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T lymphocyte characteristics
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epicardial adipose tissue of
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Background: Epicardial adipose tissue (EAT) acts as an active immune organ and

plays a critical role in the pathogenesis of heart failure (HF). However, the

characteristics of immune cells in EAT of HF patients have rarely been elucidated.

Methods: To identify key immune cells in EAT, an integrated bioinformatics

analysis was performed on public datasets. EAT samples with paired

subcutaneous adipose tissue (SAT), heart, and peripheral blood samples from

HF patients were collected in validation experiments. T cell receptor (TCR)

repertoire was assessed by high-throughput sequencing. The phenotypic

characteristics and key effector molecules of T lymphocytes in EAT were

assessed by flow cytometry and histological staining.

Results: Compared with SAT, EAT was enriched for immune activation-related

genes and T lymphocytes. Compared with EAT from the controls, activation of T

lymphocytes was more pronounced in EAT from HF patients. T lymphocytes in

EAT of HF patients were enriched by highly expanded clonotypes and had greater

TCR clonotype sharing with cardiac tissue relative to SAT. Experiments

confirmed the abundance of IFN-g+ effector memory T lymphocytes (TEM) in

EAT of HF patients. CCL5 and GZMK were confirmed to be associated with

T lymphocytes in EAT of HF patients.

Conclusion: EAT of HF patients was characterized by pronounced immune

activation of clonally expanded IFN-g+ TEM and a generally higher degree of

TCR clonotypes sharing with paired cardiac tissue.

KEYWORDS

epicardial adipose tissue, heart failure, immune infiltration, T lymphocytes, TCR immune
repertoires, bioinformatics analyses
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Introduction

Due to its unique anatomic and functional features (1),

epicardial adipose tissue (EAT) and its critical role in the

pathogenesis of cardiovascular diseases have received increasing

attention in recent years. EAT covers nearly 80% of the heart’s

surface and accounts for approximately 15% of the total heart mass

(2). EAT is mainly located in the atrioventricular and the

interventricular sulcus (3). EAT is in direct contact with the

myocardium without fascial interruption, allowing mutual

crosstalk. Under normal conditions, EAT is cardio-protective by

maintaining lipid homeostasis and providing mechanical protection

to the adjacent myocardium. Under pathological conditions,

however, EAT transforms into a pro-inflammatory and pro-

fibrotic phenotype and is cardiac deleterious (4).

Heart failure (HF) is a complex clinical condition with a poor

prognosis characterized by cardiac diastolic or systolic dysfunction

(5). Emerging evidence has linked EAT to the pathogenesis of HF

(4, 6). Sodium-glucose cotransporter 2 (SGLT2) inhibitors is a novel

agent for the treatment of HF (7). A reduction in EAT volume has

been linked to the beneficial effects of SGLT2 inhibitor in HF

patients (8). The mechanisms by which EAT contributes to HF

remain unclear, but likely involve enhanced inflammation. EAT is

populated by immune cells including macrophages, T lymphocytes,

mast cells, etc., and serves as the source of pro-inflammatory

mediators (9–11). Pro-inflammatory cytokines and pro-fibrotic

factors, such as leptin, TNF-a, IL-1b, and IL-6 are up-regulated

in EAT under pathological conditions (12, 13) and may diffuse into

the adjacent myocardium to promote cardiac dysfunction.

However, a better understanding of the relationship between EAT

and HF requires a full-scale knowledge of the changes in the

immune microenvironment within EAT in HF. Here, we

performed integrated bioinformatics and immune cell infiltration

analyses on public datasets to characterize the immune features and

immune cell profiles of EAT in HF patients. The results suggested
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that EAT of HF patients was characterized by pronounced immune

activation, particularly by the accumulation of T lymphocytes.

