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Coronavirus disease 2019 (COVID-19) is a severe respiratory disease caused by

infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

that affects the lower and upper respiratory tract in humans. SARS-CoV-2

infection is associated with the induction of a cascade of uncontrolled

inflammatory responses in the host, ultimately leading to hyperinflammation or

cytokine storm. Indeed, cytokine storm is a hallmark of SARS-CoV-2

immunopathogenesis, directly related to the severity of the disease and

mortality in COVID-19 patients. Considering the lack of any definitive

treatment for COVID-19, targeting key inflammatory factors to regulate the

inflammatory response in COVID-19 patients could be a fundamental step to

developing effective therapeutic strategies against SARS-CoV-2 infection.

Currently, in addition to well-defined metabolic actions, especially lipid

metabolism and glucose utilization, there is growing evidence of a central role

of the ligand-dependent nuclear receptors and peroxisome proliferator-

activated receptors (PPARs) including PPARa, PPARb/d, and PPARg in the

control of inflammatory signals in various human inflammatory diseases. This

makes them attractive targets for developing therapeutic approaches to control/

suppress the hyperinflammatory response in patients with severe COVID-19. In
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this review, we (1) investigate the anti-inflammatory mechanisms mediated by

PPARs and their ligands during SARS-CoV-2 infection, and (2) on the basis of the

recent literature, highlight the importance of PPAR subtypes for the development

of promising therapeutic approaches against the cytokine storm in severe

COVID-19 patients.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is an infectious and

severe respiratory disease caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a

positive sense single-stranded RNA beta-coronavirus that infects

the lower and upper respiratory tract and has recently affected

millions of people worldwide (1–3). Primary symptoms of COVID-

19 include fever, cough, pneumonia, and shortness of breath, and

histological pictures of this disease are characterized by

mononuclear inflammatory cells, severe pneumocyte hyperplasia,

interstitial thickening, hyaline membrane formation, and

prominent alveolar damage with eosinophilic exudates (4, 5).

During COVID-19, a cascade of inflammatory pathways is

activated, leading to massive cytokine release from the host

immune system in response to SARS-CoV-2 infection (6, 7). In

this regard, the vast increase in the secretion of circulating

proinflammatory cytokines such as tumor necrosis factors

(TNFs), interleukins (ILs), chemokines, and interferons (IFNs)

leads to the exacerbation of the host inflammatory response to

the pathogen. This exacerbation in the host’s inflammatory

response increases the severity of the disease (8–10). This

hyperinflammation or imbalanced inflammation during SARS-

CoV-2 infection is called “cytokine storm”, which is one of the

main hallmarks of the deterioration of the COVID-19

immunopathogenesis and triggers acute respiratory distress

syndrome (ARDS), multi-organ failure (MOF), acute lung injury

(ALI), decreased lung function, and finally, death of the host (11,
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12). In this context, in recent years, various clinical and omics-

based studies have investigated the molecular mechanisms

behind the SARS-CoV-2 infection in different disease stages and

different tissues (13–17). Surprisingly, most of these studies

have observed the activation of inflammatory mechanisms and

hyperinflammation in COVID-19 patients. Therefore, developing

effective therapeutic strategies by targeting critical factors in

regulating host inflammatory response can provide a potential

and promising solution for the survival of COVID-19 patients,

especially the prevention of cytokine storms (18–20). The

peroxisome proliferator-activated receptors (PPARs) are a

subgroup of ligand-activated transcription factors and members

of the nuclear receptor superfamily that play a crucial role in

regulating energy balance, carbohydrate and lipid metabolism, cell

growth, and differentiation (21, 22). PPARs can regulate the

transcriptional activity of target genes by two different

mechanisms (1): binding to the promoter region of target genes

with DNA sequences known as peroxisome proliferator response

elements (PPREs) as a ligand-dependent transcription factor, and

(2) controlling gene expression through association with PPRE-

independent activator proteins (21, 23). Several previous reports

highlighted the core role of PPARs in many human diseases, such as

different types of cancer (24, 25), atherosclerosis (26), and type 2

diabetes (27, 28).

Interestingly, in addition to the central roles of PPARs in

regulating energy homeostasis, such as fatty-acid metabolism and

glucose utilization, growing evidence suggests that members of the

nuclear receptor superfamily, such as PPARs, also have significant

regulatory effects on inflammatory processes (29). Indeed, extensive

research has proven that PPARs have potential anti-inflammatory

effects during inflammation-related disease (30, 31). In this regard,

previous literature, based on available evidence, has suggested that

subtypes of PPARs exert their anti-inflammatory effects and

subsequently control the host’s inflammatory response through

different mechanisms such as successful competition with other

inflammatory transcription factors for the recruitment of essential

and shared co-activator proteins, inhibition of binding of

inflammatory transcription factors such as AP-1, nuclear factor-

kB (NF-kB), NFAT, and STATs to their response elements through

direct physical protein-protein interaction, blocking MAPK-

induced signaling cascades, preventing the clearance of

proinflammatory genes co-repressors, and upregulation in the
frontiersin.org
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expression of anti-inflammatory genes (32). For example, it has

been discussed that the activation of PPARs during inflammatory

bowel disease (IBD) leads to the suppression of the main pathways

of inflammation, such as NF-kB signaling. Subsequently, the

activation of PPARs inhibits the production of proinflammatory

cytokines such as TNF-a, IL6, and IL1B. Therefore, it was

concluded that anti-inflammatory responses induced by the

activation of PPARs might restore the physio-pathological

imbalance associated with this disorder (21).

