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Neuroimmune regulation in
Hirschsprung’s disease
associated enterocolitis

Haosen Ji, Dengming Lai and Jinfa Tou*

Department of Neonatal Surgery, Children’s Hospital, Zhejiang University School of Medicine,
National Clinical Research Center for Child Health, Hangzhou, China
Neuroimmune pathways are important part of the regulation of inflammatory

response. Nerve cells regulate the functions of various immune cells through

neurotransmitters, and then participate in the inflammatory immune response.

Hirschsprung’s disease (HD) is a congenital abnormal development of intestinal

neurons, and Hirschsprung-associated enterocolitis (HAEC) is a common

complication, which seriously affects the quality of life and even endangers the

lives of children. Neuroimmune regulation mediates the occurrence and

development of enteritis, which is an important mechanism. However, there is

a lack of review on the role of Neuroimmune regulation in enterocolitis

associated with Hirschsprung’s disease. Therefore, this paper summarizes the

characteristics of the interaction between intestinal nerve cells and immune

cells, reviews the neuroimmune regulationmechanism of Hirschsprung’s disease

associated enterocolitis (HAEC), and looks forward to the potential clinical

application value.
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1 Introduction

Neuroimmune regulation is an important link to maintain the homeostasis of the body,

and plays a key regulatory role in inflammation, tumor and other diseases. Neuroimmune

pathways are involved in the regulation of intestinal inflammation. On the one hand, the

nervous system regulates the function of immune cells through neurotransmitters or

neuropeptides, while on the other hand, immune cells play a key role in neuronal injury,

repair and differentiation. Single-cell RNA sequencing of human and mouse intestinal

nervous system (ENS) components shows that healthy intestinal neurons express soluble

mediators and cell surface molecules and can communicate with innate and adaptive

immune cell types (1). The activation of ENS induced by infection or inflammation can

inhibit the progression of inflammation and restrict the pathological process, while the

destruction of ENS structure may further aggravate inflammation and infection (2–4).

During intestinal inflammation, the vagus nerve and its neurotransmitter can reduce

enteritis in mice (5), and muscular macrophages limit neuronal damage through
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epinephrine signaling pathways (6). In many cases, recovery is

limited, and damage to ENS may have long-term consequences, for

example, gastrointestinal diseases after infection (7). This article

reviews the research progress of intestinal nerve-immune cell

interaction in intestinal inflammation.
2 Regulation of intestinal nervous
system on immune cells

ENS is the largest component of the peripheral nervous system,

which consists of two cell types: neurons and enteric glial cells

(EGCs). EGCs support the ENS network and maintain the integrity

of the epithelial barrier.

Intestinal neurons work by secreting neurotransmitters and

neuropeptides. ENS participates in the maintenance of intestinal

homeostasis in intestinal physiology. Intestinal submucosa and

myenteric plexus are involved in regulating immune response,

killing or excreting pathogens, and restoring mucosal barrier

during enteritis. Intestinal nervous system is indispensable for the

recovery of intestinal homeostasis.
2.1 Enteric neurons and intestinal
immune cells

2.1.1 Adrenergic neuronal regulation
of macrophages

In the intestinal myenteric plexus, the myenteric macrophages

(MMs) are closely connected with the cell bodies of excitatory

endogenous enteric neurons (8). MMs are the main source of bone

morphogenetic protein 2 (BMP2), which stimulate intestinal

neurons to regulate gastrointestinal motility. In turn, the

development and reproduction of MMs are controlled by colony

stimulating factor (CSF1) expressed by intestinal neurons (9). In the

intestine of CSF−/−mice, the number of NO+ neurons increases, and

there is no expression of bone morphogenetic protein 2 in MMs,

which leads to the immature development of neurons in the

intestinal muscle layer. Macrophage depletion induced by anti-

CSF1R treatment affects the differentiation of Paneth and other

intestinal epithelial cells (10).

After intestinal bacterial infection, MMs is activated, which

plays an important role in the protection of intestinal neurons. This

is attributed to the rapid activation of external sympathetic neurons

innervating the intestinal muscle layer, and the NE secreted by

norepinephrine neurons binds to the b2-adrenergic receptor(b2AR)
on MMs.

