and calculated 4 hours after FITC-dextran was orally administered to mice to investigate
epithelial permeability in vivo. (B) Specific intestinal sections were collected, and the permeability of each section was assessed. A 4 cm segment under
the stomach was selected as the duodenum, a segment from the 5th to the 10th centimetre below the stomach as the jejunum, a 5 cm intestinal section
proximal to the cecum as the ileum, and a 5 cm segment below the cecum as the colon. The apparent permeability of the duodenum (C), jejunum (D),
ileum (E), and colon (F) in C57BL/6N male mice fed an HFD and treated with OLL2712 (HFD-LAB) were compared with those fed an HFD and treated
with sterilized water (HFD) (n = 9 - 12). The relative expression of ZO-1 (ZO1) (G), Occludin (Ocln) (H), and MUC2 (I) in ileal tissues from ND or HFD-fed
mice was measured by qPCR (n = 5 - 6). The relative expression of ZO-1 (ZO1) (J), Occludin (Ocln) (K), and MUC2 (L) in ileal tissues from mice fed HFD
and treated with OLL2712 (HFD-LAB) were compared with those fed HFD and treated with sterilized water (HFD) (n = 10). The results are representative
of two independent experiments and are shown as the mean ± standard deviation. *p<0.05; **p<0.01 (assessed using Student’s t-test). Ctrl, control; LAB,
lactic acid bacteria (L. plantarum OLL2712); ND, normal diet; HFD, high-fat diet.
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3.4 Colon inflammation was suppressed by
LAB treatment

Colonic macrophages play important roles in the induction of

obesity-associated insulin resistance. Both macrophage-specific CCR2

knockout and intestinal epithelial cell-specific tamoxifen-inducible

CCL2 knockout mice have been observed to be resistant to HFD,

showing improved glucose and insulin tolerance (18). To investigate

the colonic macrophage infiltration underlying dietary obesity, we

evaluated the changes of CCL2 and F4/80 under HFD and LAB

treatment. Unexpectedly, we did not find colonic inflammation in

mice fed an HFD for 4 weeks (Figures S4A–D). Nevertheless, in

macrophages derived from PP cells, the gene expression of CCL2

(Ccl2) and TNF (Tnf) was upregulated by dietary-induced obesity

(Figures S4E, G), suggesting that intestinal inflammation was already

elicited in the small intestinal compartment, although there was no

detected change in the gene expression of IL-1b (Il1b) and IL-6 (Il6)

in PP macrophages (Figures S4F, H).

On the other hand, a 3-week oral administration of L. plantarum

OLL2712 elicited decreased expression of CCL2 (Ccl2), IL-1b (Il1b)

and F4/80 (F4/80) (Figures 1I, J, L) in the colon, and TNF (Tnf) did

not change in the gene expression levels (Figure 1K). Meanwhile,

there was no change detected in the duodenum, jejunum, and ileum

(data not shown). From these results, we supposed that the LAB strain

had an anti-inflammatory effect on the large intestine of mice.

Furthermore, with the oral administration of heat-treated OLL2712,

the gene expression of the proinflammatory cytokines IL-1b (Il1b)

and TNF (Tnf) were found to be downregulated in PP macrophages

(Figures 1N, O), although CCL2 (Ccl2) and IL-6 (Il6) did not change

(Figures 1M, P).
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3.5 Gut microbiota bias caused by HFD
intake was alleviated by an oral
administration of L. plantarum OLL2712

We analysed the gut microbiota in the cecum of mice treated daily

with heat-treated L. plantarumOLL2712 for 3 weeks compared with the

control mice treated with water. At the phylum level, Firmicutes and

Bacteroidetes did not show a significant change under the OLL2712

treatment (Figures 5A–C). However, at the genus level, the gut bacterial

flora displayed a remarkable difference between mice treated with LAB

and the control group treated with water (Figure 5D). The relative

abundance of Lactobacillus dramatically increased (Figure 5E).