The interference of viral infections such as SARS-CoV-2 in the

PPARs signaling is a completely new issue and interest in this area

has been very motivated by the COVID-19 pandemic. Emerging

studies show that SARS-CoV-2, by modulating PPAR subtypes,

leads to metabolic changes (especially lipid metabolism) and

exacerbation of pulmonary inflammation in lung epithelial cells

of COVID-19 patients (33). Therefore, these findings have

suggested that the use of agonists of PPARs with the aim of their

activation may be a useful therapeutic strategy to reverse the

inflammatory and metabolic changes caused by SARS-CoV-2

infection (34). In this regard, it has been reported that several

natural ligands of PPARs, such as turmeric, docosahexaenoic acid

(DHA), and eicosapentaenoic acid (EPA), lead to a decrease in the

production of proinflammatory cytokines through interaction with

PPARs and then induction of their activity (35, 36) For example, a

very recent study has identified possible mechanisms by which the

PPARa agonist palmitoylethanolamide (PEA) antagonizes the NF-

kB signaling pathway and subsequently reduces the production of

TNF-a, IL1B, and other inflammatory mediators such as inducible

nitric oxide synthase (iNOS) and COX2 through selective activation

of PPARa in cultured murine alveolar macrophages during SARS-

CoV-2 infection (37). Moreover, it has been suggested that synthetic

agonists of PPARg, such as thiazolidinediones (TZDs), like

pioglitazone, are anti-inflammatory drugs with ameliorative

effects on severe viral pneumonia-like COVID-19 (38). On the

other hand, by integrating different transcriptome datasets with

computational network-based systems biology methods, promising

therapeutic targets, including PPARa and PPARg, have been

identified for the modulation of inflammatory processes caused

by COVID-19 (39, 40). Therefore, PPARs and their ligands have

crucial therapeutic potential with key immunomodulatory effects

on inflammatory mechanisms and cytokine/chemokine production

during infectious and inflammation-related diseases such as the

COVID-19 pandemic.

Nevertheless, considering the importance of immunopathology’s

role of the inflammatory response in COVID-19 patients and the role

of PPARs in controlling inflammation, in this review, we (1) provide

a summary of general information about PPARs such as subtypes,

structure, tissue expression, and function (2), investigate the

molecular mechanisms of the exacerbation of the host

inflammatory response during COVID-19 (3), describe the anti-

inflammatory mechanisms mediated by PPARs, and (4) discuss the

anti-inflammatory roles of PPAR subtypes during COVID-19

pandemic on the basis of the recent clinical and omics-

based literature.
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2 PPARs: Subtypes, structure, tissue
expression, and function

2.1 PPAR subtypes and structure

The PPARs are ligand-dependent/activated transcription

factors, members of the nuclear- hormone-receptor superfamily

(including the receptors for thyroid hormone, vitamin D, ecdysone,

retinoic acids, and some orphan receptors) that transduce a wide

range of signals, including environmental, nutritional, and

inflammatory events, to a set of cellular responses at the

transcriptional gene level; they were named due to their joint

property in increasing the number and activity of peroxisomes

(41–43). So far, three isoforms of PPARs, namely, PPARa (NR1C1),

PPARb/d (NR1C2), and PPARg (NR1C3), have been identified in

vertebrates (including human, mouse, rat, hamster, and Xenopus),

which are encoded by distinct genes on different chromosomes.

They have shown a high degree of sequence and structural

homology (Figure 1A) but different tissue distribution, ligand

specificity, and regulatory activities (44–46).
2.2 Tissue distribution and function

In recent years, various in vitro and in vivo studies have

reported that all isoforms of PPARs primarily regulate lipid and

glucose metabolism and have additional regulatory roles in cell

proliferation and differentiation, vascular homeostasis and

atherosclerosis, cancer, and the immune system (38, 47). In

addition to the mentioned activities, it is thought that the

activation of PPAR subtypes reduces the expression of

proinflammatory cytokines and inflammatory cell functions,

exerting significant anti-inflammatory properties (48). PPARa is

the first known PPAR that was initially cloned from a mouse liver

complementary DNA library as a nuclear receptor that mediates the

effects of an endogenous group and xenobiotic compounds known

as peroxisome proliferators (PPs) (31, 49). This subtype of PPARs is

highly expressed in metabolically active tissues such as the liver,

heart, skeletal muscles, intestinal mucosa, and brown adipose tissue

(50, 51). PPARa is mainly involved in the carbohydrate metabolism

and catabolism of fatty acids and their oxidation, such that its

activation reduces lipid levels (52–55). Additionally, it has been well

highlighted that PPARa increases the expression of IkB, which is a

factor that suppresses the nuclear translocation and transcriptional

activity of NF-kB, thereby interfering with NF-kB signaling and the

inflammatory response (48). Besides, increasing evidence has

demonstrated that the anti-inflammatory properties of PPARa
are manifested by a decrease in the secretion of several key

downstream inflammatory factors such as NF-kB–driven
cytokines (TNF-a, IL1B, and IL6), COX2, IL8, IL12, IL2,

VCAM1, TLR4, MCP1, STAT3, AP-1, and IL18 (56, 57).

Moreover, it has been reported that the activation of PPARa
leads to the upregulation of important anti-inflammatory factors

such as IL1 receptor antagonist (IL1ra) (58) and vanin-1 (59).
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Furthermore, PPARa can interfere with angiogenic responses that

are critical during chronic inflammation by targeting endothelial

vascular endothelial growth factor receptor-2 (VEGFR-2) signaling,

thereby controlling the inflammatory response (60).

PPARg is the most widely studied PPAR isoform, which is

expressed in white and brown adipose tissue, large intestine, and

immune cells such as macrophages, the pancreas, and the spleen,

and it plays a key role in a series of biochemical processes, including

insulin sensitivity, inducing tumor cell differentiation and

apoptosis, adipogenesis, lipoprotein metabolism, energy balance,

reducing blood fat and blood pressure, and lipid biosynthesis (53,

61–63). Activation of PPARg increases fat storage by increasing
Frontiers in Immunology 04
adipocyte differentiation and enhancing the transcription of genes

important for lipogenesis (64, 65). Moreover, this subtype has been

proposed as a potential therapeutic target for different types of

cancer due to its various anti-tumor properties (66, 67). In terms of

regulating inflammation, recent literature has reported that PPARg
prevent the inflammatory cascades caused by NF-kB activation and

the production of proinflammatory cytokines such as TNF-a, IL1B,
IFN-g, IL2, iNOS, IL18, reactive oxygen species (ROS), and IL6

