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Introduction: The human leukocyte antigen (HLA) has been linked to themajority of

autoimmune diseases (ADs). However, non-HLA genesmay be risk factors for ADs. A

number of genes encoding proteins involved in regulating T-cell and B-cell function

have been identified as rheumatoid arthritis (RA) susceptibility genes.

Methods: In this study, we investigated the association between RA and single-

nucleotide polymorphisms (SNPs) of co-stimulatory or co-inhibitory molecules

in 124 RA cases and 100 healthy controls without immune-related diseases

[including tumor necrosis factor superfamily member 4 (TNFSF4), CD28,

cytotoxic T-lymphocyte–associated protein 4 (CTLA4), and programmed cell

death protein 1 (PDCD1)].

Results: The results showed that there were 13 SNPs associated with RA,

including rs181758110 of TNFSF4 (CC vs. CT, p = 0.038); rs3181096 of CD28

(TT vs. CC + CT, p = 0.035; CC vs. TT, p = 0.047); rs11571315 (TT vs. CT, p =

0.045), rs733618 (CC vs. TT + CT, p = 0.043), rs4553808 (AA vs. AG vs. GG, p =

0.035), rs11571316 (GG vs. AG vs. AA, p = 0.048; GG vs. AG + AA, p= 0.026; GG vs.

AG, p = 0.014), rs16840252 (CC vs. CT vs. TT, p = 0.007; CC vs. CT, p = 0.011),

rs5742909 (CC vs. CT vs. TT, p = 0.040), and rs11571319 of CTLA4 (GG vs. AG vs.

AA, p < 0.001; GG vs. AG + AA, p = 0.048; AA vs. GG + AG, p = 0.001; GG vs. AA, p

= 0.008; GG vs. AG, p ≤ 0.001); and rs10204525 (TT vs. CT + CC, p = 0.024; TT vs.

CT, p = 0.021), rs2227982 (AA vs. GG, p = 0.047), rs36084323 (TT vs. CT vs. CC, p

= 0.022; TT vs. CT + CC, p = 0.013; CC vs. TT + CT, p = 0.048; TT vs. CC, p =

0.008), and rs5839828 of PDCD1 (DEL vs. DEL/G vs. GG, p = 0.014; DEL vs. DEL/

G + GG, p = 0.014; GG vs. DEL + DEL/G, p = 0.025; DEL vs. GG, p = 0.007).

Discussion: Consequently, these SNPs may play an important role in immune

regulation, and further research into the role of these SNPs of immune regulatory

genes in the pathogenesis of RA is required.

KEYWORDS

rheumatoid arthritis (RA), co-stimulatory system, single nucleotide polymorphism (SNP),
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Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory

autoimmune disease (AD) in which the immune system attacks

the joints as a result of abnormal autoimmunity. The prevalence

rate of RA ranges from 0.24% to 1% of the global population (1).

Most patients’ hands, feet, joints, and jaw will be affected,

potentially leading to joint deformation. Aside from joints, the

skin, eyes, and blood vessels can also be affected.

RA is a genetic AD identified through previous family twin

studies (2). Furthermore, Kurkó et al. (3) stated that genetics,

environmental factors, and autoimmunity were the three major

factors causing RA pathogenesis, with genetics accounting for 60%

of the total. Although the pathogenesis of RA is still unknown,

numerous studies have shown that the loss of immune tolerance

caused by autoreactive T-cell overactivation is the primary cause of

AD (4, 5). Human leukocyte antigen (HLA) genes have been found to

have a strong correlation with AD (6). However, other genes found

outside the HLA region may be risk factors for AD. Studies have

shown that T-cell activation is strictly regulated by signals from co-

stimulatory and co-inhibitory molecules (7). Therefore, we focus on

the SNPs of the co-stimulatory system, including tumor necrosis

factor superfamily member 4 (TNFSF4 and OX40L), CD28, cytotoxic

T-lymphocyte–associated protein 4 (CTLA4 and CD152), and

programmed cell death protein 1 (PDCD1 and CD279).

Both TNFSF4 and CD28 stimulate T-cell activation. TNFSF4 and its

receptor, OX40, interact to promote T-cell survival, activation, and

differentiation (8). TNFSF4 may also influence immune tolerance by

activating OX40 (8). Immune tolerance loss is well known to cause

autoimmune disorders (9). CD28 is an important co-stimulatory

molecule. The CD28 signal generated by the CD28 and CD80/CD86

interaction plays a critical role in T-cell activation and differentiation, and

it has been demonstrated that the CD28 signal plays a key role in

regulating immune tolerance and autoimmunity in animal models

demonstrated in an animal model (10). Furthermore, CTLA4 and

PDCD1 inhibit T-cell activation by blocking CD28-mediated

upregulation (11). These co-stimulatory and co-inhibitory molecules

have also been used as immunotherapy targets (12–15), indicating that

they play an important role in immune regulation and disease resolution.

A single-nucleotide polymorphism (SNP) is a common genetic

variation that is often used as a genetic marker in the study of genetic

diseases. Moreover, genetic polymorphisms can be used as prognostic

markers for the prognosis of RA. However, SNP combinations in

genomes differ from person to person, particularly among ethnic

groups. Although foreign teams have investigated the association

between ADs and immune regulatory genes, it is still unclear whether

the susceptibility of SNPs applies to Taiwanese people. Therefore,

studying disease SNPs for specific ethnic groups remains worthwhile.
Materials and methods

Study subjects

In this study, 124 patients with RA and 100 subjects without

immune abnormalities were recruited. All patients and healthy subjects
Frontiers in Immunology 02
were asked to sign informed consent forms before we collected their

peripheral blood samples, and all procedures were performed in

accordance with the applicable guidelines and regulations. The study

was approved by the Institutional Review Board (IRB) of Chang Gung

Memorial Hospital (CGMH; IRB no. 202002097B0 and

202102018B0C601). The inclusion criteria of RA were based on the

RA classification criteria (16). In addition, the healthy controls were

recruited from the general population: those without ADs and immune

abnormalities or those using immunosuppressive drugs.
Polymerase chain reaction and
SNP analysis