Further analyses indicated that T lymphocytes in EAT of HF

patients were highly expanded, closely related to those in cardiac

tissue, and dominated by IFN-g+ effector memory T lymphocytes

(TEM). GZMK and CCL5 identified by bioinformatics analyses may

act as the key effector molecules of T lymphocytes in EAT of HF

patients. The overall flowchart of this study is shown in Figure 1.
Materials and methods

Public datasets in transcriptomic analysis

GSE64554 (14), GSE120774 (15), GSE192886 (16) and

GSE24425 (17) were obtained from Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo). Array or sequencing

data of paired EAT and SAT in GSE64554 (n=46), GSE120774

(n=36), and GSE24425 (n=12) were from patients undergoing

cardiac valve or coronary artery bypass graft surgery. GSE192886

contained sequencing data of EAT from HF patients (n=5) and

non-HF patients (n=5) undergoing coronary artery bypass graft

surgery. Clinical characteristics for analyzed patients can refer to the

original citations of these datasets and Tables S1-S3.
Patients and samples in the experimental
validation

In the validation experiments, fresh EAT with paired SAT,

heart, and peripheral blood samples were collected from HF

patients undergoing heart transplantation in Wuhan Union

Hospital. Peripheral blood samples were obtained before surgery.

SAT samples were obtained from the suprasternal region, heart and

EAT samples were obtained from the left ventricle. We obtained
FIGURE 1

Overall flowchart of this study.
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informed consent from all enrolled subjects. The experimental

protocol and sample collection were in accordance with the

Declaration of Helsinki and approved by the Medical Ethics

Committee of Wuhan Union Hospital of Huazhong University of

Science and Technology (METC number: 20200462). Information

on the involved subjects was listed in Table S4.
Identification of differentially expressed
genes, functional enrichment analysis, PPI
network construction, and identification of
hub genes

The data obtained from GSE64554 and GSE120774 were

processed by log2 transformation and quantile normalization via

limma package (18) using R separately. The differential expression

matrixes of the datasets were also identified by the limma package

separately and P values were adjusted by the Benjamini-Hochberg

method. We then applied the Robust Rank Aggregation (RRA)

method (19) to filter the differential expression matrixes, so as to

obtain the comprehensive differentially expressed genes (DEGs)

across two different microarray platforms. DEGs with RRA score

less than 0.05 were selected for further analyses.

Functional enrichment analyses were performed using the

DAVID (20) by inputting the official gene symbols of obtained

DEGs. Figures for functional enrichment analyses were plotted by R

and Sangerbox (http://www.sangerbox.com/tool). Construction of

the protein-protein interaction (PPI) network and identification of

hub genes were performed as the previous description (21).
Weighted gene co-expression
network analysis

To explore the gene modules responsible for the phenotypic

differences between EAT and SAT, we performed the Weighted

gene co-expression network analysis (WGCNA)to identify co-

expressed gene modules (22). First, we screened the top 25% of

the genes in the variance variability between samples in a pooled

matrix and used them as input data. Next, we obtained the soft

threshold and set the minimum gene number in the module to 30 to

get gene co-expression modules. By analyzing the correlation

between each module with the EAT/SAT phenotypes, we

screened out the gene modules that need further exploration.

Finally, functional enrichment analyses were performed on the

obtained modules, and the modules significantly related to the

immune process were identified. By taking the intersection of

immune-related key modules and DEGs identified by RRA, we

obtained a set of key immune-related genes.
Immune cell infiltration and
correlation analyses

xCell (23) and CIBERSORT (24) are signature-based methods to infer

the immune cell landscape according to expressional profiling. We
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performed immune cell infiltration analyses and obtained the immune

cell landscapes for EAT and SAT based on the pooled matrix. “Lymphoid

cells” and “myeloid cells and others” were categorized. Results were

evaluated by t-test to determine the significance of differences. The

correlation relationship between immune cell types, WGCNA modules,

and target genes was evaluated by Pearson correlation coefficients.
T cell receptor repertoires sequencing
and analyses

Paired EAT, SAT, and heart samples were used for T cell receptor

(TCR) repertoire sequencing. Tissue genomic DNA was extracted

using Universal Genomic DNA Kit (CWBio, China). DNA quality

was evaluated using Nanodrop2000 (Thermo, USA) with

concentration >20ng/uL and OD260/280 between 1.7 and 2.0.

Multiplex PCR reactions were run to specifically amplify the third

complementarity-determining region (CDR3) of the TCRb chain for

libraries construction. The constructed libraries were deeply sequenced

by Illumina NextSeq500. Primers and sequencing were provided by

SEQHealth (China).