through the inhibition of NF-kB transactivation (38, 68–70). On the

other hand, PPARg exerts its protective effects by targeting major

inflammatory factors such as STAT1, AP-1, PI3K, intercellular

adhesion molecule (ICAM1), and matrix metallopeptidase 9
A

B

FIGURE 1

Schematic representation of peroxisome proliferator-activated receptor (PPAR) structure and ligand-induced activation. (A) The PPARs are
composed of five distinct regions or domains (1): the ligand-independent activation domain of AF1 located in the N-terminus (amino-terminal A/B
domain), which is responsible for receptor phosphorylation (2); the highly conserved DNA-binding domain (DBD) in the C region that contains two
zinc finger motifs responsible for receptor binding to DNA targets on the peroxisome proliferator hormone response elements (PPREs) of PPARs
target genes (3); a variable hinge region in the D domain that is the docking site for co-factors (4); a moderately conserved ligand-binding domain
(LBD) in the E region that is responsible for the ligand specificity and activation, as well as for dimerization of the receptor with the 9-cis-retinoic
acid receptor (RXR) (5); an AF2 ligand-dependent activation domain in the C-terminus (carboxyl-terminal in F domain) that is crucial for the
recruitment of PPAR co-activators. Numbers shown in C and E regions indicate the percentage amino-acid identity of DBD and LBD of human
PPARb/d and PPARg compared to human PPARa. (B) Several co-activator or co-repressor factors affect the activity of PPARs, which can stimulate or
inhibit the function of the receptor, respectively. When PPARs are in a non-ligand-bound state in solution (inactive mode), all three PPAR isoforms
can bind transcription co-repressors in a DNA-independent manner. These co-repressors, such as nuclear receptor co-repressor/silencing
mediators for retinoid and thyroid hormone receptors (NCoR/SMRT), suppress gene transcription by interacting with histone deacetylases (HDACs).
The binding of ligands to the PPAR–RXR heterodimer causes the exchange of co-repressors with co-activators, thereby converting PPARs from an
inactive state to an active state. Receptor activation generally occurs after agonist binding to the LBD. Following ligand binding and initiation of
receptor phosphorylation, PPARs dissociate the co-repressor complex. Then, the ligand–heterodimer (ligand–PPAR–RXR) complex binds to the
target DNA promoter through a PPRE. Next, in order to allow the transcriptional machinery to gain access to the promoter region, PPARs bind
specific co-activator complexes, such as steroid receptor activator 1 (SRC1) and cAMP response element-binding (CREB)-binding protein (CBP)/
p300, which have acetyltransferase activity. Subsequently, they regulate the transcription of various genes that play a key role in various
physiological processes.
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(MMP9) and inhibiting their activity to prevent destructive

inflammatory damage (71). In addition, PPARg regulates the

expression of several essential inflammatory target genes such as

MCP1/CCL2, endothelin-1, and adiponectin (APN) (72).

Interestingly, a recent study well demonstrated that PPARg
inhibits dysregulated inflammatory responses by suppressing

NLRP3 inflammasome activation as well as decreasing maturation

of caspase-1 and IL1B (73).

The PPARb/d is the third subtype of PPARs, which has not been
as intensely studied as PPARa and PPARg; it consists of 441 amino

acids with a molecular weight of 49.9 kDa. This isoform is expressed

in almost all tissues. It is especially abundant in the liver, intestine,

kidney, abdominal adipose tissue, and skeletal muscle, all of which

are involved in lipid metabolism. Indeed, the PPARb/d isoform

participates in fatty-acid oxidation, mainly in skeletal and cardiac

muscles, and regulates blood cholesterol and glucose concentration

(47, 74, 75). However, complete information on the exact role of

PPARb/d in the regulation of inflammation is still not available, and

more research is needed to deeply dissect the relationship between

PPARb/d and inflammation or inflammatory response. In some

contexts, PPARb/d has been shown to have anti-inflammatory

functions. For example, it was demonstrated that activation of

PPARb/d reduces the expression of inflammation-associated NF-

kB and STAT1-targeted genes including TNF-a, MCP1, IL6,

CXCL8, CCL2, CXCR2, and CXCL1 (76–79). Taken together, all

three PPAR subtypes have distinct yet overlapping roles in

regulating metabolic function and inflammation. Further details

on the tissue distribution, function, and natural and synthetic

ligands of PPARa, PPARb/d, and PPARg are provided in Table 1.
2.3 Mechanism of PPAR activation

The activation of PPARs by ligands is associated with structural

changes in the receptor, including dissociation from co-repressor
Frontiers in Immunology 05
complexes and association with appropriate transcriptional co-

activators, binding to DNA, and acquiring transactivation/

transrepression capabilities (31). Moreover, promotion of many

biochemical mechanisms of PPARs requires that the receptor is part

of a heterodimeric complex with another nuclear receptor, the 9-

cis-retinoic acid receptor (RXR; NR2B) (21, 89). Therefore, after

activation with ligands/agonists, the PPAR–RXR heterodimers are

transported to the nucleus and bind to specific DNA sequences

consisting of a direct repeat of DNA recognition motif AGGTCA

separated by one or two nucleotides (DR-1 or DR-2 response

elements), thereby stimulating/repressing the transcription of

target genes (Figure 1B) (89, 90). This sequence is called the

peroxisome proliferator response element (PPRE) and is located

in the promoter regions of PPAR-regulated target genes (91).

Furthermore, after binding the ligand-activated PPAR–RXR

complex to the target DNA through PPARE, this complex binds

to specific co-activator complexes such as CREB-binding protein

(CBP)/p300 and steroid receptor co-activator 1 (SRC1), which have

histone acetyltransferase activity and facilitate the remodeling of

chromatin structure (92–95). In this regard, previous studies have

reported that the binding of co-activator complexes to the ligand-

activated, PPRE-associated PPAR–RXR complex can disrupt

nucleosomes and induce transcriptional regulatory changes in the

chromatin structure near the regulatory regions of PPAR target

genes (Figure 1B) (57, 96, 97).
3 COVID-19 and cytokine storm

SARS-CoV-2, which affects the lower and upper respiratory

tract, invades host cells through angiotensin-converting enzyme 2

(ACE2) receptors (98, 99) and causes a wide range of clinical

manifestations from mild forms such as fever, cough, and myalgia

to moderate forms with pneumonia and local inflammation

symptoms requiring hospitalization, to severe/critical forms with
TABLE 1 The natural and synthetic ligands, tissue expression, and function of PPARs.