NE/b2 signal in MMs induces the expression of arginase-1 in

vitro (8). Arginase 1 (Arg-1) mediates the production of

neuroprotective polyamines, for example, spermine (11),

Spermine can inhibit the activation of NLRP6 inflammatory

bodies and inhibit NLRP6-Caspase-11-mediated neuronal injury

(12). When spermine and DFMO (an inhibitor of spermine

synthesis) were added to drinking water, it was found that the

damage to intestinal neurons increased in the inhibition group. The

protective effect of Arg-1 on neurons after intestinal infection was
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proved by hybridization between LysMCre mice and Arg-1flox/flox

mice (13). The macrophages of this selective activation program

play an important role in the repair and protection of intestinal

tissue, and this discovery lays a foundation for exploring MMs as a

neuroprotective sentinel.

Furthermore, the effect of adrenergic neurons on MMs plays a

central role in coordinating the tissue protective tolerance

response after Salmonella enteric infection. It has been found

that wild-type mice infected with an attenuated Salmonella

typhimurium (spiB) can clear the infection within 7-10 days,

but the result of infection is long-term (up to 4 months)

impairment of gastrointestinal motility and reduction of

intestinal neurons in a NLRP6/Caspase11-dependent manner.

MMs deletion or impaired NE/b2 signaling can worsen spiB

infection-induced enteric neuronal injury. Exogenous b2
receptor agonists enhance Arg-1 expression in MMs, protect

enteric neurons, and limit the effects of spiB infection on

gastrointestinal motility (13). One experiment used mice

infected with S. commissioneri roundworms (Sv) followed by

Salmonella infection. Mice showed reduced intestinal nerve loss

compared to Salmonella infection alone. This suggests that the

adrenergic signaling pathways in myeloid macrophages limit

infection-induced neuronal loss by way of immune tolerance (6).

2.1.2 Cholinergic neuronal regulation
of macrophages

In a model of postoperative intestinal obstruction in mice and

humans (characterized by a surgically induced inflammatory

response in intestinal myenteric macrophages and impaired

intestinal motility), vagal stimulation or pharmacological action

on cholinergic enteric neurons prevented myenteric macrophage

activation and reduced postoperative intestinal obstruction in a a7
nicotinic receptor (a7nAChR) dependent manner (14). In a mouse

model of food allergy, vagus nerve stimulation ameliorates intestinal

inflammation caused by food allergy in a 7nAChR-independent

manner. This effect may be mediated by the vagal system through

increased phagocytosis of allergenic substances by CX3CR1+

macrophages (15). Vagus nerve stimulation increased the

phagocytic activity of CX3CR1+ macrophages, an effect that may

be dependent on 4b2nAChR. Food antigen uptake and subsequent

induction of food-specific Treg by anti-inflammatory CX3CR1+

macrophages is effective in preventing allergic reactions (16, 17).

The ganglion-free colon of HSCR patients lacked intrinsic

myenteric and submucosal plexuses, but cholinergic nerve fibers

were significantly thickened, and the incidence and prognostic level

of postoperative HAEC correlated with the proliferation of

cholinergic nerve fibers. Some researchers divided the intestinal

mucosa into high-fiber tissue and low-fiber tissue according to the

degree of fibrous hyperplasia, and by immunofluorescence co-

localization they found that macrophages from high-fiber tissue

were associated with Tubulin+AChE+ neurons, and macrophages

from the mucosal lamina propria of ganglion descending colon

tissue from HSCR and control patients appeared to be associated

with Tubulin+AChE- neurons. The physical proximity of

cholinergic neurons to macrophages facilitates the interaction

between the two (18). Analysis of the transcriptome of myeloid
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macrophages from high-fiber tissue and low-fiber tissue

corresponding colonic segments, they found a trend of elevated

levels of nicotinic and muscarinic receptors, high expression of

CX3CR1, CD14+ (M2 macrophage marker) in macrophages

isolated from high-fiber tissue. The percentage of Treg cells was

significantly elevated. Macrophages exhibited an anti-

inflammatory, tissue-resident phenotype. In contrast, in low-fiber

tissue, the expression of cellular inflammatory factors such as IL-17,

IL-6, and IL-1b was significantly increased, CCR2+ was highly

expressed in macrophages, and the ratio of Th17/Treg was

significantly elevated (18).

Under inflammatory conditions, monocyte-derived CCR2+

macrophages infiltrate the intestinal mucosa and initiate Th17 cell

responses. Under steady-state conditions, CX3CR1+ macrophages

secrete anti-inflammatory cytokines and maintain Treg numbers.