The genomic DNA was first extracted from peripheral blood

samples using the QIAamp DNA Blood Mini Kit (Qiagen, Valencia,

CA). The concentration and purity of DNA were then determined

using a NanoDrop ND-1000 UV–Vis Spectrophotometer (Thermo

Fisher Scientific Inc., Waltham, MA) in preparartion for the

subsequent PCR. This study focused on the TNFSF4 gene on

chromosome 1 and the CTLA4, CD28, and PDCD1 genes on

chromosome 2. Because ADs can result from abnormal co-

stimulatory and co-inhibitory molecule expression levels (17) and

SNP variation in the promoter region can affect gene expression

(18), the promoter region of genes was included. In addition,

previously studied hotspots, such as rs3087243 at the 3′
untranslated region (3′UTR) of CTLA4 gene, rs6705653 and

rs41386349 at the exon 4 of PDCD1 gene, rs2227981 at the exon

5 of PDCD1 gene, and re10204525 at the 3′UTR of PDCD1 gene,

were included. We obtained gene polymorphism data related to 37

SNPs of the above genes from the SNP database of NCBI and

designed eight pairs of primers for detecting these genes (Table 1) to

amplify genomic DNA fragments containing these 37 SNPs

(Table 2). Because of poor quality genomic DNA and PCR

failure, not all samples had complete SNP data.
Statistical analysis

First, the Hardy–Weinberg equilibrium (HWE) was used to

examine the allele frequencies of each SNP in the control group. For

statistical analysis, the chi-square test and Fisher’s exact test were

performed using SPSS17.0 software. The allele with the highest

frequency in the population recruited for this study was designated as

major allele “A” and the other as minor allele “a”. In genotype analysis,

the homozygous of major allele (AA) was defined as reference, and the

homozygous model (AA vs. aa), heterozygote model (AA vs. Aa),

additive model (AA vs. Aa vs. aa), dominant model (AA vs. Aa + aa),

and recessive model (AA + Aa vs. aa) were evaluated. The significance

level was set at a = 0.05, and the odds ratio (OR) with 95% confidence

interval (95% CI) was provided. D was used to estimate linkage

disequilibrium (LD) by comparing the observed and expected

frequency of a haplotype involved in alleles from different loci. Gabriel

et al. (19) defined a haplotype block and ecluded haplotypes with a

frequency of less than 1%. The figure of LD was generated using

Haploview 4.2 (https://www.broadinstitute.org/haploview/haploview).
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Results

In this study, 124 patients with RA were recruited, with

101 (81%) women and 23 men (19%). Their onset age was 45.69

± 1.22 years old. Moreover, 100 people with no immune

abnormalities were included in this study, with 74 (74%) women

and 26 men (26%), and their average age was 32.1 ± 8.9 years old.

The clinical characteristics of all patients are summarized

in Table 3.
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Hardy–Weinberg equilibrium

HWE equilibrium was used to determine whether the control

group included could accurately represent the entire population.

The findings revealed that rs28718975, rs28541784, rs201801072,

rs200353921, and rs1290180288 of CD28 gene and rs945677329,

rs56217811, rs980967681, and rs55696217 of CTLA4 gene deviated

from HWE. Because subsequent analyses of these SNPs had low

confidence, they were not analyzed and discussed (Table 4).
TABLE 2 The 37 target SNPs located in TNFSF4, CD28, CTLA4, and PDCD1 gene for analysis.

Gene Genomic region SNP under analysis

TNFSF4 Promoter rs181758110 rs45454293 rs1234314

CD28 Promoter rs1879877 rs3181096 rs3181097 rs3181098 rs28718975

rs28688913 rs28541784 rs201801072 rs200353921 rs56228674

rs3116496 rs1290180288

CTLA4 Promoter rs11571315 rs733618 rs4553808 rs11571316 rs62182595

rs16840252 rs945677329 rs5742909

Exon 1 rs231775

Exon 4 rs56217811 rs980967681 rs55696217

3′UTR rs3087243 rs11571319

PDCD1 Promoter rs36084323 rs5839828

Intron 4 rs6705653 rs41386349

Exon 5-3′UTR rs10204525 rs56029561 rs2227981 rs2227982
fro
TABLE 1 The pairs of primers for amplifying the specific region of TNFSF4, CD28, CTLA4, and PDCD1 gene.

Gene Genomic region Primer sequence PCR product (bp)

TNFSF4 Promoter and exon 1 F: 5′-GGCTTGGAGTCTATGATATTGTGCC-3′
R: 5′-GAAGGGCGTTTAACCACACTTTACG-3′

1,725

CD28 Promoter and exon 1 F: 5′- GGGTGGTAAGAATGTGGATGAATC-3′
R: 5′-CAAGGCATCCTGACTGCAGCA-3′

1,961

intron 3 F: 5′-CGGATGCAGTTTAGGGTCTAGATT-3′
R: 5′-GATCAAGCCAACATTGTCCATTGG-3′

CTLA4 Promoter F: 5′-GGCAACAGAGACCCCACCGTT-3′
R: 5′-GAGGACCTTCCTTAAATCTGGAGAG-3′

1,233

Promoter and exon 1 F: 5′-CTCTCCAGATTTAAGGAAGGTCCTC-3′
R: 5′-GGAATACAGAGCCAGCCAAGCC-3′

1,169

Exon 4 and 3′UTR F: 5′-GCTTGGAAACTGGATGAGGTCATAGC-3′
R: 5′-AGAGGAAGAGACACAGACAGAGTTGC-3′

1,204

PDCD1 Promoter and exon 1 F: 5′-ACCCACACAGCCTCACATCTCT-3′
R: 5′-AAACTGAGGGTGGAAGGTCCCT-3′

1,778

Exon 4, intron 4, and exon 5 F: 5′-TGGTGACCCCAAGTGTGTTTCTC-3′
R: 5′-GAGGAATTTTTCACCGGAGGGC-3′

2,234
F, forward primer; R, reverse primer.
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The association between RA and SNPs

The genotype frequencies of SNPs located in four genes—

TNFSF4, CD28, CTLA4, and PDCD1—were compared between

patients with RA and healthy controls in this study. On the basis of

the results, 13 SNPs were associated with RA. One was in the

TNFSF4 gene, one in the CD28 gene, seven in the CTLA4 gene, and

four in the PDCD1 gene (Table 5). The raw data are shown in

Supplementary Tables 1–4.