Furthermore, the relative abundance of Clostridium cluster XIVa,

Lachnospiracea incertae sedis, and Pseudoflavonifractor, which had

been increased by the HFD and are considered to be associated with

host inflammation and diseases, showed a significant decrease under

OLL2712 treatment (Figures 5G–I). And the relative abundance of

Lactococcus showed a declining tendency (p = 0.05) (Figure 5F), while

Peptococcus did not change with the LAB treatment (Figure 5J). These

data suggested that the oral administration of OLL2712 could modulate

the gut microbiota composition related to obesity.
3.6 L. plantarum OLL2712 improved gut
barrier function in the ileum

According to the experimental results obtained thus far, we

confirmed the anti-inflammatory effects of heat-treated OLL2712

on adipose tissue, PP macrophages, and the colon. In addition, the

LAB treatment caused a substantial change in the gut microbiome.
B C

D E F G

A

FIGURE 3

Four weeks of intake of a high-fat diet caused inflammation in the stromal vascular fraction (SVF) cells derived from adipose tissue of mice. C57BL/6N
male mice were fed a HFD (60% kcal from fat) for 4 weeks from 8 weeks of age. Mice fed a standard chow diet (AIN-93 M) were used as a control
group. (A) Mice were weighed once per week. The weights of the epididymal adipose tissue (EAT) (B) and mesenteric adipose tissue (MAT) (C) were
measured after 4 weeks on a HFD and compared with the ND group. The stromal vascular fraction (SVF) cells were isolated from the MAT (D–G). The
mRNA expression of CCL2 (Ccl2), IL-1b (Il1b), TNF (Tnf) and F4/80 (F4/80) was measured by qPCR. The results are representative of two independent
experiments and are shown as the mean ± standard deviation (n = 6). *p<0.05; **p<0.01; ****p<0.0001 (assessed using Student’s t-test). ND, normal
diet; HFD, high-fat diet; EAT, epididymal adipose tissue; MAT, mesenteric adipose tissue; SVF, stromal vascular fraction.
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Obesity has been reported to increase intestinal permeability, after

which the products of obesity-induced gut dysbiosis are allowed to

translocate into the bloodstream, adipose tissue, or other organs, as

one of the causes of chronic systemic inflammation (15, 33). Since

intestinal inflammation and gut dysbiosis both affect the intestinal

barrier (34–36), we next assessed the effects of the LAB strain on

intestinal permeability. Seven days orally administration of heat-

treated OLL2712 (Figure S1B) induced the lower levels of orally
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administered FITC-dextran in the serum compared to the control

group, supporting our hypothesis (Figure 2A).

Since the proinflammatory cytokines in the colon decreased after 3

weeks of LAB treatment, while those in the jejunum did not, there was a

possibility that different parts of the gut played different roles and might

respond to the LAB strain in different ways. Assessment of the intestinal

permeability in the previous in vivo experiment measured overall

gastrointestinal absorption without any site specificity.
B C

D

E F G

H I J

A

FIGURE 4

Four weeks of intake of a HFD caused significant changes in several genera derived from the cecum of mice. Male C57Bl/6N mice fed a HFD for 4 weeks
were compared with mice fed a normal diet. The cecal contents of the mice were isolated, and the gut microbiota was investigated with next-
generation sequencing applications. At the phylum level, the relative abundance of Firmicutes (A) and Bacteroidetes (B) and the ratio of the two (C) were
calculated. At the genus level, the composition of the gut microbiota of each mouse was analysed and compared (D). The relative abundance of
Lactobacillus (E), Lactococcus (F), Clostridium XIVa (G), Lachnospiraceae incertae sedis (H), Pseudoflavonifractor (I), and Peptococcus (J) in the HFD
group were calculated and compared with those in the ND group. The results are representative of two independent experiments and are shown as the
mean ± standard deviation (n = 6). *p<0.05; **p<0.01 (assessed using Student’s t-test). ND, normal diet; HFD, high-fat diet.
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To further investigate site specificity of the protective effects of

LAB treatment on the gut barrier, we collected duodenum, jejunum,

ileum, and colon from the LAB treated mice and assessed the

permeability ex vivo (Figures 2B, S1C). After 3 weeks of LAB

treatment, the permeability of the ileum derived from HFD mice

showed a significant reduction (Figure 2E), while the permeability of

other segments had barely changed compared to that of HFD mice

treated with water (Figures 2C, D, F). To gain mechanistic insight, we

investigated the relative expression of barrier-related genes in each
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intestinal section. In the ileum, the expression of Occludin (Ocln), as

one of the proteins forming tight junctions, decreased with a 4-week

HFD feeding (Figure 2H). In addition, the gene expression of a

secreted mucin with a physical barrier function, MUC2 (Muc2), also

decreased with obesity (Figure 2I). And there was no significant

change detected in the gene expression of ZO-1 (ZO1) (Figure 2G).