PPAR
Subtypes

Main Ligands (Natural and Synthetic) Function Tissue Distribution Reference

PPARa
(NR1C1)

Unsaturated fatty acids, omega-3, leukotriene B4,
8-hydroxy-eicosatetraenoic acid, clofibrate,
fenofibrate, gemfibrozil, bezafibrate, and
ciprofibrate

Lipid catabolism and hemostasis by
stimulating beta-oxidation of fatty
acids, control of inflammatory
processes and vascular integrity, and
mediation of the hypolipidemic
function of fibrates

Highly expressed in metabolically active
tissues such as liver, heart, kidney, large
intestine, skeletal muscle, intestinal mucosa,
and brown adipose

(22, 47, 53,
54, 80)

PPARb/d
(NR1C2)

Arachidonic acid, linoleic acid, PGI213s, 13S-
HODE, carbaprostacyclin, components of VLDL,
GW501516, GW0742, MBX-802, and L-165041

Responsible for glucose metabolism
and homeostasis, vascular integrity,
glycogen metabolism, and control of
inflammation

Expressed ubiquitously in virtually all
tissues, mostly expressed in the small
intestine and large intestine, and highly
expressed in skin, skeletal muscle, adipose
tissue, inflammatory cells, and heart

(81–84)

PPARg
(NR1C3)

Unsaturated fatty acids, prostaglandin PGJ2, 15-
hydroxy-eicosatetraenoic acid, 9- and 13-
hydroxy-octadecadienoic acid, 15-deoxyD12,14-
prostaglandin G2, prostaglandin PGJ2,
ciglitazone, pioglitazone, rosiglitazone,
troglitazone, farglitazar, S26948, and INT131

Lipid storage, glucose disposal,
insulin sensitivity, cellular
proliferation, differentiation,
regulation of innate immune
response and inflammation, and
differentiation and maturation of
adipocytes

Expressed at the highest level in adipose
tissue (white and brown), as well as in
epithelial surfaces, urinary tract, human
placental trophoblast, immunologic system
(bone marrow, lymphocytes, monocytes,
and macrophages), and spleen

(61, 62, 85–
88)
f
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fatal outcomes (100). Upon cellular entry of SARS-CoV-2 via its

ACE2 receptor, viral genomic single-stranded RNA or other RNA

compositions (double-stranded RNA) can be recognized as

pathogen-associated molecule patterns (PAMPs) by innate

immune and epithelial cells through the activation of pattern

recognition receptors (PRRs) such as Toll-like receptors (TLRs),

retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and

NOD-like receptors (NLRs) (101, 102). Following sensitization of

PRRs, downstream key inflammation-related transcription factors

such as NF-kB, activator protein-1 (AP-1), and IFN regulatory

factors (IRFs) are activated and promote the transcription of

proinflammatory cytokines, chemokines, and IFNs such as IL1b,
IL18, IL6, IL12, TNF-a, IL8, IL2, IL7, IL17, CCL3, CCL5, CXCL8,
CXCL10, and IFN-g (103–108). Moreover, proinflammatory

cytokines such as IL6, TNF-a, and IFN-g, in turn, activate JAK/

STAT, NF-kB, and mitogen-activated protein kinase (MAPK)

signaling by binding to their receptors on immune cells to induce

further production of proinflammatory cytokines and subsequently

form positive feedback to initiate the cytokine storm

(Figure 2) (102).

Exacerbation of the local inflammatory response and increased

secretion of proinflammatory cytokines and chemokines by resident

immune and respiratory epithelial cells leads to more recruitment of

innate and adaptive immune cells such as macrophages,

neutrophils, dendritic cells (DCs), natural killer (NK) cells,

monocytes, and CD4+ and CD8+ T cells to the site of infection

to produce more persistent inflammatory cytokines (102). Indeed,

growing evidence suggests that the crosstalk between epithelial cells

and immune cells in COVID-19 produces high levels of
Frontiers in Immunology 06
proinflammatory cytokines that trigger an uncontrollable

inflammatory response, hyperinflammation, or imbalanced

inflammation (known as “cytokine storm”) with severe

complications and poor outcomes (109, 110). In this regard,

extensive studies have recently reported that high circulating

levels of proinflammatory cytokines (IFN-a, IFN-g, IL1b, IL6,
IL12, IL18, IL33, TNF-a, TGF-b, IL1RA, IL7, IL8, IL9, VEGFA,
etc.) and chemokines (CCL2, CCL3, CCL5, CXCL8, CXCL9,

CXCL10, etc.) have been identified in patients with severe

COVID-19 (105, 111–114). Furthermore, it has been highlighted

that cytokine storm is one of the main features of ARDS, ALI, tissue

damage, and MOF, which are the major causes of COVID-19

severity and death of patients (106, 111, 115). Therefore, we

believe that any intervention approach to target the critical

inflammatory factors during SARS-CoV-2 infection could be a

fundamental step in developing therapeutic strategies to control

hyperinflammation, combat the cytokine storm, and reduce

COVID-19 severity.
4 Anti-inflammatory mechanisms
mediated by PPARs

In the last decade, many studies have concluded that PPARs, in

addition to being critical players in glucose and lipid metabolism,

play an essential role in controlling various types of the

inflammatory response (57, 116, 117). Indeed, the inflammatory

role of PPARs was highlighted when a previous study showed that

PPARa knockdown was directly associated with increased levels of
FIGURE 2

Cytokine storm as the hallmark of COVID-19 immunopathogenesis. Following the entry of SARS-CoV-2 into lung epithelial and immune cells via
angiotensin-converting enzyme 2 (ACE2) receptors, a cascade of downstream signaling pathways is activated, ultimately leading to the massive
release of proinflammatory cytokines and chemokines and tissue damage. Moreover, these proinflammatory cytokines lead to the recruitment of
more innate immune cells, including neutrophils, macrophages, natural killer (NK) cells, monocytes, and dendritic cells (DCs) and active adaptive
immune cells, including CD4+ and CD8+ T cells, to the site of infection, in order to induce the production of circulating cytokines. As a result, the
crosstalk between epithelial and immune cells in vast cytokine release causes hyperinflammation and cytokine storm, which leads to a wide range of
clinical manifestations from mild to severe/critical forms with a fatal outcome. Some of these fatal consequences include macrophage activation
syndrome (MAS), hemophagocytic lymphohistiocytosis (HLH), capillary leak syndrome (CLS), thrombosis, disseminated intravascular coagulation
(DIC), acute respiratory distress syndrome (ARDS), multi-organ failure (MOF), and acute lung injury (ALI).
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proinflammatory cytokines (118). In agreement with this study, a