The genotype frequency of rs181758110 in the TNFSF4 gene

differed significantly between RA cases and healthy controls (CC vs.

CT, p = 0.038). In rs181758110, all RA cases had the CC genotype.

rs3181096 in the CD28 gene was associated with RA in the

homozygous model (CC vs. TT, p = 0.047, OR = 0.309, 95% CI =

0.92–1.04) and recessive model (CC + CT vs. TT, p = 0.035, OR =

0.297, 95% CI = 0.09–0.98). This meant that people with TT

genotype were less likely to develop RA than people with the CC

genotype or at least one C allele (CC and CT). Thus, the C allele

would be a risk allele for RA.

Only one of the seven significant SNPs in the CTLA4 gene,

rs11571319, was in the 3′UTR, whereas the other six SNPs were in

the promoter region. On the basis of the heterozygous model,

rs11571315 was associated with RA (TT vs. CT, p = 0.045, OR =

0.548, 95% CI = 0.30–0.99). Subjects with the CT genotype in

rs11571315 had a lower risk of developing RA. The rs733618 was

associated with RA in a recessive model (TT + CT vs. CC, p = 0.043,

OR = 1.929, 95% CI = 1.02–3.67), which meant that subjects carrying

the CC genotype had a 1.929 times higher risk of developing RA than

subjects carrying at least one T allele (CT and TT). The genotype

frequency of rs4553808 was associated with RA based on the additive

model (AA vs. AG vs. GG, p = 0.035). The rs11571316 was

associated with RA based on the additive model (GG vs. AG vs.

AA, p = 0.048), heterozygous model (GG vs. AG, p = 0.014, OR =

0.471, 95% CI = 0.26–0.87), and dominant model (GG vs. AG + AA,

p = 0.026, OR = 0.527, 95% CI = 0.30–0.93). The rs16840252 was

associated with RA based on the additive model (CC vs. CT vs. TT, p

= 0.007) and heterozygous model (CC vs. CT, p = 0.011, OR = 0.400,
Frontiers in Immunology 04
95% CI = 0.20–0.82). The genotype frequency of rs5742909 was

associated with RA based on the additive model (CC vs. CT vs. TT, p

= 0.040). rs11571319 in the 3′UTR was associated with RA based on

all the analysis model. The genotypes of patients with RA and

healthy controls differed significantly (GG vs. AG vs. AA, p <

0.001). In comparison with GG, subjects with AG had a lower risk

of developing RA (OR = 0.318, 95% CI = 0.17–0.61, p < 0.001),

whereas subjects with AA had a higher risk of developing RA (OR =

10.06, 95% CI = 1.29–78.11, p = 0.008). In addition, when compared

with AG + GG, patients with AA had a higher risk of developing RA

(OR = 13.624, 95% CI = 1.77–105.03, p = 0.001).

Four SNPs in the PDCD1 gene were associated with RA.

rs10204525 was associated with RA based on the heterozygous

model (TT vs. CT, OR = 1.928, 95% CI = 1.10–3.37, p = 0.021) and

dominant model (TT vs. CT + CC, OR = 1.857, 95% CI = 1.08–3.19, p

= 0.024). In comparison with the AA genotype, subjects with GG at

rs2227982 had a 2.171 times increased risk of developing RA (95% CI

= 1.00–4.70, p = 0.047). The genotype frequencies of rs36084323 were

significantly different between RA cases and healthy controls based on

the additive model (TT vs. CT vs. CC, p = 0.022), dominant model

(TT vs. CT + CC, OR = 2.054, 95% CI = 1.16–3.64, p = 0.013),

recessive model (TT + CT vs. CC, OR = 2.038, 95% CI = 1.00–4.16, p

= 0.048), and homozygous model (TT vs. CC, OR = 2.885, 95% CI =

1.30–6.42, p = 0.008). Furthermore, the genotype frequencies of

rs5839828 were significantly different between RA cases and healthy

controls based on the additive model (DEL vs. DEL/G vs. GG, p =

0.014), dominant model (DEL vs. DEL/G + GG, OR = 1.976, 95% CI

= 1.15–3.40, p = 0.014), recessive model (DEL + DEL/G vs. GG, OR =

3.091, 95% CI = 1.10–8.56, p = 0.025), and homozygous model (DEL

vs. GG, OR = 4.091, 95% CI = 1.40–11.93, p = 0.007).
Linkage disequilibrium and
haplotype analysis

RA may be associated with a specific haplotype because of the

differences in prevalence and susceptible SNPs in different
TABLE 3 The clinical characteristics of participants recruited in this study.

Variable Cases (n = 124) Controls (n = 100)

Female: male 101:23 74:26

Age (mean ± SD; years old) 32.1 ± 8.9

Age at onset (mean ± SD; years old) 45.69 ± 1.22

Disease duration (mean ± SD; years) 14.99 ± 0.81

RF-positive (n; %) 92 (74%)

ACCP-positive 20 (16%)

CRP-positive 75 (60%)

DAS28 (mean ± SD) 3.92 ± 0.13

ESR (mean ± SD; mm/h) 24.29 ± 2.07

GH (mean ± SD) 37.13 ± 2.06
RF, rheumatoid factor; ACCP, anti-cyclic citrullinated peptide antibody; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; DAS28 is referred to the disease activity of RA; GH, general
health.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1123832
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2023.1123832

Frontiers in Immunology 05
populations. Therefore, the haplotype analysis was performed after

the SNP analysis.