The gene expression of ZO-1 (ZO1) and Occludin (Ocln) increased

with the LAB treatment (Figures 2J, K), although no significant

change was found in MUC2 (Muc2) (Figure 2L). These data
B C

D

E F G

H

A

I J

FIGURE 5

Oral administration of L. plantarum OLL2712 caused changes in the gut microbiota composition of mice. C57BL/6N male mice fed an HFD and treated
with OLL2712 were compared with those fed an HFD and treated with sterilized water. The cecal contents of the mice were isolated, and the gut
microbiota was investigated with next-generation sequencing applications. At the phylum level, the relative abundance of Firmicutes (A) and
Bacteroidetes (B) and the ratio of the two (C) were calculated. At the genus level, the composition of the gut microbiota of each mouse was analysed
and compared (D). The relative abundance of Lactobacillus (E), Lactococcus (F), Clostridium XIVa (G), Lachnospiraceae incertae sedis (H),
Pseudoflavonifractor (I), and Peptococcus (J) in mice treated with OLL2712 were calculated and compared with those treated with water. The results are
representative of two independent experiments and are shown as the mean ± standard deviation (n = 6). *p<0.05; ***p<0.001; ****p<0.0001 (assessed
using Student’s t-test). HFD, high-fat diet; LAB, lactic acid bacteria (L. plantarum OLL2712).
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suggested that LAB treatment blocked intestinal barrier disruption in

the ileum of HFD-fed mice.
4 Discussion

This study clarified the mechanism by which oral administration of

L. plantarum OLL2712 suppressed obesity-induced inflammation.

Ingested OLL2712 might directly regulate the gut microbiota in the

large intestine and reduce harmful substances, which are derived from

obesity-induced gut dysbiosis and leak into the blood, eventually relieving

adipocyte inflammation. Simultaneously, the LAB strain enhanced the

intestinal barrier, especially in the ileum, suggesting collaborative

modulation of intestinal immune responses by ingested LAB and

microbiota. As a result of the enhancement of the gut barrier, the

leakage of harmful substances into the bloodstream was reduced,

which resulted in anti-inflammatory changes in the adipose tissue.

Obesity, which is usually caused by unhealthy eating habits, can

induce chronic inflammation, leading to high risks of metabolic and

immunological diseases (37, 38). The suppression and prevention of

obesity-induced chronic inflammation by functional components have

been frequently investigated (39–41). As functional ingredients, multiple

LAB strains have been proven to be anti-inflammatory probiotics (42,

43), among which L. plantarumOLL2712 was focused on due to its good

ability to highly induce the anti-inflammatory cytokine IL-10 (19). In

recent studies, L. plantarum OLL2712 has been shown to hamper

obesity-induced inflammation in vivo, reducing proinflammatory

cytokines in murine adipose tissue (20) and human serum (21). In this

study, we confirmed the anti-inflammatory effects of the LAB strain in

the early period of obesity, focused on the regulatory effects of OLL2712

on the intestinal environment, and investigated the pathway by which

this LAB strain exerted anti-inflammatory effects.

First, we fed mice a HFD for 4 weeks to examine the inflammatory

responses triggered by early obesity. We found an increasing body

weight and an enlarging fat mass in mice, with proinflammatory

cytokines increasing in the adipose tissue-derived SVF, such as

adipocyte immune cells. With the daily administration of the LAB

strain for 3 weeks in the early period of obesity, although there was no

alteration found in body weight or fat mass, the expression of

macrophage-specific chemokine CCL2 (Ccl2) and proinflammatory

cytokine IL-1b (Il1b) decreased, suggesting that the LAB could

alleviate the macrophage infiltration and inflammation of adipose

tissue caused by obesity.