recent study showed that, in addition to PPARa, the knockdown of

PPARg also leads to increased serum levels of IL6, IL1b, and TNF-a
during lipopolysaccharide (LPS) stimulation (119). Furthermore, in

an animal model, Huang et al. (120) showed that increased PPARg
expression levels prevented pulmonary inflammation and were

directly associated with the recovery of influenza virus-infected

animals (120). Moreover, several previous studies have shown that

PPARa and PPARg activation lead to reduced inflammation in

polymicrobial sepsis (121) and HIV infection (122). In addition to

these findings, in recent years, the central role of PPARs to control

inflammation and reduce the levels of proinflammatory cytokines

has been reviewed in many inflammatory disorders, including lung

inflammatory diseases (32), IBD (21), and hepatic inflammation

(116). These results indicate that PPARs suppress the transcription

of main active inflammatory transcription factors, including NF-

kB, AP-1, nuclear factor of activated T cells (NFAT), and signal

transducers and activators of transcription (STATs), through an

agonist-dependent mechanism (123). Among the various

mechanisms PPARs use to repress many distinct transcriptions

factor families, the most likely include four main mechanisms in

which ligand-activated PPAR–RXR complexes suppress the activity

of many inflammatory factors.

The first mechanism is the successful competition of PPARs to

limit the amount of essential and shared co-activator proteins (such

as CBP/P300) in a cell. As a result of this successful competition,

these co-activators are not available for other transcription factors

(31, 124). Therefore, the activities of other transcription factors

(such as NF-kB) that use the same co-activators are repressed in

these situations of co-activator competition. On the other hand, the

second mechanism involves direct physical association between
Frontiers in Immunology 07
PPARs and other transcription factors without the mediation of

co-activators. During the second mechanism, known as “cross-

coupling” or “mutual receptor antagonism”, ligand-activated

PPAR–RXR heterodimers form a new complex with other

transcription factors, such as AP-1, NF-kB, NFAT, and STATs

through physical protein–protein interactions, thereby preventing

transcription factor binding to its response element and also

inhibiting their ability to induce the transcription of

proinflammatory genes such as IL6, IL1b, and TNF-a (Figure 3)

(46). For instance, agonist-activated PPARa and PPARg negatively
regulate the inflammatory gene response through bidirectionally

blocking NF-kB and AP-1 signaling pathways via physical

interaction with NF-kB p65 (38, 125). Moreover, PPARs can

suppress the expression of NF-kB through the upregulation of

inhibitors of NF-kB (IkBs) (126, 127). The third mechanism also

involves blocking MAPK-inducted signaling cascades by ligand-

activated PPAR–RXR heterodimers through inhibition of MAPK

phosphorylation and activation (128, 129). Lastly, preventing the

clearance of co-repressors whose removal is required for the

transcriptional act ivat ion of AP-1 and NF-kB target

proinflammatory genes is the fourth mechanism of inflammation

suppression by PPARs (130, 131). Moreover, another anti-

inflammatory effect of PPARs is their agonistic effect with other

anti-inflammatory factors. Previous studies have shown that a

significant increase in the expression level of PPARs is associated

with an increase in the expression of anti-inflammatory factors such

as IL10 (132–134). Several human and animal models have reported

that PPARs and their ligands downregulate the expression of many

chemokines such as CCL2, -4, -7, -12, -17, and -19, CXCL1, -9, and

-10, and leukocyte adhesion molecules such as VCAM1, ICAM1,

and endothelin-1. This downmodulation inhibits leukocyte
FIGURE 3

Control of the host inflammatory response mediated by PPARs. Most of the anti-inflammatory properties of PPARs are characterized by the
suppression of key inflammatory transcription factors such as nuclear factor-kB (NF-kB) and activator protein-1 (AP-1) via different suppressive
mechanisms, as induction of the production of anti-inflammatory cytokines. Through these mechanisms, PPARs block the expression of various
inflammatory genes and, thus, reduce the production of many proinflammatory cytokines, chemokines, and other proinflammatory signal mediators,
such as inducible nitric oxide synthase (iNOS). Additionally, the PPARs prevent the recruitment of leukocytes to the site of inflammation by inhibiting
the production of cell adhesion molecules.
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recruitment to the site of inflammation and reduces the crosstalk

between immune cells and other resident cells for cytokine

production (135–139).
5 Control of inflammation by PPARs
during SARS-CoV-2 infection

The recent emergence of COVID-19 in the past years and its

rapid worldwide spread have led to extensive clinical studies

investigating the molecular regulatory mechanisms behind this

severe disease. Intriguingly, at this time, many of these extensive

clinical studies reported the influential role of PPAR subtypes,

especially PPARg and their ligands, in controlling the host

inflammatory response during SARS-CoV-2 infection. Meanwhile,

in previous clinical trials, a decrease in the expression of PPAR

subtypes and an increase in the serum level of proinflammatory

cytokines have been observed in inflammatory lungs of patients

with severe COVID-19 (112, 113, 140). Additionally, in agreement

with the results of clinical studies, several recent transcriptomics

studies using microarray, RNA-sequencing (RNA-seq), and single-

cell RNA-seq techniques have reported downregulation of PPARs

in various tissues including whole blood, lung epithelial cells,

bronchoalveolar lavage fluids (BALFs), and peripheral blood

mononuclear cells (PBMCs) in the SARS-CoV-2-infected

individuals (141–145). Following these findings, the results of

previous proteomics and metabolomics studies also indicate the

interference of SARS-CoV-2 infection in PPAR signaling (146, 147).