In LD analysis, the red color in the box indicates that two SNPs

have strong linkage, whereas the less the linkage, the closer to the

white color of the box, and the light purple indicates no linkage. In

addition, the high LD region is referred to as a haplotype block.

According to Figure 1, there was one haplotype in the CD28 gene,

composed of rs3181096, rs3181097, and rs3181098; one haplotype

in the CTLA4 gene, composed of rs11571316, rs62182595,

rs16840252, rs5742909, rs231775, and rs3087243; and one

haplotype in the PDCD1 gene, composed of rs6705653 and

rs41386349. After excluding the haplotypes with frequency less

than 1%, it was found that 10 different types of haplotypes were

statistically associated with RA (GATCAG—OR = 0.415, 95% CI =

0.197–0.874, p = 0.018; GATCGG and GATTGG—OR = 0.362, 95%

CI = 0.148–0.885, p = 0.022; GGCCAG—OR = 0.547, 95% CI =

0.320–0.936, p = 0.027; GGCCGG—OR = 0.468, 95% CI = 0.224–

0.976, p = 0.040; GGTCAG and GGTTAG—OR = 0.415, 95% CI =

0.197–0.874, p = 0.018; GGTTGG—OR = 0.337, 95% CI = 0.139–

0.817, p = 0.013; AGCCAG—OR = 0.531, 95% CI = 0.285–0.991, p

= 0.045; AGCCGG—OR = 0.416, 95% CI = 0.215–0.805, p =

0.008; Table 6).
The association between antibodies
and SNPs

In addition to investigating the association between SNPs and

the development of RA, the association between SNPs and

immunological parameters was also been explored. There were

three SNPs associated with rheumatoid factor (RF), one SNP

associated with anti-cyclic citrullinated peptide antibody (ACCP),

and eight SNPs associated with C-reactive protein (CRP) (Table 7).

The raw data are shown in Supplementary Tables 5–7.

The three SNPs associated with the presence of RA were in the

CTLA4 gene. rs11571315 was associated with RF based on the

recessive model (TT + TC vs. CC, OR = 0.309, 95% CI = 0.107–

0.896, p = 0.035), which meant that the patients with CC genotype

in rs11571315 had a lower odds of RF compared to the patients with

at least one T-allele (TT and TC). rs4553808 was associated with RF

based on the recessive model (AA + AG vs. GG, OR = 0.103, 95% CI

= 0.010–1.026, p = 0.049). rs231775 was associated with RF based

on the additive model (GG vs. AG vs. AA, p = 0.039) and recessive

model (GG + AG vs. AA, OR = 0.311, 95% CI = 0.107–0.904, p

= 0.036).

rs41386349 of the PDCD1 gene was associated with ACCP

based on the dominant model (GG vs. AG + AA, OR = 2.667, 95%

CI = 0.978–7.270, p = 0.05). Compared to the GG genotype, patients

with RA with at least one A-allele in rs41386349 had 2.667 times of

odds of ACCP.

There were three SNPs of the CD28 gene, three SNPs of the

CTLA4 gene, and two SNPs of the PDCD1 gene associated with

CRP. rs3181096 of the CD28 gene was associated with CRP based
TABLE 4 The HWE analysis of each SNP from the control group.

Gene Genomic region SNP under analysis HWE

TNFSF4 Promoter rs181758110 0.98

rs45454293 0.95

rs1234314 0.32

CD28 Promoter rs1879877 0.86

rs3181096 0.20

rs3181097 0.96

rs3181098 0.16

rs28718975 0.03*

rs28688913 0.50

rs28541784 0.01*

rs201801072 0.00*

rs200353921 0.00*

rs56228674 0.82

rs3116496 0.67

rs1290180288 NA*

CTLA4 Promoter rs11571315 0.81

rs733618 0.89

rs4553808 0.43

rs11571316 1.00

rs62182595 0.95

rs16840252 0.36

rs945677329 NA*

rs5742909 0.24

Exon 1 rs231775 0.88

Exon 4 rs56217811 NA*

rs980967681 0.03*

rs55696217 NA*

3′UTR rs3087243 1.00

rs11571319 0.17

PDCD1 Exon 5 rs10204525 0.99

rs56029561 0.94

rs2227981 0.31

rs2227982 0.98

Intron 4 rs6705653 0.56

rs41386349 0.49

Promoter rs36084323 0.97

rs5839828 0.65
Asterisk (*) indicates that the SNP was deviated from HWE (p < 0.05). NA, not applicable.
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TABLE 5 The SNPs associated with RA.

SNP Gene position No. of patients (%) Model Model Logistic regression p OR (95% CI)

rs181758110 173208023 GG AG AA Additive GG vs. AG vs. AA 0.038* NA

control TNFSF4 96 4 0 Dominant GG vs. AG + AA 0.038* NA

44% 100% 0% Recessive GG + AG vs. AA NA NA

RA 124 0 0 Homozygous GG vs. AA NA NA

56% 0% 0% Heterozygous GG vs. AG 0.038* NA

rs3181096 203705369 CC CT TT Additive CC vs. CT vs. TT 0.101 NA

control CD28 58 31 10 Dominant CC vs. CT + TT 0.774 0.924 (0.540–1.580)

44% 41% 71% Recessive CC + CT vs. TT 0.035* 0.297 (0.090–0.980)

RA 75 45 4 Homozygous CC vs. TT 0.047* 0.309 (0.920–1.040)

56% 59% 29% Heterozygous CC vs. CT 0.692 1.123 (0.630–1.990)

rs11571315 203866178 TT CT CC Additive TT vs. CT vs.CC 0.117 NA

control CTLA4 47 41 12 Dominant TT vs. CT + CC 0.105 0.643 (0.380–1.100)

41% 55% 41% Recessive TT + CT vs. CC 0.619 1.222 (0.550–2.700)

RA 69 33 17 Homozygous TT vs. CC 0.933 0.965 (0.420–2.200)

