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Differentiation-related genes in
tumor-associated macrophages
as potential prognostic
biomarkers in non-small cell
lung cancer

Zhaoxun Li †, Bin Zhou †, Xinsheng Zhu †, Fujun Yang †, Kaiqi Jin,
Jie Dai, Yuming Zhu, Xiao Song* and Gening Jiang*

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine,
Shanghai, China
Background: The purpose of this study was to evaluate the role of

differentiation-related genes (DRGs) in tumor-associated macrophages (TAMs)

in non-small cell lung cancer (NSCLC).

Methods: Single cell RNA-seq (scRNA-seq) data from GEO and bulk RNA-seq

data from TCGA were analyzed to identify DRGs using trajectory method.

Functional gene analysis was carried out by GO/KEGG enrichment analysis.

The mRNA and protein expression in human tissue were analyzed by HPA and

GEPIA databases. To investigate the prognostic value of these genes, three risk

score (RS) models in different pathological types of NSCLC were generated and

predicted NSCLC prognosis in datasets from TCGA, UCSC and GEO databases.

Results: 1,738 DRGs were identified through trajectory analysis. GO/KEGG

analysis showed that these genes were predominantly related to myeloid

leukocyte activation and leukocyte migration. 13 DRGs (C1QB, CCL4, CD14,

CD84, FGL2, MS4A6A, NLRP3, PLEK, RNASE6, SAMSN1, SPN, TMEM176B, ZEB2)

related to prognosis were obtained through univariate Cox analysis and Lasso

regression. C1QB, CD84, FGL2, MS4A6A, NLRP3, PLEK, SAMSN1, SPN, and ZEB2

were downregulated in NSCLC compared to non-cancer tissue. The mRNA of 13

genes were significantly expressed in pulmonary macrophages with strong cell

specificity. Meanwhile, immunohistochemical staining showed that C1QB, CCL4,

SPN, CD14, NLRP3, SAMSN1, MS4A6A, TMEM176B were expressed in different

degrees in lung cancer tissues. ZEB2 (HR=1.4, P<0.05) and CD14 (HR=1.6,

P<0.05) expression were associated with a worse prognosis in lung squamous

cell carcinoma; ZEB2 (HR=0.64, P<0.05), CD84 (HR=0.65, P<0.05), PLEK

(HR=0.71, P<0.05) and FGL2 (HR=0.61, P<0.05) expression were associated

with a better prognosis in lung adenocarcinoma. Three RS models based on 13

DRGs both showed that the high RS was significantly associated with poor

prognosis in different pathological types of NSCLC.
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Conclusions: This study highlights the prognostic value of DRGs in TAMs in

NSCLC patients, providing novel insights for the development of therapeutic and

prognostic targets based on TAM functional differences.
KEYWORDS

prognosis, tumor associated macrophages, differentiation related genes, non-small cell
lung cancer, trajectory analysis
1 Introduction

Lung cancer is one of the main global causes of cancer-related

deaths (1, 2). Non-small cell lung cancer (NSCLC) is the most

common type of lung cancer (2, 3). Despite improvements in

therapy and the use of comprehensive treatments consisting of a

variety of approaches, the overall survival (OS) of NSCLC patients

remains poor (2). Significantly, tumor heterogeneity is found to be

associated with drug resistance, tumor metastasis, and poor

prognosis (4, 5).

A large number of recent studies has focused on the tumor

microenvironment (TME) (6, 7). The composition of the TME can

be complex and heterogeneous and that includes macrophages, T

cells, bone marrow derived inflammatory cells, NK cells, fibroblasts,

B cells, extracellular matrix, and various signaling molecules (6, 8,

9). Cellular interactions in the TME are thought to be closely

associated with tumor invasion, growth and metastasis (8–10),

and components of the TME can represent biomarkers with

important roles in the detection, treatment and prognosis of

tumors (7, 11–13). This is also the case for NSCLC, where several

potential TEM targets have been explored in relation to diagnosis,

treatment and prognosis (6, 11–13).

Macrophages are major component of TEM (14, 15) and their

functional diversity and phenotypic plasticity has attracted

increasing research interest (10). Several studies have shown that

tumor associated macrophages (TAMs) are related to tumor

metastasis, invasion, angiogenesis, and immunosuppression (9,

14, 16). TAMs are heterogeneous and consist of several subtypes,

which have traditionally been grouped into “M1” and “M2” types.