CX3CR1+ macrophages are essential for epithelial cell integrity,

control of bacterial translocation, and commensal tolerance (16).

Muscarinic acetylcholine receptor activates ALDH gene expression

in macrophages (antigen presenting cells) of CX3CR1+, which

produces retinoic acid and promotes the expansion of intestinal

Treg cells (19). In addition, Treg cells are able to inhibit the action

of Th17 cells (20), Proliferative cholinergic nerve fibers influence

the differentiation of CD4+ helper cells, especially the proportion of

Treg, through their regulatory effects on macrophages, thereby

regulating intestinal inflammation.

In the follow-up of 42 HSCR patients 1 year after surgery, 9

patients developed HAEC, of which 7 showed a low-fiber

phenotype and 2 showed a high-fiber phenotype; these

observations suggest that HSCR patients with a low-fiber

phenotype are at a higher risk of developing HAEC after surgery

(18), This study identified and explained the relationship between

the high-fiber phenotype of the intestinal mucosa and the incidence

of HAEC after the surgery of HSCR from an immunological

perspective, providing a theoretical basis for the prophylactic

treatment of HAEC.

In the further, intestinal serotonergic neurons are also

cholinergic neurons. Tryptophan hydroxylase 2 (THP2), a marker

of 5-HT expression in serotonergic neurons, is significantly

decreased in intestinal neurons of HAEC patients and is restored

postoperatively. Although only 5% of intestinal 5-HT is stored in

neurons, only neuronal-derived 5-HT plays a role in regulating

intestinal motility compared to intestinal epithelial-derived 5-HT.

HAEC-mediated 5-hydroxytryptaminergic neuronal damage may

lead to colonic dysfunction and recurrent enterocolitis (21).

Another study shows that cholinergic innervation in rectosigmoid

colon in HSCR patients is associated with secretion of pro-

inflammatory IL-8, which increases the risk of HAEC (22).

Patients with HSCR typically present with exogenous

cholinergic nerve fibers throughout the aganglionic rectosigmoid.

Studies have shown that cholinergic signaling can reduce

inflammatory responses and a7nAChR plays an important role in

the neuroimmune signaling pathways. Thus, sparse exogenous

cholinergic innervation in the sigmoid mucosa and antagonism of

a7nAChR are associated with increased frequency of inflammatory

immune cells and higher incidence of HAEC in patients with

HSCR (22).
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2.1.3 Neuronal regulation of lymphocytes
Neurokinin P is also called substance P (SP). Endocrine neurons

are the main source of intestinal SP. SP acts through interaction with

cell surface receptors NK1R, NK2R and NK3R. SP induces peripheral

blood mononuclear cells (including lymphocyte proliferation and

immunoglobulin production) to stimulate the production of pro-

inflammatory cytokines such as IL-1b, IL-6 and TNF-a (23–25). This

may be due to the positive regulation of NK1R, as inflammatory

factors such as IL-12, IL-18 and TNF-a induce NK1R expression in T

cells (26), while IL-10 and TGF-b decreased the expression of NK1R

(27). NK1R has the greatest affinity for SP, which is primarily

associated with inflammatory processes (28). NK1R receptor

density is significantly increased in patients with Crohn’s disease

and ulcerative colitis (29). Expression of substance P was also shown

to correlate directly with the severity of Trypanosoma cruzi

megacolon. It was higher in submucosal and myenteric plexus

neurons in the dilated portion of the megacolon compared to the

undilated portion and the uninfected population, and this might be

related to the preferential destruction of inhibitory motor neurons

(VIP and NOS immunoreactivity) in the intestine of chagasic patients

with megacolon by Trypanosoma cruzi and inflammatory processes

(30). However, another study described lower myenteric and

submucosal plexus SP concentrations in rectal samples from

trypanosomatid patients, which may be associated with reduced

intestinal peptidergic neuronal damage (31).

VIP+ neurons mediate VIP secretion, and VIP not only

monitors intestinal epithelial status by regulating lymphocytes,

but also regulates mononuclear phagocytes (MNPs) and the

cytokines they secrete, tilting immunity toward the Th2 type (32).

VIP-sensitized dendritic cells induce Treg production and restore

immune tolerance. VIP-producing neurons in the intrinsic layer are

very close to ILC3, which selectively expresses type 2 VIP

receptors.IL-22 secretion is inhibited by ILC3 binding to VIP,

which results in reduced levels of AMP, an epithelial-derived

antimicrobial peptide, and rhythmic changes in VIP levels

promote normal function of the intestinal barrier (33).