59% 45% 59% Heterozygous TT vs. CT 0.045* 0.548 (0.300–0.990)

rs733618 203866221 TT CT CC Additive TT vs. CT vs.CC 0.110 NA

control CTLA4 36 46 18 Dominant TT vs. CT + CC 0.742 1.098 (0.630–1.910)

47% 51% 33% Recessive TT + CT vs. CC 0.043* 1.929 (1.020–3.670)

RA 41 44 36 Homozygous TT vs. CC 0.125 1.756 (0.850–3.610)

53% 49% 67% Heterozygous TT vs. CT 0.574 0.840 (0.460–1.550)

rs4553808 203866282 AA AG GG Additive AA vs.AG vs. GG 0.035* NA

control CTLA4 77 23 0 Dominant AA vs. AG + GG 0.205 0.650 (0.330–1.270)

43% 59% 0% Recessive AA + AG vs. GG 0.130 NA

RA 103 16 4 Homozygous AA vs. GG 0.141 NA

57% 41% 100% Heterozygous AA vs. AG 0.066 0.520 (0.260–1.050)

rs11571316 203866366 GG AG AA Additive GG vs. AG vs. AA 0.048* NA

control CTLA4 60 35 5 Dominant GG vs. AG + AA 0.026* 0.527 (0.300–0.930)

40% 58% 42% Recessive GG + AG vs. AA 0.820 1.147 (0.350–3.730)

RA 91 25 7 Homozygous GG vs. AA 1.000 0.923 (0.280–3.040)

60% 42% 58% Heterozygous GG vs. AG 0.014* 0.471 (0.260–0.870)

rs16840252 203866796 CC CT TT Additive CC vs. CT vs. TT 0.007* NA

control CTLA4 75 25 0 Dominant CC vs. CT + TT 0.051 0.514 (0.260–1.010)

42% 64% 0% Recessive CC + CT vs. TT 0.130 NA

RA 105 14 4 Homozygous CC vs. TT 0.147 NA

58% 36% 100% Heterozygous CC vs. CT 0.011* 0.400 (0.200–0.820)

rs5742909 203867624 CC CT TT Additive CC vs. CT vs. TT 0.040* NA

control CTLA4 71 29 0 Dominant CC vs. CT + TT 0.340 0.747 (0.410–1.360)

43% 55% 0% Recessive CC + CT vs. TT 0.067 NA

RA 95 24 5 Homozygous CC vs. TT 0.077 NA

(Continued)
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on the additive model (CC vs. CT vs. TT, p = 0.022), dominant

model (CC vs. CT + TT, OR = 0.391; 95% CI = 0.186–0.825, p =

0.013), and heterozygous model (CC vs. CT, OR = 0.354; 95% CI =

0.165–0.761, p = 0.007). rs3181098 of the CD28 gene was associated

with CRP based on the additive model (GG vs. AG vs. AA, p =

0.008), dominant model (GG vs. AG + AA, OR = 0.344; 95% CI =

0.162–0.731, p = 0.005), and heterozygous model (GG vs. AG, OR =

0.307; 95% CI = 0.141–0.668, p = 0.002). rs28688913 of the CD28

gene was associated with CRP based on the dominant model (CC vs.

CT + TT, OR = 2.500; 95% CI = 1.054–5.927, p = 0.034), and

heterozygous model (CC vs. CT, OR = 2.500, 95% CI = 1.013–6.171,

p = 0.043). rs733618 of the CTLA4 gene was associated with CRP

based on the additive model (TT vs. CT vs. CC, p = 0.017), recessive

model (TT + CT vs. CC, OR = 0.440; 95% CI = 0.198–0.974, p =

0.041), and heterozygous model (TT vs. CT, OR = 2.661; 95% CI =

1.043–6.790, p = 0.038). rs11571316 of the CTLA4 gene was
Frontiers in Immunology 07
associated with CRP based on the additive model (GG vs. AG vs.

AA, p = 0.019), dominant model (GG vs. AG + AA, OR = 0.336;

95% CI = 0.147–0.772, p = 0.009), and heterozygous model (GG vs.

AG, OR = 0.277; 95% CI = 0.110–0.699, p = 0.005). rs3087243 of the

CTLA4 gene was associated with CRP based on the additive model

(GG vs. AG vs. AA, p = 0.013), dominant model (GG vs. AG + AA,

OR = 0.331; 95% CI = 0.152–0.722, p = 0.005), and heterozygous

model (GG vs. AG, OR = 0.291; 95% CI = 0.126–0.673, p = 0.003).

rs2227981 of the PDCD1 gene was associated with CRP based on

the additive model (GG vs. AG vs. AA, p = 0.049), dominant model

(GG vs. AG + AA, OR = 2.422; 95% CI = 1.096–5.350, p = 0.027),

and heterozygous model (GG vs. AG, OR = 3.014; 95% CI = 1.227–

7.405, p = 0.014). rs6705653 of the PDCD1 gene was associated with

CRP based on the dominant model (GG vs. AG + AA, OR = 2.329;

95% CI = 1.079–5.029, p = 0.030) and heterozygous model (GG vs.