M1 macrophages exhibit proinflammatory and anti-tumor

properties, while M2 macrophages are associated with

inflammation resistance, angiogenesis, and tumorigenesis.

Importantly, macrophages can transition between M1 and M2

subtypes (9, 14, 16, 17). TAMs have shown great potential in

therapy and prognosis prediction of lung cancer (15–18) but due

to the complex cellular heterogeneity in the TME, it has been

difficult to clearly define their biological function and clinical value.

Traditional gene sequencing methods obtain the average gene

expression of different cell types in a sample, which renders it difficult

to identify and describe distinct immune cell states and types, and

may result in the loss of important cell subtype information (19). In

contrast, single-cell sequencing is a novel method that enables to
02
assess the gene expression at single cell level, which offers great

advantages for the elucidation of cellular heterogeneity in different

tumors and their TME (4, 5). Furthermore, single-cell sequencing

allows for the simulation of cell fate or differentiation trajectories and

identification of fate or differentiation related genes (DRGs), enabling

in-depth exploration of cellular phenotypes and biological differences

between various cells types in the TME.

In this study, we designed a data mining experiment using

single-cell sequencing data of NSCLC. Single-cell transcriptomic

analysis was applied to probe gene expression in tumor samples and

identify DRGs in TAMs. Gene Ontology (GO: molecular function,

cellular component, and biological process) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways

enrichment analyses were conducted to evaluate the function of

TAM DRGs. Through univariate Cox analysis and Lasso regression

using TCGA-NSCLC bulk RNA-seq data, we screened 13 DRGs

significantly related to patient prognosis. Next, we analyzed the

gene function, involving pathway and expression of 13 DRGs. By

constructing RS models in multiple data sets, we further explored

the prognostic value of 13 DRGs in different pathological types of

NSCLC. Our research reveals a potential role for TAM DRGs in the

prognosis of NSCLC, provides clues for illuminating the function of

TAM DRGs in the NSCLC TME, and discovers potential future

therapeutic and prognostic targets for NSCLC.
2 Methods

2.1 Data mining

Single-cell RNA sequencing (scRNA-seq) data from human

NSCLC samples were download from the GSE116947 dataset in the

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/

geo/). Bulk RNA-seq and clinical data of NSCLC patients were

obtained from The Cancer Genome Atlas (TCGA) database

(https://portal.gdc.cancer.gov/) to establish and verify the risk

prediction models. In addition, multiple sequencing data (Lung

cancer RAPONI 2006; GSE157009; GSE31210) of NSCLC from

GEO and University of California Santa Cruz (USCS) databases

(https://xena.ucsc.edu/public/) were used as external validation sets

to verify the effectiveness of the prognosis models. All data used in

this study are freely available from the respective databases.
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2.2 Data processing

The ‘Seurat’ package in R 3.5.1 was used for data quality control

and preliminary data exploration. Data filtering was conducted

according to the following criteria: 1) Genes that were only detected

in less than 3 cells were excluded; 2) Cells with less than 50 genes

detected in total were excluded; 3) Cells with mitochondrial gene

expression of equal to or more than 5% were excluded. Data were

normalized using the Log Normalization algorithm and gene

expression was subsequently normalized using a linear regression

model. Significant and effective dimensions were determined by

principal component analysis (PCA) with a P value <0.05. The t-

Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold

Approximation and Projection for dimension reduction (UMAP)

algorithm were used to reduce the dimension of the top 15 principal

components (PCs) and obtain major cells clusters. For differential

gene expression analysis and identification of marker genes for each

cell cluster, we used the ‘Seurat’ package. |log2 (fold change) |>0.25

was the threshold for marker gene identification. Cell annotation

was performed using the CellMarker database (20) and reports from

the literature (21) based on the composition pattern of marker

genes. Data were visualized using the ‘ggplot2’ package in R 3.5.1.
2.3 Single cell trajectory analysis

In many diseases, cellular state transitions are characterized by

cascading changes in gene expression. In order to infer the gene

regulatory events that drive the transition from one cellular state to

another, we used the Monocle 2 algorithm (22) to construct a

single-cell pseudo-time trajectory of scRNA-seq data. Cells in each

branch show different fates and functions. Genes differentiated

between branches were defined as differentiation-related genes

(DRGs), which essentially reflect the different functions of cells in

different states. Functional enrichment analysis (GO and KEGG

pathways analysis) of DRGs was performed using Metascape (23)