Using a mouse model of intestinal helminth infection, it has

been shown that neuromedin U increases protective immune

responses and induces parasite clearance through activation of

ILC2 (34, 35). Conversely, signals from sympathetic adrenergic

neurons attenuate diminished ILC2 effector function and prevent

chronic pathological type 2 inflammation by activating ILC2-

specific b2-adrenergic receptors (36).
Enteric-specific IL-18 neurons drive the production of the

antimicrobial peptide AMP in goblet cells and protect the

intestine during Salmonella typhimurium infection, which is

important for the mucosal barrier and coordinated homeostasis of

the intestine (37).

Neuropeptides have innate host defense enhancing and direct

antimicrobial effects and some neurons distributed in the intestine are

one of the main sources. Neuropeptides regulate intestinal immunity

in endocrine and paracrine ways. In patients with sepsis, the intestinal

barrier is damaged, intestinal permeability is increased, and bacterial

cell wall components (e.g. lipopolysaccharide) can stimulate

nociceptive receptors located in the lamina propria of the intestine

and induce increased synthesis and release of calcitonin gene related
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peptide (CGRP), substance P, neuropeptide Y, vasoactive intestinal

peptide, VIP and other neuropeptides. CGRP can directly act on

lymphocytes, dendritic cells and macrophages in the intestinal tract,

significantly improving the host’s intestinal defense ability (38).

2.1.4 Neuronal regulation of mast cells
The release of SP from peptidergic neurons activates mast cells

and promotes their degranulation, followed by the release of pro-

inflammatory mediators from mast cells, such as TNF-a, IL-1b and

trypsin. They strengthen the relationship among mast cells, trypsin,

neuroinflammation and neuronal death (39–41). After co-culture of

intestinal secretory neurons with mast cells, mast cells release

histamine and protease through degranulation resulting in

increased intra-neuronal Ca2+ concentration and significantly

increased neuronal sensitivity, but the function of mast cells

themselves is inhibited (42).
2.2 Relationship between enteric glial cells
and immune cells

EGCs are distributed in different levels of the intestine and show

the phenotype of GFAP+ after activation. EGCs can be divided into

two subgroups based on the expression of GFAP (43). LPS and

proinflammatory cytokines can induce the expression of GFAP

(44), and the combination of LPS and IFN-y or high concentration

of IL-10 (5-100ng/ml) can induce the proliferation of enteric glial

cells (45, 46). However, IL-1 b or low level of IL-10 (0.1ng/ml) can

prevent the proliferation of ECGs (46). The expression of GFAP has

been proved to be related to neuronal injury or protection and

inflammation. Glial cells of GFAP+ secrete, which directly and

positively affects the growth, maturation and survival of neurons

(44). GDNF can inhibit the activity of MPO, the expression of IL-1

b and TNF- a, and increase the expression of ZO-1 and Akt. It is

directly involved in the restoration of epithelial barrier function in

vivo by reducing the increase of epithelial permeability and

inhibiting mucosal inflammation. GDNF strongly prevents

apoptosis and significantly improves DSS experimental colitis in

vivo (47). An experimental model of intestinal inflammation has

shown that the lack of glial cells will lead to severe tissue

inflammation and intestinal necrosis after ablation of enteric glial

cells of transgenic mice with ganciclovir (48). The factors produced

by EGCs have strong anti-apoptotic activity, protect IEC barrier and

maintain the permeability of intestinal barrier (49, 50).

Interestingly, another experiment showed that ECGs stimulated

by LPS and IFN-y accelerated proliferation and produced

inflammatory mediator iNOS, which aggravated intestinal

inflammation (45). In patients with inflammatory bowel disease,

the proportion of GFAP+ in EGCs is increased, and its secreted

mediators increase the permeability of intestinal mucosal barrier,

thus aggravating inflammation. But in normal people, the medium

secreted by EGCs has a protective effect on intestinal mucosa (51).

ENS undergoes structural and phenotypic plastic changes during

inflammation. It is not only affected by inflammation, but also

actively participates in the inflammatory process (52) Gut-

associated neurons are closely related to immune cells. They
Frontiers in Immunology 04
continuously monitor and regulate intestinal function, including

intestinal motility and nutrition perception, and maintain

homeostasis (13).