Surprisingly, Keikha et al. (148) recently demonstrated that a set of

miRNAs, including mir-27b, were upregulated during SARS-CoV-2

infection. They also reported that mir-27b has a significant negative

correlation with its main target, i.e., PPARg, and the increase in its

expression during SARS-CoV-2 infection directly leads to the

downregulation of PPARg, thus playing a key role in the

exacerbation of the inflammatory response in COVID-19 patients

(148). One of the main immunopathogenesis strategies of SARS-

CoV-2 infection has been suggested to interfere with PPAR

signaling to exacerbate the inflammatory response (149). In other

words, previous studies have reported that the decrease in the

expression of PPARs including PPARg, PPARa, and PPARb/d
during SARS-CoV-2 infection is associated with the increased

secretion of proinflammatory cytokines such as IL6, IL1b, and
TNF-a, as well as cytokine storm; thus, it has a positive

correlation with ARDS and ALI in COVID-19 patients (150, 151).

Moreover, a previous study concluded that SARS-CoV-2

suppresses PPAR expression in the lungs and abrogates one of

the main anti-inflammatory cores for NF-kB activity, thereby

exerting a hyperinflammatory response in patients with severe

COVID-19 (152). Moreover, several recent studies also reported

that the reduction in PPARg and PPARa is directly related to acute

pulmonary inflammation in COVID-19 and the shift of the disease

from mild to severe and, finally, death (33, 153). Additionally, it has

been highlighted that suppressing the expression of PPAR subtypes,

especially PPARg, leads to increased susceptibility to SARS-CoV-2

infection (154). Interestingly, the decrease in PPARg expression

during SARS-CoV-2 infection, in addition to being positively
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related to the occurrence of hyperinflammation, also leads to

insulin resistance in COVID-19 patients (155). Besides, it has

recently been reviewed that over-activation of the canonical

WNT/b-catenin pathway in response to SARS-CoV-2 infection

leads to inhibition of PPARg expression in an opposing interplay

(156). Furthermore, COVID-19 has more negative clinical

consequences for obese people because clinical trials indicate that

the serum levels of PPARg are lower in obese people. Therefore, the

probability of cytokine storm during SARS-CoV-2 infection is

higher in these people (157). Furthermore, another study proved

that alcohol consumption is directly related to systematic

inflammation in COVID-19 patients because ethanol (EtOH)

exacerbates the activation of proinflammatory cytokines,

including IL6, IL1B, IFN, and TNF-a and inflammation-related

transcription factors, including HIF1-a, JUN, NF-kB, and STATs

via induction of PPAR–RXR inactivation (158).

Additionally, there is accumulating evidence that the T-helper 2

(Th2) inflammatory response phenotype can induce protective

effects against the COVID-19 immunopathogenesis due to the

increased secretion and release of Th2 anti-inflammatory

cytokines such as IL10, IL4, and IL13 and recruitment of the

eosinophils to the site of inflammation (159). Following these

results, it has been well reviewed that cytokines associated with

Th2 inflammatory response such as IL4 and IL13 inhibit the

secretion of several proinflammatory cytokines such as IL6, IL1B,

IL1a, IL12, and TNF-a, which play a central role in the

pathogenesis of COVID-19 and hyperinflammation (160).

Moreover, the anti-inflammatory M2 macrophages is activated by

IL4 and IL13, which modulate inflammatory responses by

producing anti-inflammatory cytokines, such as IL10 (161).

Strikingly, recent results suggest that Th2 responses which driven

by IL4, IL5, and IL13 dramatically reduce ACE2 in the respiratory

tract and are associated with better clinical outcomes with COVID-

19 (162, 163). Therefore, it has been hypothesized that the Th2

inflammatory response may exert potential protective effects against

COVID-19 (164). Surprisingly, previous studies in several human

inflammatory diseases indicate that both PPARa and PPARg and
their ligands increase the expression levels of anti-inflammatory

markers associated with the Th2 inflammation such as IL13, IL4,

IL10, and GATA3, thereby limiting the dysregulation of

inflammation (165–167). Therefore, based on these findings, it

can be concluded that PPARs can induce different anti-

inflammatory mechanisms during SARS-CoV-2 infection through

a synergistic effect with Th2 inflammatory responses.

Several reports suggest that PPARs play an important role in

controlling the inflammatory response during COVID-19 by

inducing the inactivation of the key inflammatory transcription

factors, especially NF-kB (168). In this regard, it has been suggested

that activation of PPARg during COVID-19 can reduce the

circulating levels of TNF-a, IL-1, and IL-6 in the innate immune

cells such as macrophages and monocytes through interaction with

NF-kB (169). Moreover, PPARg acts as a negative regulator of

cytotoxic T-cell activation and suppresses the production of

cytokines by these adaptive immune cells (170). Following these

studies, the recent emerging literature has also reported that

activation of PPARa, PPARb/d, and PPARg is inversely related to
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pulmonary fibrosis caused by chronic inflammation in COVID-19

patients (147, 171–173). It has been also hypothesized that exercise

may prevent untoward systemic consequences of SARS-CoV-2

infection including inflammation and metabolic dysfunctions

such as lipotoxicity by having a positive effect on PPARa (33).

The anti-inflammatory role of PPARb/d during COVID-19 has

been less studied than the other two types of PPARs. However, a few

reports have indicated that PPARb/d suppressing transcription

factors involved in the inflammatory response, including NF-kB
and AP-1 (31), reduce the expression levels of GDF-15 (one of the

inflammatory biomarkers of COVID-19 severity) in a negative

feedback manner (174).

Furthermore, PPARb/d and PPARg have been shown to play a

central role in the macrophage polarization toward an anti-

inflammatory M2 phenotype during COVID-19 (175). On the

other hand, the previous literature has shown that PPARa and

PPARg prevent the apoptosis of inflammatory cells by inducing

anti-apoptotic factors of the BCL-2 family, thereby preventing the

spread of cytokines and chemokines in the intercellular space (176).

Notably, the decrease in the expression levels of PPARs in the early

stages of SARS-CoV-2 infection and the increase in their expression

during the treatment/recovery period indicate the opposite/inverse

relationship of these receptors with the severity of the disease

(38, 177).