AG, OR = 2.718; 95% CI = 1.1143–66.464, p = 0.022).
TABLE 5 Continued

SNP Gene position No. of patients (%) Model Model Logistic regression p OR (95% CI)

57% 45% 100% Heterozygous CC vs. CT 0.128 0.619 (0.330–1.150)

rs11571319 203874215 GG AG AA Additive GG vs. AG vs. AA <0.001* NA

control CTLA4 61 38 1 Dominant GG vs. AG + AA 0.048* 0.567 (0.320–1.000)

40% 68% 6% Recessive GG + AG vs. AA 0.001* 13.624 (1.770–105.03)

RA 91 18 15 Homozygous GG vs. AA 0.008* 10.06 (1.290–78.11)

60% 32% 94% Heterozygous GG vs. AG <0.001* 0.318 (0.170–0.610)

rs10204525 241850169 TT CT CC Additive TT vs. CT vs.CC 0.069 NA

control PDCD1 65 31 4 Dominant TT vs. CT + CC 0.024* 1.857 (1.080–3.190)

51% 35% 44% Recessive TT + CT vs. CC 1.000 1.008 (0.264–3.859)

RA 62 57 5 Homozygous TT vs. CC 0.743 1.310 (0.340–5.110)

49% 65% 56% Heterozygous TT vs. CT 0.021* 1.928 (1.100–3.370)

rs2227982 241851281 AA AG GG Additive AA vs.AG vs. GG 0.139 NA

control PDCD1 38 46 15 Dominant AA vs. AG + GG 0.138 1.531 (0.870–2.690)

52% 45% 33% Recessive AA + AG vs. GG 0.078 1.846 (0.930–3.670)

RA 35 56 30 Homozygous AA vs. GG 0.047* 2.171 (1.000–4.700)

48% 55% 67% Heterozygous AA vs. AG 0.364 1.322 (0.720–2.410)

rs36084323 241859444 TT CT CC Additive TT vs. CT vs.CC 0.022* NA

control PDCD1 40 43 13 Dominant TT vs. CT + CC 0.013* 2.054 (1.160–3.640)

56% 41% 30% Recessive TT + CT vs. CC 0.048* 2.038 (1.000–4.160)

RA 32 62 30 Homozygous TT vs. CC 0.008* 2.885 (1.300–6.420)

44% 59% 70% Heterozygous TT vs. CT 0.056 1.802 (0.980–3.300)

rs5839828 241859601 DEL DEL/G GG Additive DEL vs. DEL/G vs.GG 0.014* NA

control PDCD1 50 41 5 Dominant DEL vs. DEL/G + GG 0.014* 1.976 (1.150–3.400)

53% 40% 22% Recessive DEL + DEL/G vs.GG 0.025* 3.091 (1.100–8.650)

RA 44 62 18 Homozygous DEL vs.GG 0.007* 4.091 (1.400–11.93)

47% 60% 78% Heterozygous DEL vs. DEL/G 0.060 1.718 (0.980–3.030)
Additive, AA vs. Aa vs. aa; dominant, AA vs. Aa + aa; recessive, AA + Aa vs. aa; homozygous, AA vs. aa; heterozygous, AA vs. Aa, where the frequency of A-allele is major in the population, and
a-allele is minor. *, <0.05; NA, not applicable.
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Discussion

SNP analysis revealed that one SNP of the TNFSF4 gene, seven

SNPs of the CTLA4 gene, one SNP of the CD28 gene, and four SNPs

of the PDCD1 gene were associated with the onset of RA. We also

investigated the association between the SNPs and immunological

parameters of patients with RA. It is well known that RF and anti-

citrullinated protein antibodies (ACPA) are the characteristic

autoantibodies of RA. ACCP is a subset of ACPA, which has

been demonstrated that it has 65%–80% sensitivity and up to

98% specificity for RA (20). CRP plays a vital role in

inflammatory response. A study showed that it had a positive

correlation with the severity of RA (21). Other clinical data, such

as disease activity score, disease activity score by 28 joints (DAS28),

and erythrocyte sedimentation rate (ESR), are dynamic according to

the disease process; thus, they would not be analyzed.

We found that rs181758110 in the promoter region of the TNFSF4

gene was associated with RA, and no SNPs of the TNFSF4 gene were
Frontiers in Immunology 08
associated with the characteristic autoantibodies of RA, which denotes

that rs181758110 of the TNFSF4 gene may not be a major SNP that

contributed to the pathogenesis of RA. There is currently no relevant

research on this SNP, and its function needs to be verified.

rs3181096 in the CD28 gene promoter region was associated with

RA and CRP in our results. rs3181096 had been previously associated

with other ADs and cancers, such as type 1 diabetes (22) and

childhood acute lymphoblastic leukemia (23) in addition to RA

(24), suggesting that it may play an important role in immune

response. Furthermore, there were two SNPs of the CD28 gene

were associated with CRP: rs3181098 and rs28688913. Our

previous study showed that rs3181098 had association with graft-

versus-host disease (GVHD) of post–hematopoietic stem cell

transplantation (HSCT) in acute leukemia patients (25).

Minculescu et al. (26) showed that CRP level could be a valid

predictor of the development of steroid-refractory disease in

patients who develop severe GVHD after HSCT. Thus, rs3181098

may influence the production of CRP, thereby developing GVHD.
FIGURE 1

Linkage disequilibrium (LD) plot of TNFSF4, CD28, CTLA4, and PDCD1 gene. There was each one haplotype bolck in CD28, CTLA4, and PDCD1
gene. The CD28 haplotype contained rs3181096, rs3181097, and rs3181098. The CTLA4 haplotype contained rs11571316, rs62182595, rs16840252,
rs5742909, rs231775, and rs3087243. The PDCD1 haplotype contained rs6705653and rs41386349.
TABLE 6 The haplotypes associated with RA.

GVHD Haplotypes Freq. cases Freq. controls OR 95% CI p-value

CTLA4 GATCAG 0.105 0.220 0.415 (0.197–0.874) 0.018

GATCGG 0.065 0.160 0.362 (0.148–0.885) 0.022

GATTGG 0.065 0.160 0.362 (0.148–0.885) 0.022

GGCCAG 0.363 0.510 0.547 (0.320–0.936) 0.027

GGCCGG 0.774 0.880 0.468 (0.224–0.976) 0.040

GGTCAG 0.105 0.220 0.415 (0.197–0.874) 0.018

GGTTAG 0.105 0.220 0.415 (0.197–0.874) 0.018

GGTTGG 0.065 0.170 0.337 (0.139–0.817) 0.013

AGCCAG 0.185 0.300 0.531 (0.285–0.991) 0.045

AGCCGG 0.145 0.290 0.416 (0.215–0.805) 0.008
fron
Haplotype contained rs11571316A/G, rs62182595A/G, rs16840252C/T, rs5742909C/T, rs231775A/G, and rs3087243A/G.
Freq., frequency; OR, odds ratio; CI, confidence interval.
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TABLE 7 The SNPs associated with the presence of RF, ACCP, and CRP.