2.2.1 Enteric glial cells and lymphocytes
In a study using RET deficient mice, the authors demonstrated

that microorganism-induced glial cell-derived GDNF (ligand) could

can activate intestinal ILC3 subsets to express neuroregulatory

receptor tyrosine kinase (RET) (53).Activated RET could induce

IL3 to secrete IL-22 and increase the expression of tight junction

proteins in epithelial cells, which could effectively promote

intestinal homeostasis (53). When EGCs are exposed to pro-

inflammatory cytokines (IL-1 b and/or TNF-a), IL-7 can also be

up-regulated. T lymphocyte function analysis shows that the

induced expression of classical IL-7 can protect T cells from cell

death (54). In patients with megacolon caused by Trypanosoma

cruzi, EGCs express II-type HLA-DR and B7 costimulatory

molecules. Therefore, EGCs also act as an antigen-presenting cell

on the activation of lymphocytes, thus affecting the progress of

chronic digestive trypanosomiasis (55).

2.2.2 Enteric glial cells and macrophages
Pro-inflammatory signal pathways induce Cx43-dependent M-

CSF production in glial cells through protein kinase C (PKC) and

tumor necrosis factor invertase (TACE), and M-CSF promotes the

transformation of intestinal myometrial macrophages to M1.

Connexin-43 is needed for communication between glial cells in

this process. Knockout of Connexin-43 in glial cells can prevent the

development of visceral hypersensitivity after chronic colitis (43).

2.2.3 Enteric glial cells and mast cells
The interaction between EGCs and mast cells may inhibit

intestinal inflammation. The activation of mast cells can promote

the activation of enteric glial cells and macrophages, resulting in

intestinal mucosal injury and neuronal reduction (56). GDNF from

EGCs can also significantly inhibit mast cell degranulation and

reduce inflammation (57).
3 Regulation of intestinal immune
cells on nerve cells

3.1 Regulation of neurons by lymphocytes

Intestinal lymphocytes are mainly divided into T lymphocytes,

ILC, B lymphocytes and so on. Among T cells, CD4+T lymphocytes

are helper T cells (Th), which play a major role in cellular immunity.

CD8+T lymphocytes are cytotoxic T cells (Tc), which are a kind of

effector cells with killing activity. The CD4+ cells that play an

important role in intestinal inflammation are Th1, Th2, Th17 and

Treg. Th1 mainly secretes IFN-y and its function is to activate

macrophages. Th2 mainly secretes IL-2, IL-4 and IL-5, which plays

a major role in type 2 immunity (58). Th17 mainly secretes IL-6, IL-

21 and IL-23, and its main role is to activate neutrophils and induce

the production of antimicrobial peptides and tight junction proteins
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by intestinal epithelial cells, thus maintaining the integrity of the

intestinal barrier. It is at the same time involved in inflammation and

autoimmune diseases and has a powerful pro-inflammatory function

(58–60). Treg cells regulate T-cell function and prevent

autoimmunity by producing the anti-inflammatory cytokines IL-10,

IL-2, and TGF-b. Their dysregulation is associated with several

inflammatory and autoimmune diseases (58, 61). Th17 cells and

Treg cells are two important subsets of lymphocytes with opposite

functions. Despite having different functional properties,

differentiation from naive T cells to Th17 cells and Treg cells is

dependent on the expression level of TGF-b (62), The delicate

balance between Th17 cells and Treg cells is the key to the internal

and external environment of gastrointestinal tract (63).

Innate lymphoid cells (ILCs) can be divided into four types: type I

innate lymphoid cells, ILC1; type II innate lymphoid cells, ILC2; type

III innate lymphoid cells, ILC3 (64); regulatory innate lymphoid cells

(ILCregs). The main cytokines secreted by ILC1, ILC2, ILC3 and

ILCregs are similar to those secreted by Th1, Th2, Th17 and Tregs (65).

B lymphocytes play an immunoprotective role in the gut by

producing IgA antibodies. Secreted into the intestinal lumen, SIgA

binds to gut microbes and food antigens, which avoids potentially

harmful stimulation of the mucosal immune system by lumen

contents, and it also helps regulate the composition of the

microbiome (66). The potential role of IgA in the pathogenesis of

HAEC was first demonstrated by Iamura et al. They found that IgA

containing plasma cells were significantly increased in the lamina

propria along the entire length of resected bowel in enterocolitis

patients, compared with non-enterocolitis patients. They also found

decreased luminal IgA (sIgA) in the same patients (67). These results

were verified in the animal model of HAEC in another research.