(http://metascape.org). According to membership similarities,

terms with a P-value<0.01, minimum count of 3, and enrichment

factor>1.5 were grouped into clusters. A network plot was rendered

by a subset of selected enriched terms to show the relationships

between terms, where terms with a similarity>0.3 were connected

by edges.
2.4 Establishment and validation of a
risk score

The relationship between patients’ survival and expression of

risk genes was evaluated by univariate Cox regression analysis in the

TCGA training cohort. Prognostic genes significantly associated

with survival (P<0.05) were further filtered using least absolute

shrinkage and selection operator (LASSO) with five times cross

validation and multivariate Cox regression methods. The risk score

for each patient was then calculated as follows: Risk scores (RS) =

Exp (GENE1) × b1 + Exp (GENE2) × b2 +… + Exp (GENEn) × bn,
Frontiers in Immunology 03
where “Exp” represents the expression level of the corresponding

gene (GENEn) and “bn” represents the regression coefficient in Cox

analysis as obtained from multiple regression. Individuals in the

TCGA cohort were then either classified as low (low RS) or high risk

(high RS) based on median RS values. Kaplan-Meier survival

analysis was used to assess the overall survival (OS) of the two

groups, and differences in survival were assessed using the bilateral

log-rank test. ‘Survcomp’ and ‘SurvivalROC’ packages in R were

used to generate ROC and calibration curves for evaluating the

predictive accuracy of the RS score. The AUC value could range

from 0.5 and 1, with 1 representing complete discrimination, 0.5

representing no discrimination.
2.5 Analysis of differential expression
and prognosis

Gene Expression Profiling Interactive Analysis (GEPIA) (24) is

a Web-based tool that provides a variety of analytical capabilities

based on TCGA and Genotype-Tissue Expression (GTEx) data. We

used NSCLC data from TCGA and GTEx in GEPIA website to

explore the differential expression of the 13 DRGs in tumor and

non-tumor samples and assess their relationship with prognosis. OS

was selected as the prognostic outcome. The relationship between

gene expression and prognosis was evaluated by hazard ratio (HR).
2.6 Gene expression analysis

The protein expression data of the Human Protein Atlas (HPA)

(25) database (http://proteinatlas.org) were used to analyze the

expression of proteins encoded by DRGs in lung cancer tissues.

The HPA mRNA expression data in single cell lines were used to

analyze the mRNA expression of DRGs in different lung cell types,

and transcripts per kilobase of exon model per million mapped

reads (TPM) and Z-score were used to calculate the expression of

mRNA in cell lines. Immunohistochemical staining assay was used

to show the expression of proteins in lung cancer tissues.
2.7 Statistical analysis

All tests conducted in this study were two-tailed, with P<0.05

being considered statistically significant. We used Kaplan-Meier

analysis and log-rank tests for survival analysis. Data visualization

and statistical analysis were carried out using R version 3.5.1. The

analysis pipeline is illustrated in Figure 1.
3 Results

3.1 Identification of differentially expressed
genes and cell annotation

We obtained macrophages single cell data from GSE116947.

Before filtering, there were 31,760 features for 11,713 cells in the
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NSCLC tumor sample. After data standardization and quality

control, we finally detected 15,194 genes for further analysis. The

sequencing depth was significantly positively correlated with total

intracellular sequences (R=0.95), but not with mitochondrial gene

sequences (R=0.03, Figure 2A). Analysis of variance showed 2,000

highly variable genes (Figure 2B). Data dimensionality reduction

was conducted by principal component analysis (PCA), revealing

no obvious separation trend of cells (Supplementary Figure 1A).

Finally, 15 principal components with significant differences were

selected for further analysis (Supplementary Figures 1C, D). Using

t-SNE and UMAP, cells were divided into 9 subgroups for which

1,521 marker genes were identified by differential expression

analysis. Based on subgroup marker genes, the cell cluster highly

expressing LGMN was annotated as M2 cells, the cell cluster with

high expression of CXCL9 was annotated as M1 cells, and the cell

cluster highly expressing FABP4 was annotated as non-tumor-

associated macrophages (NTAMs; Figure 2C).
3.2 Differentiation trajectory analysis and
identification of DRGs