Raw sequences filtered by SOAPnuke (version 1.6.0) were used for

TCR sequencing analyses, and the sequencing data were mapped to the

ImMunoGeneTics (IMGT) database using MiXCR (version 3.0.3) to

define the V, D, and J fragments and CDR3 sequence (25). The terms

TCR clonotype and TCR clone describe the CDR3 sequence composed

of a unique amino acid sequence and CDR3 sequence composed of

unique V, D, and J fragments, respectively. Antigen matching analysis

was performed via the IEDB database (http://www.iedb.org/).
Flow cytometry

Peripheral blood mononuclear cells (PBMCs) were isolated by

density gradient centrifugation using lymphocyte separation

medium (MPbio, USA). Fresh EAT samples were digested at

37°C in Hepes buffer containing collagenase D (1mg/mL, Sigma,

USA) and dispase II (2mg/mL, Sigma, USA), and then filtered by

100mm and 40mm filters (Falcon, USA) sequentially to collect the

stromal vascular fraction (SVF) for subsequent flow cytometric

analyses. Memory phenotypes of T lymphocytes were categorized

into naïve T cell (TN, CD62L
+CD45RA+), central memory T cell

(TCM, CD62L
+CD45RA-), effector memory T cell (TEM, CD62L

-

CD45RA-) and CD45RA+ effector memory T cell (TEMRA, CD62L
-

CD45RA+). For the detection of interferon (IFN)-g, cells were re-

suspended in RPMI-1640 medium (Gibco, USA) with 10% heat-

inactivated FBS (Gibco, USA) at a concentration of 106 cells/ml and

stimulated with Cell Stimulation Cocktail (eBioscience, USA). After

6 hours of stimulation, cells were harvested, permeabilized, and

then stained with fluorescence-conjugated antibodies. Used

antibodies were as follows: PE-Cy7-anti-human CD3(BD

Biosciences, USA), PE-anti-human IFN-g (BD Biosciences, USA),

BV421-anti-human CD45RA (BD Biosciences, USA), APC-anti-

human-CD62L (Biolegend, USA), Fixable Viability Stain 510 (BD

Biosciences, USA). The stained cells were washed with Flow

Cytometry Staining Buffer (eBioscience, USA) and fixed with IC
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Fixation Buffer (eBioscience, USA). Flow cytometry analyses were

performed with a FACS Calibur flow cytometer (BD Biosciences,

USA) and analyzed by FlowJo software.
Histological staining

For immunohistological or immunofluorescence staining, paired

EAT and SAT samples were fixed in 4% paraformaldehyde at 25 °C

for 24 hours and embedded in paraffin. Slides were sectioned in 5mm
and blocked with 1% BSA PBS buffer and then stained with target

antibodies and DAPI following routine procedures. The slides were

scanned with a digital scanner (3D-HISTECH, Hungary).

CaseViewer software was used for observation and statistics. For

immunohistological statistics, 3 areas under the 20x field of view from

each slide were randomly selected, and the average number of

positive cells per mm2 was calculated (3 slides included for each

sample). Used antibodies were as follows: human CD3 antibody

(Servicebio, China), human CCL5 antibody (R&D systems, USA),

and human GZMK antibody (R&D systems, USA).
Statistical analysis

Data processing and analyses were performed using SPSS 22.0,

GraphPad Prism, and R. Normality were evaluated by the Shapiro-

Wilk test. Differences were evaluated using Student’s t-test and P < 0.05

was considered statistically significant unless indicated otherwise.
Results

Integrated bioinformatics analyses revealed
pro-inflammatory characteristics of EAT