Intriguingly, PPARa and PPARg have been proposed as

effective adjuvants for the development of COVID-19 vaccines

because these receptors through an increase in the population of

regulatory T-cells via upregulation in FOXP3 mRNA expression (a

transcriptional factor for the function and differentiation of

regulatory T-cells) (1): stimulate memory T-cells (2), upregulate

the gd type of T-cells, and (3) prolong B-cell memory and improve

the secondary antibody response and thus can induce long-term

memory (176, 178). However, the inverse relationship between

regulatory T-cells and chronic inflammation has been revealed by

previous research (175, 179), and the anti-inflammatory properties

of these cells are well established (180, 181). Therefore, it can be

predicted that the increase in the population of regulatory T-cells

due to the activation of PPARs can play a potential dual-role by

stimulating and strengthening long-term memory and exerting

significant anti-inflammatory properties during SARS-CoV-

2 infection.

Recent advances in high-throughput transcriptome-based

technologies and the integration of these techniques with

computational network-based algorithms of systems biology have

provided an excellent opportunity to identify altered gene

regulatory networks under infected conditions, activated

pathways, potential therapeutic/diagnostic/prognostic targets, and

understanding the complex molecular mechanisms underlying

infectious disease at the systemic level (182). In our previous

work, we integrated and analyzed the RNA-seq data from PBMCs

of healthy individuals and COVID-19 patients with computational

network-based methods of systems biology in order to identify

potential therapeutic targets and candidate gene modules

underlying COVID-19 and develop promising therapeutic

strategies for COVID-19 (39). As a result, we identified nine

candidate co-expressed gene modules and 290 hub-high traffic
Frontiers in Immunology 09
genes with the highest betweenness centrality (BC) score directly

related to SARS-CoV-2 pathogenesis (39). Indeed, the genes with

the highest BC score have the highest rate of “information transfer”

in their respective modules with critical biological functions, which

are known as “high traffic” genes and can be potential therapeutic,

diagnostic, and prognostic targets for COVID-19 therapy (39). We

observed that PPARa is among the hub-high traffic genes in one of

the key modules with anti-inflammatory function, indicating the

crucial anti-inflammatory role of this PPAR subtype during SARS-

CoV-2 infection (39). In another study, Auwul et al. (40) integrated

various transcriptomic data with computational systems biology

and machine learning algorithms and identified 52 common drug

targets, including PPARg, for COVID-19 treatment (40).

Moreover, further studies using pharmacological network

approaches have identified PPARa and PPARg as promising

drug/therapeutic targets to control inflammation caused by host–

SARS-CoV-2 interactions (183, 184). On the other hand, recently, a

study introduced glycyrrhetinic acid as an essential drug against

cytokine storm in COVID-19 patients (185). During this study,

using protein–protein interaction (PPI) network and molecular

docking techniques, it was well established that glycyrrhetinic

acid activates or represses 84 core genes to counter the cytokine

storm during COVID-19 using multiple strategies (185). As an

important result of this study, one of these glycyrrhetinic acid

strategies to deal with the cytokine storm was to target PPARg,
PPARa, and PPARb/d for activation (185). Figure 4 shows that the

PPI structure of the candidate modules identified by these studies

that contained critical therapeutic targets, including PPARa,
PPARb/d, and PPARg for COVID-19 therapy.

Interestingly, the use of PPARs agonists to activate them to repress

the inflammatory processes during COVID-19 has recently attracted

much attention. In this regard, it has been demonstrated that PPAR

activation through synthetic and nutritional compounds can be an

efficient management program to overcome the cytokine storm and

prevent the deleterious inflammatory effects after coronavirus infection

(38, 186). Moreover, a recent study suggested using synthetic and

natural ligands of PPARs in order to target NF-kB transcriptional

activity and reduce inflammatory response as an attractive strategy for

managing the nutrition of COVID-19 patients (187). Following these

results, the recent literature also reported that several natural and

synthetic PPARg agonists suppress NF-kB activity through PPARg
activation, leading to reduced levels of proinflammatory cytokines such

as IL1b, IL6, TNF-a, IL18, IFN-g, IL8, and IL12 (38). It has been well

established that PPARa activation using oleoylethanolamide, in

addition to suppressing TLR4-mediated NF-kB signaling cascade and

reducing proinflammatory cytokines such as COX2, IL6, CRP, IL1b,
TNF-a, and iNOS, is also associated with increased levels of anti-

inflammatory factors such as IL10 (56, 188–190). Additionally, it has

recently been shown that fenofibrate is a PPARa agonist with anti-

inflammatory, anti-oxidant, and anti-thrombotic properties that exerts

broad anti-inflammatory effects such as inhibition of iNOS, repression

of COX2 and MMP9, activation of inhibitory kappa B (IkB), and
release of adiponectin through the activating of PPARa during SARS-

CoV-2 infection (150). Furthermore, previous studies reported that

fenofibrate inhibits viral replication in lung epithelial cells by reversing

the metabolic changes caused by SARS-CoV-2 (175). On the other
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hand, natural astaxanthin (ASX), an important PPARg agonist, has a
clinically proven safety profile with anti-oxidant, anti-inflammatory,

and immunomodulatory properties. Interestingly, mounting evidence

from clinical studies suggests that this PPAR agonist prevents the

ARDS/ALI in COVID-19 patients by downregulating NF-kB and JAK/

STAT signaling and then reducing TNF-a, IL1b, and IL6 levels.

Moreover, ASX caused a change in the inflammatory response of

Th1 cells to Th2, leading to a shift from proinflammatory cytokine

secretion to anti-inflammatory cytokine secretion (191). ASX also

exerts an anti-oxidant effect and prevents oxidative damage through

(1) inhibition of NLRP3 inflammasome and HIF1-a, and (2)

suppression of plasma CRP, iNOS, COX2, PGE2, and ICAM1,

respectively. Accordingly, ASX-mediated activation of PPARg has

been proposed as an effective therapeutic strategy to control host

inflammatory and immune responses, antagonize the cytokine storm,

and prevent deleterious inflammatory effects following COVID-19

(191). Moreover, troglitazone, an insulin-sensitizing drug that is

prescribed for treating type 2 diabetes mellitus (192), is a synthetic

PPARg agonist that interferes with NF-kB activity and exerts its anti-

inflammatory effects through the activation of PPARg (38).