SNP Gene position No. of patients (%) Model Logistic regression p OR (95% CI)

rs11571315 203866178 TT CT CC Additive TT vs.TC vs.CC 0.070 NA

RF+ CTLA4 53 27 9 Dominant TT vs. TC + CC 0.551 0.776 (0.338–1.785)

77% 82% 53% Recessive TT + TC vs. CC 0.035* 0.309 (0.107–0.896)

RF− 16 6 8 Homozygous TT vs. CC 0.070 0.340 (0.113–1.025)

23% 18% 47% Heterozygous TT vs. TC 0.565 1.358 (0.477–3.868)

rs4553808 203866221 AA AG GG Additive AA vs.AG vs. GG 0.059 NA

RF+ CTLA4 78 13 1 Dominant AA vs. AG + GG 0.589 0.748 (0.260–2.152)

76% 81% 25% Recessive AA + AG vs. GG 0.049* 0.103 (0.010–1.026)

RF− 25 3 3 Homozygous AA vs. GG 0.054 0.107 (0.011–1.074)

24% 19% 75% Heterozygous AA vs. AG 0.760 1.389 (0.366–5.271)

rs231775 203867991 GG AG AA Additive GG vs. AG vs. AA 0.039* NA

RF+ CTLA4 42 34 9 Dominant GG vs. AG + AA 0.830 1.097 (0.472–2.550)

74% 85% 53% Recessive GG + AG vs. AA 0.036* 0.311 (0.107–0.904)

RF− 15 6 8 Homozygous GG vs. AA 0.105 0.402 (0.131–1.232)

26% 15% 47% Heterozygous GG vs. AG 0.183 2.024 (0.709–5.779)

rs41386349 241851697 GG AG AA Additive GG vs. AG vs. AA 0.110 NA

ACCP + PDCD1 8 8 3 Dominant GG vs. AG + AA 0.050* 2.667 (0.978–7.270)

11% 23% 33% Recessive GG + AG vs. AA 0.164 2.844 (0.645–12.546)

ACCP− 64 27 6 Homozygous GG vs. AA 0.100 4.000 (0.833–19.202)

89% 77% 67% Heterozygous GG vs. AG 0.110 2.370 (0.806–6.968)

rs3181096 203705369 CC CT TT Additive CC vs. CT vs. TT 0.022* NA

CRP+ CD28 52 20 3 Dominant CC vs. CT + TT 0.013* 0.391 (0.186–0.825)

69% 44% 75% Recessive CC + CT vs. TT 1.000 2.000 (0.202–19.798)

CRP− 23 25 1 Homozygous CC vs. TT 1.000 1.327 (0.131–13.445)

31% 56% 25% Heterozygous CC vs. CT 0.007* 0.354 (0.165–0.761)

rs3181098 203705655 GG AG AA Additive GG vs. AG vs. AA 0.008* NA

CRP+ CD28 54 18 3 Dominant GG vs. AG + AA 0.005* 0.344 (0.162–0.731)

70% 42% 75% Recessive GG + AG vs. AA 1.000 2.000 (0.202–19.798)

CRP− 23 25 1 Homozygous GG vs. AA 1.000 1.278 (0.126–12.940)

30% 58% 25% Heterozygous GG vs. AG 0.002* 0.307 (0.141–0.668)

rs28688913 203705805 CC CT TT Additive CC vs. CT vs. TT 0.107 NA

CRP+ CD28 48 24 3 Dominant CC vs. CT + TT 0.034* 2.500 (1.054–5.927)

55% 75% 75% Recessive CC + CT vs. TT 1.000 2.000 (0.202–19.798)

CRP− 40 8 1 Homozygous CC vs. TT 0.626 2.500 (0.250–24.979)

45% 25% 25% Heterozygous CC vs. CT 0.043* 2.500 (1.013–6.171)

rs733618 203866221 TT CT CC Additive TT vs.TC vs.CC 0.017* NA

CRP+ CTLA4 23 34 17 Dominant TT vs. TC + CC 0.414 1.376 (0.639–2.963)

56% 77% 47% Recessive TT + TC vs. CC 0.041* 0.440 (0.198–0.974)

CRP− 18 10 19 Homozygous TT vs. CC 0.437 0.700 (0.285–1.721)
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Results showed that rs11571315 was not only associated with

the onset of RA but also is RF-positive. However, after a thorough

search of the literature, it was found that no other team has yet

discovered the correlation between rs11571315 and RA, suggesting

that rs11571315 was the RA-associated SNP specific to the Taiwan

population. However, rs11571315 was susceptible to other immune

disorders, such as transfusion reactions (27) and polycystic ovary

syndrome (28). We found that rs733618 was associated with RA

and CRP, indicating that it may involve in the inflammatory

response of RA. In addition, rs733618 was recently found to be

associated with the onset of RA (29) as well as Graves’ disease (30,

31) and non–small cell lung cancer (32). Similar to rs11571315,

rs4553808 was associated with the onset of RA and was RF-positive.