The DEGs between EAT and SAT in GSE64554 and GSE120774

were identified separately and shown in Figure 2A. Next, we applied the

RRA algorithm to integrate DEGs of the two datasets and obtain a

more comprehensive DEGs list. The RRAmethod identified 131 genes

that were up-regulated in EAT compared to SAT, while 159 genes were

down-regulated. DEGs identified by RRA presented significant

differences (adjusted P value<0.05 and |log2FC| ≥0.5) in at least one

dataset, most of which (90%) showed consistent expressing trends

across datasets. The top10 up- and down-regulated DEGs recognized

by RRA were shown in Figure 2B. Next, we applied Gene Ontology

(GO) enrichment analysis on the DEGs identified by RAA that were

up- and down-regulated in EAT versus SAT to explore their potential

functions, respectively. As shown in Figure 2C, the up-regulated DEGs

in EAT were mainly enriched in complement activation and immune

response, while the down-regulated DEGs were mainly related to

embryonic skeletal system morphogenesis, suggesting immune

activation in EAT compared to paired SAT. The PPI network of

DEGs identified by STRING was further analyzed by cytoHubba to

identify hub genes. As shown in Figure S2 and Table S5, we obtained

the top 10 hub genes including COL1A1, FGF2, BGN, C3, TIMP1,

CD44, POSTN, COL3A1, CCL2 and APOB.
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Further, we applied the WGCNA method to identify immune-

related key gene modules associated with EAT. By filtering the

expression profiles of the top 25% variance in all EAT and SAT

samples, a total of 3869 highly variable genes were included in

WGCNA. Then, filtered genes were clustered into 18 different

modules based on WGCNA clustering (Figure 2D). The correlation

analyses between all modules and EAT/SAT phenotype were carried

out and 7 modules were found to be significantly associated with the

EAT/SAT phenotype (Figure 2E). Functional enrichment analyses

suggested that the blue and greenyellow modules were closely related

to immune response (Figure 2F). The overlap of DEGs and the two

modules were identified and 9 key genes were obtained for further

analyses. Of the 9 key genes, all were up-regulated DEGs in EAT and

listed in Table S6, including SLCO2B1, F13A1, C1QA, C1QB, and

C1QC from the blue module and IGLL1,GZMK, CCL5, and SLC38A1

from the greenyellow module.
Immune cell infiltration analyses showed a
potential enrichment of lymphocytes in
EAT

We used xCell to explore the differences in the immune cell

landscape between EAT and SAT. As shown in Figure 3A, EAT was

infiltrated by more lymphocytes and dendritic cells (DC), while the

abundance of macrophages and M1 macrophages showed no

significant difference. In SAT, M2 macrophages, basophils, and

mast cells showed higher degrees of infiltration. The correlation

between different cell subtypes was calculated to infer their potential

interaction. In Figure 3B, CD4+ T cells and CD8+ T cells presented a

strong positive correlation (r=0.82), indicating that the two

subtypes of T cells had a consistent tendency of infiltration.

Next, we analyzed the correlation between the infiltrated immune

cells with hub genes, key genes and key modules identified in EAT

from the previous PPI network and WGCNA analyses. As shown in

Figure 3C, the expression of GZMK, CCL5, IGLL1, and SLC38A1

presented a strong positive correlation with CD4+ T cells, CD8+ T cells,

and B cells, while the expression of SLCO2B1, BGN, C3, TIMP1, C1QA,

C1QB and C1QC showed a strong positive correlation with DC. As

shown in Figure 3D, the 7 key modules related to EAT and SAT

obtained by WGCNA were all related to different subtypes of immune

cells. In particular, the blue and greenyellow modules closely related to

the immune process presented a strong positive correlation with

lymphocyte abundance. The correlation coefficients between the

greenyellow module and T or B cells were more than 0.8. Based on

the above analyses, we concluded that EAT acts as a pro-inflammatory

adipose tissue characterized by abundant lymphocyte infiltration

compared with SAT.
More activated T lymphocytes in EAT from
HF patients

To further explore the characteristics of EAT from HF

patients, we analyzed a public dataset GSE192886 containing

transcriptome profiles of EAT from 5 HF patients and 5 patients
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without HF as controls (CON). We obtained 196 up-regulated and

261 down-regulated DEGs in EAT from HF patients versus that

from controls. Function enrichment analysis of up-regulated

DEGs suggested immune activation, particularly lymphocyte

activation in EAT from HF patients (Figure 4A). Up-regulated

DEGs were mainly enriched in the lymphocyte activation pathway

relative to the myeloid leukocyte activation pathway (Figure 4B).

Next, we used CIBERSORT to compare the immune cell
Frontiers in Immunology 05
composition between EAT from HF patients and non-HF

controls. As shown in Figure 4C, the frequencies of T cells and

B cells were higher in EAT from HF patients compared to non-HF

controls, indicating lymphocyte activation as the hallmark of EAT

from HF patients.