Interestingly, this drug has been introduced as one of the most

suitable options for applying anti-inflammatory effects for COVID-

19-inducted hyperinflammation (38). In addition to troglitazone,

pioglitazone (a synthetic agonist of PPARg, see Table 1) is another

member of the thiazolidinedione (TZD) family that has significant

anti-inflammatory effects and has been suggested by Carboni et al.

(193) as a support drug for the reduction in many inflammatory

parameters in COVID-19 patients (193). Additionally, pioglitazone can

reduce SARS-CoV-2 RNA synthesis and replication through potential

inhibition of 3-chymotrypsin-like protease (3CL-Pro) (194). Moreover,

it has recently been suggested that activation of PPARg by agonists such
as cannabidiol reduces cytokine secretion, pulmonary inflammation,
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and fibrosis in the lung of the patients during SARS-CoV-2 infection

(195). Intriguingly, zinc supplementation has also been reported to

have potential health benefits for managing inflammation in COVID-

19 by suppressing the expression of many cytokines and adhesion

molecules through increasing the expression of PPARa (196).

Furthermore, natural compounds such as gamma-oryzanol (the

main bioactive constituent from rice bran and germ) have been

introduced as a possible adjunctive therapy to prevent the cytokine

storm in COVID-19 patients, as this compound positively increases the

expression of PPARg in adipose tissue and as a result reduces the levels

of inflammatory cytokines including TNF-a, IL6, and MCP1 (157). To

the best of our knowledge, no information is yet available on the role of

PPARb/d agonists during SARS-CoV-2 infection. Therefore, future

research should investigate the anti-inflammatory effects of natural and

synthetic agonists of PPARb/d during the COVID-19 pandemic.

However, looking at the previous literature on similar inflammatory

lung diseases in humans, it can be concluded that PPARb/d agonists

have significant anti-inflammatory effects during lung infection (197).

Conversely, using existing natural and synthetic ligands of PPARs may

have limitations or challenges. For instance, recent data show that using

natural and synthetic ligands of PPARs is highly dose-dependent and

can interact with non-PPAR targets due to the complexities of the

drug–target complex (94). Moreover, it has been reported that some

ligands of PPARs can exert selective agonistic or antagonistic regulatory

effects depending on the cell context (191, 198, 199). Additionally, it has

been highlighted that using synthetic agonists of PPARs can lead to

serious clinical complications, including bone fracture, heart failure,

cardiovascular risk, liver failure, gastrointestinal bleeding, and liver and

kidney toxicity (200).

These findings highlight the potential role of PPAR subtypes

(particularly PPARg) and their ligands with anti-inflammatory

effects during the COVID-19 pandemic, which can be promising
D
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FIGURE 4

Protein–protein interaction (PPI) networks of therapeutic candidate modules for COVID-19 therapy obtained by (A) our group (39) (B) Auwul et al.
(40), (C) Oh et al. (183), and (D) Li et al. (185). These modules had the most biological associations with the immunopathogenesis of COVID-19.
Large circles represent hub-high traffic genes. PPAR genes as potential therapeutic targets for COVID-19 pandemic are highlighted by red circles in
these PPI networks.
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candidates for inhibiting key inflammatory factors (especially NF-

kB and AP-1), thus regulating inflammation during SARS-CoV-2

infection. Therefore, any intervention methods aimed at activating/

upregulating/overexpressing of PPAR subtypes could be a

promising therapeutic strategy to reduce the hyperinflammatory

response in COVID-19 patients and prevent the cytokine storm.
6 Conclusions and future prospects

COVID-19 is an emerging global health threat caused by SARS-

CoV-2 infection with severe inflammatory complications.

Treatment of severely ill patients is an important healthcare issue.

Despite developing various vaccines for disease prevention, there is

still no definitive treatment solution for COVID-19 patients. The

massive cytokine secretion caused by the exacerbation of the host

inflammatory system in response to SARS-CoV-2 infection is

known as a “cytokine storm”, which is directly related to the

progression of the disease from mild to severe. In recent years,

among previous efforts, it has been suggested that one of the most

effective strategies for improving the survival of COVID-19 patients

and reducing the severity of the disease is to control the

hyperinflammatory response and interfere with cytokine storm.

Cytokine storm has been one of the main characteristics of disease

severity, decreased lung function, ARDS, ALI, and MOF, and

ultimately, the death of COVID-19 patients. Therefore, paying

attention to anti-inflammatory factors and examining their

response during SARS-CoV-2 infection can provide the basic

solution to deal with COVID-19-inducted cytokine storm.

PPARs are ligand-dependent transcription factors belonging to

the nuclear receptor superfamily, which are the main regulators of

lipid and glucose metabolism. This transcription factor family

consists of three subtypes: PPARa, PPARb/d, and PPARg. In the

last decade, it has been well established that these subtypes, in

addition to their central role in metabolism and energy balance, play

important roles in cell proliferation, differentiation, the immune cell

system, and inflammation. Concerning inflammation and

inflammation-related disease, PPARs play an important anti-

inflammatory role as critical inhibitors of the host inflammatory

response through adverse regulatory effects on active inflammatory

transcription factors such as NF-kB, AP-1, NFAT, and STATs.

Currently, extensive clinical and omics studies indicate

downregulation in the expression of PPARs in response to SARS-

CoV-2 infection, which has been proposed as one of the main

causes of SARS-CoV-2 immunopathogenesis to exacerbate the host

inflammatory response.

On the other hand, it has been highlighted that the activation of

PPARs through natural and synthetic ligands is associated with the

reduction of hyperinflammatory response, prevention of cytokine

storm, and reduction in disease severity in COVID-19 patients.

Therefore, this makes them attractive and practical targets for
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developing novel therapeutic strategies against COVID-19 and

cytokine storm. However, the previous literature has indicated

that using existing natural and synthetic ligands of PPARs may

lead to severe clinical complications.

Therefore, considering the anti-inflammatory importance of

PPARs to control the hyperinflammatory response during COVID-

19, further research should deeply investigate the individual or

collective effects of PPAR subtypes to inhibit cytokine storms

during SARS-CoV-2 infection. Moreover, considering the side-

effects and challenges of using existing natural and synthetic

ligands to activate PPARs, further exploration of the underlying

mechanisms is needed to establish new pathways of PPARs

activation without causing severe clinical side-effects.
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