Moreover, they noted small intestinal lamina propria pIgR, which

transports and secretes IgA into the lumen, was decreased ∼50% in

EdnrBNCC−/− mice (68). In conclusion, these results suggest a

decrease in IgA production or transport in HSCR and HAEC.

It has been observed in animal models of Parkinson’s that CD4

+ T cells drive inflammatory responses in the intestinal mucosa and

reduce the number of dopaminergic neurons in the myenteric and

submucosal plexuses (69). Th2 is a major source of IL-4, while IL-4

and IL-13 together coordinate alternative activation of

macrophages, including upregulation of Arg-1, which may play a

protective role against neurons during intestinal infections (70). In

parasite-associated colitis involving Th2-type T cells, cytokines such

as IL-4 and IL-13 promote smooth muscle contraction by activating

the STAT6 pathway on the one hand, and on the other hand, mast

cells are recruited by IL-4, and mast cell degranulation further

induces neuronal hyperresponsiveness thereby promoting intestinal

smooth muscle contraction and ultimately intestinal parasite

expulsion. In contrast, colitis, in which Th1-type cells play a

dominant role, results in inadequate muscle contraction (71).
3.2 Regulation of neurons by mast cells

Mast cells are granulocytes that contain histamine, 5-

hydroxytryptamine and other inflammatory mediators, which are

released by cell disintegration and can cause inflammation in the
Frontiers in Immunology 05
tissue (72). Mast cells are located near blood vessels and nerve fibers

and can act bidirectionally with the nervous system, which makes

them ideal candidates for modulating neural activity and nociception;

trypsin and histamine released from mast cells can cause the release

of neuropeptides, and substance P(SP) and calcitonin-related

peptides released from proximal nerve endings can further activate

mast cells (73). Neuronal hyper-reactivity is a result of MC

degranulation, which can lead to excessive gastrointestinal

secretion, resulting in diarrhea, abdominal pain and cramps (74).

Trypsin and chymotrypsin are the major serine proteases

secreted by mast cells, and an increase in protease-secreting mast

cells correlates with a decrease in PGP9.5-associated neurons in the

megacolon (75). In addition, only the increase in trypsin-related

mast cells was associated with a decrease in PAR2-IR neurons

(protease-activated receptor 2-associated neurons), which are

cleaved by trypsin and involved in neuronal death, triggering

alterations in chronic intestinal function (76). Elevated expression

of PAR-1 and PAR-2 in the colon of HSCR patients suggests that

localized excessive release of PAR-activated proteases may trigger

an inflammatory response, leading to HAEC (77). Therefore, it is

likely that mast cells are involved in the process of HAEC

development. Other mediators secreted by mast cells such as IL-6

and prostaglandin 2 can also induce neuronal death (78).

HSCR is a rare congenital disorder caused by the absence of ganglia

in the submucosa and myenteric plexus of the colon. In the absence of

neuron in the intestinal wall, hypertrophic nerve trunks are associated

with an increased number of adrenergic and cholinergic nerve fibers

(79–81). The number of mast cells in the aganglion segment of the

colon in HSCR patients was significantly higher than in the walled

segment with neurons, and the mast cells in the intestinal segment

showed a transmural distribution. Some mast cells, which are in direct

contact with the mast nerve trunk of aganglion segments, can

synthesize, store and release neurotrophic factors that support nerve

fiber development and maintenance, suggesting that they may be

essential for nerve growth and repair (80–82).
3.3 Regulation of neurons by macrophages

Macrophages are an important part of the body’s intrinsic

immune system and are widely distributed in various tissues and

organs, with the functions of phagocytosis, antigen presentation

and secretion of various cytokines, playing an important role in

physiological processes such as inflammation, defense, repair and

metabolism. According to the location of macrophages in the

intestine, they are divided into MMs and lamina propria

macrophages (LPMs). MMs exhibit a tissue protective phenotype

(8). MMs interact with neurons of the myenteric plexus and present

as a bipolar shape (9). MMs highly express CX3CR1 and CD14 (an

M2 macrophage marker) (18), and CX3CR1+ macrophages are the

major antigen-presenting cells, which are essential for the

differentiation of CD4+ helper T cells, especially for the cell

proliferation and maintenance of Treg (83). Transcriptional

profiling revealed that MMs express genes associated with anti-

inflammatory activity (Retlna, Mrc1, CD163, IL-10) in the activated

state, while mucosal LPMs preferentially express the pro-
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inflammatory phenotype (8). In the absence of infection, MMs