We examined the expression levels of genes associated with the

inflammatory characteristics of EAT (10 hub genes and 9 key genes

identified above). As shown in Figure 4D and Figures S3, S4 (Mann-
D

A B

E

F

C

FIGURE 2

Bioinformatics analyses reveal pro-inflammatory characteristics and key genes of EAT. (A) Volcano plot of DEGs between EAT and SAT in GSE64554
and GSE120774. (B) Top 10 up- and down-regulated DEGs identified by RRA method. (C) GO-BP functional enrichment analyses of up- and down-
regulated DEGs in EAT compared to SAT. (D) Cluster dendrogram of WGCNA. (E) WGCNA key modules and EAT/SAT phenotype correlation. (F) GO-
BP functional enrichment analyses of WGCNA-identified blue and greenyellow gene modules.
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Whitney test), of these genes (IGLL1 not included), the expression

of CCL5, GZMK, and POSTN showed a further increase in EAT

from HF patients indicating an enhanced degree of inflammation

and fibrosis while CCL5 and GZMK presented the strongest positive

correlation with infiltrated T lymphocytes in previous analyses

(Figure 3C). Next, we examined the expressions of T cell-

inflamed gene expression profiles (GEPs) between EAT from HF

patients and non-HF controls. T cell-inflamed GEPs (composite

genes listed in Table S7) has been reported to be associated with

inflammatory T-lymphocyte infiltration and prediction of

sensitivity to immunotherapy in tumors (26, 27). As shown in

Figure 4E (Mann-Whitney test), the expressions of T cell-inflamed

GEPs were higher in EAT of HF patients, providing further

evidence of an enhanced T-lymphocyte response. In addition, the

expression of CCL5 and GZMK were also strongly positively
Frontiers in Immunology 06
correlated with T cell-inflamed GEPs in EAT and SAT samples

from validation dataset GSE24425 (Figure 4F).

Next, we identified the potential key TFs regulating the

phenotypic transition of EAT from HF patients using the ChEA3

database (28) (Figure 4G). The PPI network of top 10 predicted key

TFs suggested a crucial role of lymphocyte-specific TFs in EAT of

HF patients, especially for those were differentially expressed

including TBX21, PAX5, NFATC2, and STAT4 (Figure 4H).
Characteristics of TCR repertoires in EAT
from HF patients

The numbers of TCR clones and TCR clonotypes were higher in

EAT than in paired SAT from HF patients, indicating enhanced T
D

A

B C

FIGURE 3

Immune cell infiltration and correlation analyses. (A) Violin charts of xCell immune infiltration score between EAT and SAT. (B) Correlation matrix of
immune cell subtypes (Pearson correlation coefficients are displayed in the box). (C) Correlation matrix of immune cell infiltration scores with 19
identified key genes (Pearson correlation coefficients are displayed in the box). (D) Correlation matrix of immune cell infiltration scores with WGCNA
key modules. *P < 0.05, **P < 0.01, ***P < 0.001 and ns refers to no significance.
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lymphocyte infiltration in EAT (Figure 5A). Next, we compared the

distribution of the low (fraction>0.1%), middle (fraction>0.5%),

and high (fraction>1%) frequency TCR clonotypes between EAT

and paired SAT. The results suggested the enrichment of highly

expanded TCR clonotypes in EAT compared to paired SAT

(Figure 5B). Accordingly, the proportion of top 10 TCR

clonotypes was higher in EAT than in SAT (Figures 5C, D).

These results suggested that T lymphocytes from EAT of HF

patients exhibited higher clonal expansion than those from SAT.

TCR clones with high frequency in EAT were listed and evaluated

by antigen matching analysis via the IEDB database (Tables S8, S9).

A relatively low proportion of shared TCR clonotypes was

observed between EAT and paired SAT (Figure 5E). However, the

degree of TCR clonotype sharing between cardiac tissue and EAT

was higher than that between cardiac tissue and SAT (Figure 5F).