According to the results of cell clustering and annotation above,

we included the TAMs and NTAMs into the pseudo-time cell

differentiation trajectory analysis (Figure 2D). We identified two

branches with distinct differentiation types. Branch I contained

3,950 NTAM cells and branch II contained 314 M1/M2 cells, and a

total of 1,738 DRGs were identified. GO enrichment revealed that

DRGs were predominantly related to myeloid leukocyte activation

and leukocyte migration, and lymphocyte activation, positive

regulation of cytokine production, cell death, cell migration,

apoptosis signal pathway, immune response regulation pathways
Frontiers in Immunology 04
were negatively correlated with DRGs (Figure 3). Transcription

factor enrichment analysis indicated that DRGs had several

common TFs, including PSMB5, GTF2A2, FOXE1, MAPK3, and

MXD1, amongst others (Supplementary Figure 2A). Upstream TF

enrichment analysis showed that the expression of DRGs was

regulated by RELA, NFKB1, SP1, STAT3, and JUN, amongst

others (Supplementary Figure 2B). KEGG analysis showed that

DRGs were highly expressed in pneumonitis, myocardial ischemia,

lupus nephritis and lung diseases, amongst others (Supplementary

Figure 2C). DRGs expression was found to be tissue and cell

specific, with blood, spleen, bone marrow, lung tissue, CD33

positive myeloid, adipocyte and B lymphocyte being enriched for

these DRGs (Supplementary Figure 2D).
3.3 Development of a differentiation-
related gene prognostic risk score

Through univariate analysis and Lasso regression, we screened

13 DRGs (C1QB, CCL4, CD14, CD84, FGL2, MS4A6A, NLRP3,

PLEK, RNASE6, SAMSN1, SPN, TMEM176B, ZEB2) related to

prognosis in TCGA NSCLC dataset (Supplementary Figure 3).

We next constructed a risk score (RS) model based on 13 DRGs

by Multivariate Cox. The RS of each sample was calculated by the

relative coefficient and expression (Exp) of each gene:

RS = 0.4605 * Exp (C1QB) - 0.1733 * Exp (CCL4) + 0.2277 * Exp

(CD14) + 0.5458 * Exp (CD84) - 0.2402 * Exp (FGL2) - 0.4388 * Exp

(MS4A6A) + 0.1058 * Exp (NLRP3) - 0.3260 * Exp (PLEK) + 0.5543 *

Exp (RNASE6) - 0.1314 * Exp (SAMSN1) - 0.0766 * Exp (SPN) -

0.1092 * Exp (TMEM176B) + - 0.3229 * Exp (ZEB2).

Patients in the TCGA cohort were divided into two groups

based to the median RS, resulting in a high and low RS group. The

Kaplan-Meier survival curve suggested that the overall survival (OS)

in high RS group was significantly lower than in the low RS group

(Figure 4B), which indicated a relationship between RS and

prognosis. Multivariate Cox analysis of the 13 genes found a

significant association C1QB1, CD84, PLEK, ZEB2, and RNAASE6

with survival (Table 1). A high expression of C1QB (hazard ratio

(HR)=1.58, P=0.006), CD84 (HR=1.73, P=0.005), and RNAASE6

(HR=1.74, P=0.005) was associated with poor prognosis, while the

high expression of PLEK (HR=0.72, P=0.036) or ZEB2 (HR=0.72,

P=0.021) was associated with a good prognosis. Receiver operating

characteristic (ROC) curves and the c-index were used to validate

our model, which identified an area under the ROC curve for

prediction of 5-year OS of 0.654 (Figure 4C).

A hallmark enrichment analysis of the 13 DRGs in risk score

showed that they associated with immune destruction,

angiogenesis, resistance to cell death, apoptosis, growth signaling,

tumor-promoting information, and oxidative stress (Figure 4A).

This suggested that they may participate in tumorigenesis by

promoting tumor formation, resistance to apoptosis, modifying

genomic stability, and exhibiting anti-effects that promote tumor

invasion and metastasis, which ultimately lead to a worse prognosis.

It is worth noting that even if the genes PLEK and ZEB2 were

associated with a good prognosis in multivariate Cox survival

analysis, their functions are related to tumor-promoting
FIGURE 1

Analysis overview. TAMs, tumor-associated macrophages; NTAMs,
non-tumor-associated macrophages; TCGA, The Cancer Genome
Atlas; PCA, Principal Component Analysis; GEPIA, Gene Expression
Profiling Interactive Analysis; LASSO, Least absolute shrinkage and
selection operator; t-SNE, t-Stochastic Neighbor Embedding; UMAP,
Uniform Manifold Approximation and Projection for Dimension
Reduction; USCS, University of California Santa Cruz; GEO, Gene
Expression Omnibus.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1123840
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1123840
inflammation (both PLEK and ZEB2), immune destruction,

resistance to cell death, invasion and metastasis (ZEB2), and

therefore their role will need to be further evaluated.
3.4 Expression and prognosis analysis of
13 DRGs