We treated mice with the heat-treated L. plantarum OLL2712,

because in previous studies, it had been found that the strain

demonstrated strong anti-inflammatory effects on bone marrow-

derived dendritic cells and peritoneal macrophages after being heat-

treated to 75°C (19). We considered that the anti-inflammatory effects

of the strain were stabilized by this heat treatment.

We believe that orally administered OLL2712 first reached the

intestine and did not exert its effect directly on adipose tissue. It is well

known that gut bacterial bias and disruption of the intestinal barrier

contribute to chronic inflammation in obesity (33, 44–47). Furthermore,

it has been suggested that intestinal inflammation precedes the

inflammation in the adipose tissue (18). Therefore, we focused on gut

microbiota and intestinal inflammation, examining the pathways of L.

plantarum OLL2712 before it suppressed adipocyte inflammation.
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We collected cecal contents and investigated the microbiota

alterations caused by early obesity and the LAB treatment.

Lactobacillus showed a significant decrease with HFD and an increase

with the LAB treatment.We consider there was a possibility that the large

increase in Lactobacilluswas partly due to the administration of OLL2712

and simultaneously it was also possibly induced by the change of other

strains belonging to Lactobacillus genus. Simultaneously, we detected a

significant difference in gut microbiota between the short-term HFD

group and the ND group, with an increasing trend in Lactococcus,

Clostridium cluster XIVa, Lachnospiracea incertae sedis, and

Pseudoflavonifractor. We found those genera changed oppositely in

response to treatment with OLL2712. The genera we focused on have

been reported to be involved in inflammation-associated diseases. An

upregulation of bile acids production was detected in the intestines and

feces of obese rodents, being related to the host inflammation, and was

reported to be correlated to an increase in abundance of Lactococcus (48).

It is known that diet-induced obesity induces the overproduction of

Clostridium cluster XIVa (49), increasing the levels of deoxycholic acid, a

gut bacterial metabolite that can cause DNA damage and is involved in

the enhancement of obesity-associated hepatocellular carcinoma

development in mice (50, 51). Lachnospiracea incertae sedis showed an

enrichment in faecal samples of NAFLD (nonalcoholic fatty liver disease)

patients (52), and Pseudoflavonifractor was reported to increase in the

faeces of patients with ulcerative colitis (53). We cannot give a definite

answer about whether OLL2712 was used as a food source by other

bacteria or not. Nevertheless, there are multiple studies discussing that

components derived from heat-sterilized products of LAB might feed

intestinal bacteria and change the gut microbiota (54–56), which might

be due to the proliferation of the gut bacteria that could easily utilize the

active components of the LAB strain.

Furthermore, we examined intestinal inflammation by investigating

the intestinal tissue in relation to their permeability as a hallmark of gut

barrier enhancement (22). Considering that different parts of the

gastrointestinal tract differ not only in their immune response but also in

their number and composition of intestinal bacteria, we evaluated the

inflammation and barrier function of the duodenum, jejunum, ileum, and

colon todetermine the effects ofOLL2712on eachpart of the intestine.We

found that anti-inflammatory effects and intestinal barrier-enhancing

effects of OLL2712 were exerted differently in the individual intestinal

segments. The expression of CCL2 (Ccl2) and IL-1b (Il1b) was found to

decrease in colon tissue but not in the small intestine after the LAB

treatment. The apparent permeability of the ileum significantly decreased

in response to the LAB treatment. Meanwhile, the gene expression of

Occludin (Ocln) and MUC2 (Muc2) in ileum tissue declined in the HFD

mice, while Occludin (Ocln) increased under the LAB treatment.