Further, we found the Spearman’s correlation coefficients between

frequencies of TCR clonotypes in cardiac tissue and paired EAT was
Frontiers in Immunology 07
higher compared to that of SAT (Figure 5G). Next, we examined the

usages of TRBV-TRBJ fragments in EAT, SAT, and cardiac tissue

(Figure 5H). For the frequency distribution of V-J fragments with

an average frequency >1% in the heart (19 V-J fragments ranked in

Figure S5), the correlation between cardiac tissue and EAT was

greater than that between EAT and SAT while no obvious

correlation was observed between cardiac tissue and SAT

(Figure 5I). Thus, the above results suggested a similar antigenic

microenvironment between the heart and adjacent EAT.
Characteristics of T lymphocytes functional
phenotypes in EAT from HF patients

In order to verify the accumulation of T lymphocytes in EAT

and the role of key genes, we collected EAT together with paired

SAT and peripheral blood samples from HF patients undergoing
D
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FIGURE 4

Amplified lymphocyte activation features in EAT of HF patients. (A) GO-BP functional enrichment analyses of up-regulated DEGs in EAT of HF
patients. (B) “Lymphocyte activation” and “myeloid leucocyte activation” GO term genes in DEGs of HF-EAT. (C) Immune cell infiltration analyses of
HF-EAT and control EAT by CIBERSORT. (D) Differentially expressed key genes in HF-EAT. (E) Expression of T cell-inflamed GEPs in HF-EAT and
control EAT. (F) Correlation of CCL5 and GZMK expression with T cell-inflamed GEPs score in GSE24425. (G) Top 10 potential key TFs of DEGs in
HF-EAT identified by ChEA3 database. (H) PPI network of top 10 potential TFs. *P < 0.05, **P < 0.01.
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heart transplantation. Immunohistomical staining showed

abundant CD3-positive T lymphocytes in EAT compared to SAT

(Figures 6A, B). Further flow cytometry showed that enriched T

lymphocytes in EAT were mainly composed of TEM expressing high

levels of IFN-g (Figures 6C–F). Further immunofluorescence

staining results confirmed that CCL5 and GZMK were co-

localized with CD3-positive T lymphocytes (Figure 6G). Taken

together, we concluded that EAT from HF patients were populated

by inflammatory TEM cells expressing high levels of effector

molecules including IFN-g, CCL5, and GZMK and thus

contributing to EAT pro-inflammatory conversion in HF patients.
Discussion

Previous understanding of the pro-inflammatory characteristics of

EAT was limited to the paracrine and endocrine effects of adipokines

and cytokines produced by EAT. The profiles of immune cells in EAT
Frontiers in Immunology 08
have rarely been elucidated. A pioneering work by Hirata et al. (10)

suggested that macrophages in EAT from patients with coronary artery

disease tend to be polarized towards the pro-inflammatory M1

phenotype. Recently, Vyas et al. (9) found that EAT was highly

enriched in adaptive immune cells. Given the relatively simple cellular

composition of adipose tissue, integrated bioinformatics analyses based

on the high-throughput array or sequencing data could expand our

knowledge of the roles and characteristics of immune cells in EAT.

Based on our analyses, EAT was enriched in immune

activation-related pathways and T lymphocytes compared to

paired SAT and this trait was more pronounced in EAT from HF

patients. Further, we used high-throughput TCR sequencing to

explore the characteristics of TCR repertoires in EAT and found

enrichment of highly expanded TCR clonotypes in EAT from HF

patients. In addition, we found a higher degree of TCR clonotypes

sharing between EAT and paired cardiac tissue from HF patients

relative to SAT, suggesting a similar antigenic microenvironment

between the heart and adjacent EAT. Furthermore, we
D
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FIGURE 5