We used NSCLC and normal lung tissue data from TCGA and

GTEx in the GEPIA database to analyze expression levels of the 13

DRGs in lung cancer and normal samples. Compared with normal
Frontiers in Immunology 05
lung tissue, C1QB, NLRP3, SAMSN1, SNP, and ZEB2 were

significantly downregulated in patients with lung adenocarcinoma

(LUAD; Figure 5); C1QB, FGL2,MS4A6A, NLRP3, PLEK, SAMSN1,

SPN, CD84 and ZEB2 were significantly downregulated in patients

with lung squamous cell carcinoma (LUSC; Figure 5). Next, we

constructed Kaplan-Meier curves of the 13 genes, dichotomizing by

median expression. This revealed that high expression levels of

ZEB2 (HR = 0.64, P = 0.0034), CD84 (HR = 0.65, P = 0.005), PLEK

(HR = 0.71, P = 0.022) and FGL2 (HR = 0.61, P = 0.0016) were

significantly associated with a better prognosis in LUAD; high

expression levels of ZEB2 (HR = 1.4, P = 0.013) and CD14 (HR =
B

C D

A

FIGURE 2

Cell clustering and differentiation trajectory analysis. (A) Correlation between sequencing depth and mitochondrial gene sequences or total
intracellular sequences. (B) 15,194 genes were analyzed in total, of which 13,194 exhibited low intercellular variation and 2,000 had high intercellular
variation. (C) Cell annotation based on gene markers. (D) Pseudo-time and trajectory analysis. PCA, principal component analysis; PCs, principal
components; NTAMs, non-tumor-associated macrophages; UMAP, Uniform Manifold Approximation and Projection for Dimension Reduction.
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B

C

A

FIGURE 4

Establishment of 13 DRGs RS model. (A) Heatmap of hallmark analysis of 13 genes in the RS model. (B) Kaplan-Meier analysis of the RS in the TCGA
NSCLC cohort. Patients were divided into high and low risk groups according to the median RS. (C) ROC curve for predicting 5-year OS in the TCGA
NSCLC cohort. DRGs, Differentiation Related Genes; TCGA, The Cancer Genome Atlas; NSCLC, Non-Small Cell Lung cancer; RS, Risk Scores; ROC,
Receiver Operating Characteristic.
B

C D

A

FIGURE 3

GO/KEGG enrichment analysis of DRGs. (A, C) Network of enriched terms. (B, D) Bar graph of GO/KEGG enrichment analysis across DRGs. Results in
B-D are colored by p-values. DRGs, Differentiation Related Genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
Frontiers in Immunology frontiersin.org06

https://doi.org/10.3389/fimmu.2023.1123840
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1123840
1.6, P < 0.05) were significantly associated with a worse prognosis in

LUSC (Supplementary Figure 4).

We used the HPA database to further analyze the expression of

13 DRGs in human cells and tissues. The expression of 13 DRGs in

lung cancer tissues was analyzed by immunohistochemical staining.

Among them, CD84, FGL2, PLEK, RNASE6, ZEB2 were not

detected in lung cancer tissues; C1QB, CCL4 and SPN showed low
Frontiers in Immunology 07
staining and weak density in the lung cancer tissue; CD14, NLRP3,

SAMSN1 showed moderate staining and moderate density;

MS4A6A, TMEM176B showed high staining and strong density

(Supplementary Figure 5). By analyzing the mRNA expression of

each cell types in lung tissue, it was found that the mRNA of 13

DRGs was significantly expressed in lung macrophages, showing

strong cell specificity (Supplementary Figures 6A, B). In addition,

we analyzed the expression of these DRGs in different cell clusters

(Supplementary Figures 6C, D). It can be seen that these genes were

differentially expressed in TAMs and NTAMs, indicating that those

differences in genes expression might be related to the

tumorigenesis and anti-tumor function of TAMs.
3.5 Reconstruction of RS models under
different pathological types

It should be noted that the expression and prognostic value of

the same DRGs in LUAD and LUSC might not be consistent.