Furthermore, rs4553808 was associated with RA (29), several ADs

(33–35), cancers (36, 37), and transplant prognosis (38, 39). Similar

to rs733618, rs11571316 was associated with RA and CRP in our

results. The literature showed that rs11571316 may increase the

susceptibility of cervical cancer by increasing the expression level of

the CTLA4 (40); we indicated that rs11571316 involved in RA

pathogenesis and inflammatory response may result from

upregulating the CTLA4 expression. rs5742909 was a common

SNP in RA, which has been previously related RA in Spain, Korea,
Frontiers in Immunology 10
and Egypt populations (41). rs5742909 has already been reported as

functional, and the SNP mutation in the rs5742909 loci would affect

the expression level of CTLA4 mRNA and protein (42, 43).

rs16840252 was associated with RA in our result, but it showed

no association in Chinese Han population (44). Identically, the

literature (44) showed that rs16840252 was related to RF, but it had

no significance in our results. This may emphasize that RA is

influenced by other factor, such as the environment. Recently,

Aslam et al. (45) observed a novel correlation of rs11571319 to

RA in the Pakistani popuation. Before that, rs11571319 has not

been reported previously related to RA risk, and it had just been

reported to be susceptible to primary biliary cirrhosis (46), asthma

(47), and so on.Regarding the PDCD1 gene, there is currently no

literature on the association between rs5839828 and diseases, but

another significant SNP of this gene, rs36084323, was associated

with the risk of RA (48) and cancers (49). These two SNPs were

discovered in the PDCD1 gene promoter region. If the allele in

rs36084323 was G, then the promoter activity of the PDCD1 gene

would be significantly higher than if the allele was A (50) and GG

genotype of rs36084323 would had higher mRNA level of PDCD1

compared to AA genotype (48), which indicates that rs36084323

may involve in the development of RA through affecting the
TABLE 7 Continued

SNP Gene position No. of patients (%) Model Logistic regression p OR (95% CI)

44% 23% 53% Heterozygous TT vs. TC 0.038* 2.661 (1.043–6.790)

rs11571316 203866366 GG AG AA Additive GG vs. AG vs. AA 0.019* NA

CRP+ CTLA4 61 9 4 Dominant GG vs. AG + AA 0.009* 0.336 (0.147–0.772)

67% 36% 57% Recessive GG + AG vs. AA 1.000 0.876 (0.187–4.097)

CRP− 30 16 3 Homozygous GG vs. AA 0.685 0.656 (0.138–3.119)

33% 64% 43% Heterozygous GG vs. AG 0.005* 0.277 (0.110–0.699)

rs3087243 203874196 GG AG AA Additive GG vs. AG vs. AA 0.013* NA

CRP+ CTLA4 58 13 4 Dominant GG vs. AG + AA 0.005* 0.331 (0.152–0.722)

69% 39% 57% Recessive GG + AG vs. AA 1.000 0.864 (0.185–4.038)

CRP− 26 20 3 Homozygous GG vs. AA 0.675 0.598 (0.125–2.864)

31% 61% 43% Heterozygous GG vs. AG 0.003* 0.291 (0.126–0.673)

rs2227981 241851121 GG AG AA Additive GG vs. AG vs. AA 0.049* NA

CRP+ PDCD1 32 28 7 Dominant GG vs. AG + AA 0.027* 2.422 (1.096–5.350)

51% 76% 58% Recessive GG + AG vs. AA 1.000 0.933 (0.277–3.147)

CRP− 31 9 5 Homozygous GG vs. AA 0.632 1.356 (0.389–4.731)

49% 24% 42% Heterozygous GG vs. AG 0.014* 3.014 (1.227–7.405)

rs6705653 241851407 CC CT TT Additive CC vs. CT vs. TT 0.070 NA

CRP+ PDCD1 34 28 8 Dominant CC vs. CT + TT 0.030* 2.329 (1.079–5.029)

51% 74% 62% Recessive CC + CT vs. TT 0.863 1.110 (0.340–3.623)

CRP− 33 10 5 Homozygous CC vs. TT 0.476 1.553 (0.460–5.237)

49% 26% 38% Heterozygous CC vs. CT 0.022* 2.718 (1.143–6.464)
RF, rheumatoid factor; ACCP, anti-cyclic citrullinated peptide antibody; CRP, C-reactive protein; additive, AA vs. Aa vs. aa; dominant: AA vs. Aa + aa; recessive, AA + Aa vs. aa; homozygous, AA
vs. aa; heterozygous, AA vs. Aa, where the frequency of A-allele is major in the population, and a-allele is minor. *, <0.05; NA, not applicable.
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transcription level of PDCD1. rs2227982 and rs10204525 were

discovered in the exon 5 region. Although there was no literature

about the association between these two SNPs and RA, the GG

genotype of rs2227982 and the CC genotype of rs10204525 were

protective factors for hepatitis B virus infection (51), and the CT

genotype of rs10204525 was associated with juvenile idiopathic

arthritis (52), suggesting that these SNPs may play a role in

inflammation or infection.

Moreover, haplotype analysis revealed six SNPs with high LD in

the CTLA4 gene, including rs11571316, rs62182595, rs16840252,

rs5742909, rs23177, and rs3087243. These six SNPs were found to be

significantly associated with RA in several haplotypes. Although

rs62182595, rs231775, and rs3087243 did not show a statistically

significant association in individual SNP analysis, they did in

haplotype analysis. This suggested that there could be an interaction

between these SNPs that cause RA. Thus, the function of the RA-

predisposing CTLA4 haplotype needs to be investigated further.

Following a review of the literature, it was found that these RA-

associated SNPs were also related to other ADs and cancers,

suggesting that these SNPs play a vital role in the immune

response. In addition, we found that the association of several

SNPS with RA risk was dependent on RF, ACCP, and CRP status.

These immune regulatory genes are involved in the regulation of T-

cell activation (6), and most of the aforementioned SNPs were

found in the promoter region and 3′UTR, suggesting that these

significant SNPs may affect transcription factor binding sites or

interfere with mRNA stability, resulting in gene expression

alterations that lead to disease (53, 54). In the future, it should be

investigated whether SNP variation directly affects gene expression

or protein function and leads to abnormal CD4 T-cell function to

determine the role of these SNPs of immune regulatory genes in the

pathogenesis of RA.
Limitation

In this study, we did not thoroughly investigate the entire

genome. Because T-cell activation is regulated by the additive

effect of co-stimulatory and co-inhibitory molecules and

promoter SNPs can affect gene expression, the promoter region of

genes was extensively discussed in this paper. Furthermore, the hot

SNPs from many kinds of literature about ADs or cancers were

selected as candidate SNPs for discussion.
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