Characteristics of TCR repertoires in EAT. (A) TCR clone counts and TCR clonotype counts in EAT and paired SAT. (B) Fraction of low
(proportion>0.1%), middle (proportion>0.5%) and high (proportion>1%) frequency TCR clonotypes between EAT and paired SAT. (C, D) The ratio and
difference of the top 100 TCR clonotypes in EAT and paired SAT. (E) Total TCR clonotypes sharing between paired EAT and SAT. (F) Total cardiac
TCR clonotypes sharing in paired EAT and SAT. (G) Spearman’s correlation of cardiac TCR clonotypes with paired EAT and SAT. (H) Heat map of V-J
usage between EAT, paired SAT and heart. (I) Spearman’s correlation of V-J combination (average usage>0.01) in EAT, SAT and heart. *P < 0.05 and
ns refers to no significance.
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demonstrated the dominance of pro-inflammatory IFN-g+ effector

memory T lymphocytes in EAT from HF patients. Considering our

previous work has revealed a tissue-specific T-cell response

predominated by clonally expanded Th1 and cytotoxic CD8+T

lymphocytes in failing human hearts (29), the present work may

provide further evidence of a similar immune microenvironment at

the cellular level between EAT and heart.
Frontiers in Immunology 09
CCL5 and GZMK may be the key effector molecules of T

lymphocytes in EAT. GZMK produced by cytotoxic T lymphocytes

mediates cell death by displaying tryptase-like activity (30). It has been

reported that GZMK assists transcellular diapedesis of TEM by inducing

the expression of ICAM1 in endothelial cells (31). CCL5 belongs to the

C-C motif chemokine family and binds to its receptor CCR5 (32).

CCL5 can be produced by a variety of cells including T lymphocytes,
D
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FIGURE 6

Verification of T cells infiltration and key molecules in EAT. (A, B) CD3-specific immunohistochemical staining in EAT and SAT. (C, D) Gating strategy and
representative flow cytometry results of IFN-g+ T lymphocytes in EAT. (E, F) Representative flow cytometry results for proportion of T lymphocytes memory
subtypes in EAT. (G) Representative fluorescent staining images of CCL5 and GZMK with CD3 from EAT of HF patients (scale: 50 mm). **P < 0.01, ***P < 0.001
and ns refers to no significance.
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macrophages, fibroblasts, and epithelial cells, and regulates the

migration of T lymphocytes and monocytes (32). CCL5 expression

was found to be higher in visceral adipose tissue (VAT) compared to

SAT and positively correlated with CD3 and CD11b expression (33),

while Zhou et al. (34) further identified CD8+ T lymphocytes as the

major cellular sources of CCL5 in the VAT of obese mice. A recent

study showed that clonally expanded GZMK+CD8+ T cells producing a

high level of CCL5 may promote the recruitment of pro-inflammatory

immune cells and elevate tissue inflammation (35). Taken together,

GZMK and CCL5 may act as key effectors in mediating the adaptive

immune response of T lymphocytes in EAT of HF patients.

Existing evidence suggest that increased EAT volumewas associated

with an increased risk of HF with preserved ejection fraction (HFpEF)

(36). However, EAT volume was reduced in HF patients with reduced

ejection fraction (HFrEF) (37). In HFpEF patients, increased EAT

volume was associated with higher concentrations of troponin T, hs-

CRP, IL-6, and increased risk of cardiovascular death and

hospitalization, while these associations were reversed in HFrEF

patients (6). The reason for the discrepancy may be due to the

increased intra-myocardial fat energy requirement in patients with

HFrEF because of the progression to cachexia state (38). The

reduction of EAT may exacerbate the progression of HFrEF by

diminishing the ability of the myocardium to nourish from adjacent

EAT. Since the pro-inflammatory conversion of EAT often precedes the

clinical diagnosis of HF (4), the specific causal relationship between EAT

and different types or stages of HF remains unclear.

To conclude, EAT of HF patients was characterized by pronounced

immune activation, particularly by the accumulation of IFN-g+ TEM and

a generally higher degree of TCR clonotypes sharing with paired cardiac

tissue. GZMK and CCL5 may act as the key effector molecules of T

lymphocytes in EAT of HF patients. Our study has certain limitations.

First, we used expression profiles from public datasets to infer immune

cell infiltration scenarios of EAT, which may have discordance with

actual situations. Second, the samples were obtained from end-stage HF

patients and the sample size was small in the validation experiments.

More detailed exploration of immune cell profiles in EAT from different

stages of HF patients is deserved in the future.

Conclusion

EAT of HF patients was characterized by pronounced immune

activation of clonally expanded IFN-g+ TEM and a generally higher

degree of TCR clonotypes sharing with paired cardiac tissue.
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