Therefore, it is necessary to verify the prognostic value of DRGs in

LUAD and LUSC respectively. We then selected the DRGs with

Log-rank P < 0.05 in GEPIA prognosis analysis and reconstructed

RS models in TCGA-LUAD and TCGA-LUSC datasets. In the

TCGA-LUAD dataset, FGL2, CD84, PLEK, and ZEB2 were used to

reconstruct the prognosis model (LUAD-RS = 0.1727* Exp (FGL2) -

0.1986* Exp (CD84) - 0.1155* Exp (PLEK) - 0.0195* Exp (ZEB2)).

CD14 and ZEB2 were used to reconstruct a prognosis mode in the

TCGA-LUSC dataset (LUSC-RS = 0.0374* Exp (CD14) + 0.1081*

Exp (ZEB2)). The results showed that the prognosis of patients with
FIGURE 5

Differential expression analysis of 13 DRGs in lung squamous cell carcinoma and lung adenocarcinoma samples. DRGs, Differentiation Related
Genes; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; T, tumor; N, non-tumor. *P < 0.05.
TABLE 1 Multivariate Cox analysis of the 13 genes.

Gene Name HR P

C1QB 1.58 (1.14 - 2.20) 0.006

CD84 1.73 (1.18 - 2.53) 0.005

NLRP3 1.11 (0.81 - 1.52) 0.505

PLEK 0.72 (0.53 - 0.98) 0.036

ZEB2 0.72 (0.55 - 0.95) 0.021

CD14 1.26 (0.96 - 1.64) 0.096

FGL2 0.79 (0.53 - 1.16) 0.226

TMEM176B 0.90 (0.70 - 1.15) 0.395

MS4A6A 0.64 (0.41 - 1.02) 0.063

RNASE6 1.74 (1.18 - 2.56) 0.005

SPN 0.93 (0.71 - 1.21) 0.571

CCL4 0.84 (0.64 – 1.11) 0.233

SAMSN1 0.88 (0.70 – 1.10) 0.254
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high RS was worse than that of patients with low RS (Figures 6A,

D). In order to further validate two prognosis models, we used the

lung cancer RAPONI 2006 data set and the GSE157009 data set to

validate the results of LUSC-RS and LUAD-RS respectively. The

results showed that patients with high RS had a worse prognosis

than those with low RS (Figures 6B, E). In addition, we found that

high LUAD-RS was associated with the tumor recurrence of LUAD

patients with positive EGFR mutation in the GSE31210 data

set (Figure 6C).
4 Discussion

Novel treatments involving the targeting of immune

checkpoints or adoptive immune cell therapy provide promising

strategies for cancer therapy. However, tumor heterogeneity (26),

cell plasticity (27), and both primary and acquired drug resistance

(28) remain significant problems faced by targeted therapies. By

identifying and characterizing cancer subtypes with specific

biological characteristics, personalized treatment plans and the

implementation of precision medicine may be realized. The

application of liquid biopsies and single-cell sequencing provide

powerful methods for the development of personalized diagnosis

and treatment schemes. In this study, we identified differentiation-

related genes (DRGs) in tumor-associated macrophages through

mining of NSCLC single-cell sequencing data from GEO database

and trajectory analysis. Based on clinical data obtained from TCGA,

we then screened 13 DRGs and constructed a RS model based on

them. The RS was related to the prognosis of NSCLC patients. GO/

KEGG analysis, differential expression analysis, and survival

analysis further elucidated the role of these genes in the

progression, metastasis, and drug resistance of lung cancer.
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Besides, we reconstructed the RS models under different

pathological types according to the difference in DRGs expression

and prognosis analysis in LUAD and LUSC. Our results indicate a

potential value of TAM DRGs in NSCLC and provide insights for

the further exploration of their therapeutic, and prognostic roles.

Transcription factor enrichment analysis revealed several

common TFs of DRGs (Supplementary Figure 2A). Several

studies have previously described a role for TFs in the occurrence,

development, metastasis, and chemoresistance of tumors. For

instance, EGR1, JUN, PPARG, and RELA may have a beneficial

effect in lung cancer, related to inhibition of tumor proliferation and

metastasis, induction of apoptosis, and sensitization for

chemotherapeutic drugs (29–37). Conversely, NFB1, HDAC1, SP1,

SPI1, and STAT3 have been found to be associated with the

promotion of tumor proliferation, apoptosis resistance, cell

migration, induction of angiogenesis, and drug resistance (38–49).