Occludin is well known as one of the proteins expressed in the

intestine, forming tight junctions together with ZO-1 and claudins,

which protect the body from harmful substances and pathogenic

bacteria (57). MUC2 is a secreted mucin with a physical barrier function

in the intestinal tract. Furthermore, we detected a significant decrease in

serum FITC-dextran levels after 7-day treatment with LAB, which

suggested that the administration of the LAB strain decreased the overall

intestinal permeability (58). Therefore, it was suggested that OLL2712

couldenhance thebarrier functionandalleviate adipocyte inflammation in

obesemice by protecting them from harmful substances derived from the

intestinal tract. Moreover, we found that such effects of L. plantarum

OLL2712 on intestinal permeability were most noticeable in the ileum.
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It was interesting that with the administration of L. plantarum

OLL2712, the large intestine showed no change in barrier function, but

the colonic inflammation was alleviated. Since there was a high possibility

that the ingested LAB strain might not directly induce an immune

response in the large intestine, our results suggested that the colonic

inflammation might be alleviated by OLL2712 through regulating gut

microbiota. On the other hand, there was no inflammatory change found

in the small intestine tissue except for the PPs, but the barrier function

was improved by the LAB strain in the distal part of the small intestine.

The large intestine and small intestine are anatomically and functionally

distinct (59). Most functions of the large intestine rely on gut bacteria

(60), which include fermenting dietary fiber, producing SCFAs, and

modulating the immune response (61, 62). On the other hand, the small

intestine harbors lower numbers of commensal bacteria, such as segment

filamentous bacteria, which mostly participate in the immune response

by reacting directly to ingested food (63, 64). The duodenum is connected

directly with the stomach, participating in food digestion (65), while the

jejunum is believed to be involved in the immune response, as well as

nutrient absorption (66). Compared to the jejunum, the ileum is closer to

the large intestine, both physically and functionally. Meanwhile, unlike

the large intestine, which cannot respond to orally ingested ingredients

directly, in the ileum, multiple PPs are highly developed (67), and an

immune response could be directly triggered by ingested food. Thus, the
Frontiers in Immunology 11
ileum, which is located in the final part of the small intestine, is the gut

tract both easily influenced by gut microbiota and directly affected by the

immunomodulatory effects of ingested components (68).

Therefore, we hypothesized that the administered L. plantarum

OLL2712 might decrease intestinal permeability by cooperating with the

gutmicrobiota viamodulating the intestinal productionof SCFAs. SCFAs,

such as acetate and butyrate produced by the balanced bacteria, could

inhibit thepathwaysofhyodeoxycholic acid (HDCA)orNF-kBtoalleviate
the intestinal inflammation and enhance the gut barrier (69). On the other

hand,OLL2712might also enhance thebarrier by inducing theproduction

of IgA, which may protect the intestinal epithelial cells from LPS and

pathogenic bacteria and alleviated the intestinal inflammation (70).

Nevertheless, we consider there was still a possibility that OLL2712

function directly on the intestinal epithelial cells via Toll-like receptors

(especially TLR2) or Nod-like receptors, well known as the pathways

through which the intestinal epithelial cells recognized the bacteria (71–

73). Further studies especially in vitro experiments to co-culture SCFAs or

the intestinal contentsandOLL2712, areneeded toconfirmthehypothesis.

The results of this research suggested that OLL2712 reached the

small intestine, alleviating inflammation and cooperating with the gut

bacteria to enhance barrier function, especially in the ileum. This

prevented the leakage of harmful substances, thereby suppressing

adipocyte inflammation (Figure 6). If intestinal substances that
FIGURE 6

The pathways by which the lactic acid bacteria (LAB) strain exerted its anti-inflammatory effects. Ingested OLL2712 might directly regulate the gut
microbiota in the large intestine and reduce harmful substances, which are derived from obesity-induced gut dysbiosis and leak into the blood,
eventually relieving adipocyte inflammation. Simultaneously, the LAB strain enhanced the intestinal barrier, especially in the ileum, suggesting
collaborative modulation of intestinal immune responses by ingested lactic acid bacteria and microbiota. The enhancement of the gut barrier reduced
the leakage of harmful substances into the bloodstream, which resulted in anti-inflammatory changes in the adipose tissue.
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cooperate with OLL2712 and participate in anti-inflammatory effects

can be identified, we could elucidate the mechanisms of the

health function of LAB to alleviate metabolic diseases and

chronic inflammation.
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