It is worth noting that certain TFs such as PPARA (33, 34) and

STAT1 (50–53) exhibit both tumor-promoting and anti-tumor

effects. Besides, upstream TF enrichment analysis indicated that

the expression of DRGs might be regulated by RELA, NFKB1, SP1,

STAT3, and JUN, amongst others. (Supplementary Figure 2B).

These upstream genes have previously been shown to play a role

in autophagy (54, 55), proliferation and metastasis of tumor cells

(56), and are related to the drug resistance (57) and prognosis (58,

59). Moreover, these upstream TFs also play both anti-tumor (such

as PSMB5 (60)) and pro-tumor roles (such as FOXE1 (55, 59),

GTF2A2 (58, 61), MAPK3 (54, 62, 63), and MXD1 (56)). These

results suggested a multifaceted role of DRGs in NSCLC, which is in

line with a dual role of TAMs in the TME.

CD14 is a classic monocyte marker (64), and a high prevalence

of CD14-positive monocytes has previously been shown to be

associated with better chemotherapeutic response and patient
B C

D E
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FIGURE 6

RS models of different pathological types based on 13 DRGs. (A)LUAD-RS model reconstruction in TCGA LUAD dataset. (B) LUAD-RS model
validation in UCSC lung cancer dataset. (C) LUAD-RS model validation in GSE31210 dataset. (D) LUSC-RS model reconstruction in TCGA LUSC
dataset. (E) LUSC-RS model validation in GSE157009 dataset. Patients were divided into high and low risk groups according to the median RS. DRGs,
Differentiation Related Genes; RS, risk scores; TCGA, The Cancer Genome Atlas; USCS, University of California Santa Cruz; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma.
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survival (64, 65). In this study, we found that patients with a high

expression of CD14 had a worse prognosis, which may indicate that

CD14 gene expression exhibits distinct effects in different cell types.

In our study, CD14-positive cells in tumor samples were mainly

macrophages and bone marrow-derived monocytes found to

exhibit tumor-promoting and immunosuppressive effects. A

previous study indicated that there is less infiltration of these cells

in early lung cancer tissues which is consistent with our findings,

suggesting that CD14-positive cells predominantly exist in

advanced tumors and might related to a poor prognosis (66).

We found that FGL2 , MS4A6A , and SAMSN1 were

downregulated in NSCLC tissues compared to normal lung. In

previous studies, these genes were found to play a protective role in

lung cancer. FGL2 has previously been shown to be positively

correlated with macrophage infiltration in lung adenocarcinoma

and CD8-positive T cell activation, and is associated with a better

prognosis (67). Anti-MS4A1 therapy has achieved a promising results

in non-Hodgkin’s B cell lymphoma (68). SAMSN1, which is located

in a common genomic deletion region in lung cancer and is

associated with B cell differentiation (69), may act as a suppressor

gene in lung cancer. Our results suggest that the above genes may

have potential value in the treatment of lung cancer and their further

exploration may be conducive to the development of new therapies.

A previous study found that overexpression of the C1QB protein

was correlated with lymph node metastasis of lung cancer (70). In

renal cell carcinoma (RCC), C1QB expression can influence CSF-1-

induced macrophage migration and hamper their adhesion and

chemotaxis (71). In our study, we found that C1QB was

downregulated in NSCLC and related to poor prognosis in

multivariate Cox analysis. Compared with macrophages in normal

tissue, pancreatic cancer patients exhibited high expression of C1QB

in TAMs and peripheral blood (72), indicating that it may be a

suitable liquid biopsy biomarker to predict prognosis. Due to the lack

of relevant research in lung cancer, the prognostic value of C1QB in

lung cancer will need to be further explored.

CD84 promotes tumor cell survival in early chronic

lymphocytic leukemia, and inhibition of CD84 leads to cell death

(73). However, the role of CD84 in lung cancer is still not

completely understood. One study showed that radiation-induced

lung cell aging upregulates CD84, suggesting it may be related to

radiation injury (74). In this study, we found differential expression

of CD84 in lung cancer and normal lung tissue and further

uncovered an association of CD84 expression with poor prognosis

in multivariate Cox analysis. CD84 is a cell surface receptor involved

in leukocyte activation highly expressed on monocytes,

macrophages, and granulocytes, and is related to TNF-alpha

secretion induced by lipopolysaccharide (LPS) (75). A previous

study found that certain substances can prevent or treat prostatic

cancer by inhibition of CD84 mRNA (76), suggesting that further

exploration of the role of CD84 in lung cancer may guide the

identification of novel therapeutic targets.

PLEK gene expression was previously found to be associated

with poor prognosis and chemoresistance in lung cancer patients

(77). It is involved in the regulation NSCLC cell migration and

vascular infiltration, and its expression is correlated with poor OS.

Overexpression of PLEK2 significantly promoted epidermal-
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mesenchymal transformation and tumor migration (78). Our

results showed that PLEK was downregulated in LUSC tissues

compared to normal lung, and multivariate Cox regression

analysis as long as GEPIA survival analysis revealed that its

expression was associated with a better prognosis. Therefore, our

results indicated that a high expression of PLEK may play a

protective role in NSCLC cancer, which is in contrast to previous

findings. Interestingly, one previous study found that PLEK was

negatively correlated with the purity of lung cancer tissue, and low

expression of PLEK led to high tumor purity, low immune score,

low CD8+ T lymphocyte content, and shorter 5-year survival (79).

In multivariate Cox regression, the expression of ZEB2 was

associated with a better prognosis, while LUAD patients with

high ZEB2 expression had a poor prognosis in GEPIA survival

analysis. ZEB2 mutations were found to be related to immunologic

ignorance and immune tolerance microenvironments and may

predict response to checkpoint inhibitors, and tumors without

ZEB2 mutations are associated with lower risk of patient death

(80). ZEB2 is involved in epithelial-mesenchymal transformation

and is related to cisplatin and paclitaxel resistance (81, 82). Based on

the above findings, ZEB2may act as a tumor promoter in non-small

cell lung cancer. However, some studies have shown that ZEB2 can

also promote the apoptosis of lung cancer cells (83) and inhibits

their proliferation and invasion (83–85). Taken together, these

seemingly contradicting results suggest that PLEK and ZEB2 may

show anti- or pro-tumor effects under different conditions which

could be related to gene mutations and different cancer subtypes.

Further exploration is needed to define their impact in lung cancer.

It is worth noting that there was inconsistency between the

multivariate Cox results of 13 DRGs and the prognosis analysis in

GEPIA database. In addition, the prognosis of DRGs was also

affected by the pathological type of lung cancer. Since the expression

of DRGs in various types of macrophages (M1/M2/NTAMs) is

distinct, different types of macrophages can show anti-tumor or

pro-tumor effects in lung cancer. We hypothesized that these genes

might play different roles in different pathological types of lung

cancer, which might be related to the differences in the expression of

these genes in TAMs and NTAMs. By reconstructing new RS

models in LUAD and LUSC, we proved that the prognostic value

of DRGs was affected by pathological types. Therefore, it is

necessary to further elucidate the role of differentially expressed

genes of TAMs and NTAMs in different pathological types of lung

cancer and explore their potential therapeutic value for crucial

genes in the future.

We would like to point out the following limitations in this

study: first, the sequencing data were mined in retrospective way

and our results and proposed hypotheses need to be verified by

further experiments. Second, genes included in our risk score may

have distinct effects on promoting or inhibiting tumorigenesis

which correspond to the distinct functions of different subtypes of

macrophages in the TME; likely, not all will be directly related to the

poor prognosis or malignant characteristics of lung cancer. Future

single cell experiments may shed light on the distinct function of

macrophage subpopulations and genes in our risk score. In the

future, more effective prediction models based on DRGs may

be developed.
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5 Conclusion

Using single-cell sequencing data, the current research identifies

a prognostic role of tumor-associated macrophage (TAM) DRGs

and provides novel insights into the function of TAMs in the TME

and potential therapeutic and prognostic targets for precision

medicine in NSCLC patients.
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Glossary

DRGs Differentiation Related Genes

TAMs Tumor Associated Macrophages

NTAMs Non Tumor Associated Macrophages

NSCLC Non-Small Cell Lung Cancer

scRNA-
seq

Single Cell RNA Sequencing

RS Risk score

OS Overall Survival

TME Tumor Microenvironment

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

GEO the Gene Expression Omnibus

TCGA the Cancer Genome Atlas

PCA Principal Component Analysis

PCs Principal Components

GEPIA Gene Expression Profiling Interactive Analysis

GTEx Genotype-Tissue Expression

USCS University of California Santa Cruz

TFs Transcription Factors

HR Hazard Ratio

ROC Receiver Operating Characteristic

K-M Kaplan-Meier

LASSO Least absolute shrinkage and selection operator

t-SNE t-Stochastic Neighbor Embedding

UMAP Uniform Manifold Approximation and Projection for Dimension
Reduction
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