secrete BMP2 in a microbial-dependent manner to regulate

neuronal activity and intestinal motility (9), and the expression of

myeloid macrophage protective gene profile is enhanced after

infection (8). In vitro, after macrophages were polarized to M1

type by LPS, pro-inflammatory cytokines (IL-1b, IL-6 and TNF-a)
contained in macrophage supernatants inhibited the expression of

OT and OTR in intestinal neurons; after macrophages were

polarized to M2 type by IL4, anti-inflammatory cytokines (TGF-

b) contained in macrophage supernatants promoted OT and OTR

in intestinal neuronal expression. Therefore, it has been suggested

that macrophages are polarized to M1 type during the inflammatory

phase and to M2 type during the recovery process (84).
4 Interstitial cells of Cajal
and macrophages

Interstitial cells of Cajal(ICCs) are closely related to the intestinal

nervous system and distributed in a reticular pattern between the

intestinal plexus and smooth muscle (85). ICCs are pacemakers of

gastrointestinal slow wave and mediators of enteric motor

neurotransmission. There are many kinds of neurotransmitter

receptors on the surface. Intestinal nerves release neurotransmitters

to regulate the frequency of slow wave generated by ICCs, thereby

regulating intestinal motility (86). The function of ICCs plays an

important role in HSCR and HAEC. Through the study of sigmoid

colon from patients with Hirschsprung’s disease in 2008, it was

found that the nubmer of ICCs expressing c-kit decreased

significantly, while the number of ICCs expressing CD34 did not

decrease, so it was pointed out that the specific downregulation of c-

kit in ICCs may be a cause of sigmoid megacolon (87). Interestingly,

tumor necrosis factor-a secreted by colonic M1 macrophages can

result in intestinal dysmotility in HAEC by causing interstitial cells of
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Cajal (ICCs) to lose their c-kit phenotype and impair their

pacemaker function through NF-k B/miR-221 pathway (88). The

loss of ICCs function will aggravate the disturbance of intestinal

motility, resulting in the accumulation of intestinal contents, damage

of intestinal mucosal barrier, invasion of LPS and increase of

M1 macrophages.
5 Intestinal neuroimmune
modulation in the diagnosis
and treatment of HAEC

The interaction between nerve cells and Immune cells(e.g. mast

cells) plays an important role in HAEC (82). Compared with HSCR

intestinal segment, exogenous cholinergic fibers decreased and M1

macrophages increased in HAEC intestinal segment (22, 88). There

have been many diagnostic techniques and treatments based on the

discovery in clinic. Sodium cromoglycate (SCG) is a non-absorbable

mast cell stabilizer with no systemic side effects and is effective in

treating chronic or recurrent colitis in patients with congenital

megacolon (89). In addition, it has been found that the size of the

muscle unit/neuron ratio can be used to determine the transition

zone of long-segment congenital megacolon, which can better

determine the area of surgical resection. The type and content of

mucosal nerve fibers and the size of the intestinal ganglion in the

intraoperatively resected intestine can also be used as predictors to

determine the probability of enterocolitis after HSCR (18, 90).

Crohn’s disease and HAEC have somewhat similar pathogenetic

processes. Both have impaired nutrient absorption due to intestinal

obstruction, decreased immune defense due to disruption of the

intestinal mucosal barrier, and abnormal immune responses due to

disturbances in the intestinal flora; therefore, it is likely that both

share a neuroimmune regulatory mechanism that is given in

common (Figure 1). In clinical studies, stimulation of the vagus
FIGURE 1

The mechanism of neuroimmune regulation in HAEC. Macrophages are the main source of bone morphogenetic protein 2 (BMP2), which stimulate
intestinal neurons to regulate gastrointestinal motility. In turn, the development and reproduction of Macrophages are controlled by colony stimulating
factor (CSF1) expressed by intestinal neurons. Adrenergic nerve fibers regulate muscular macrophages to participate in the protection of neurons by
acting on b2AR. Cholinergic nerve fibers regulate the conversion of macrophages from M1 to M2 to inhibit the development of inflammation by acting
on a7nAchR, which increases the ratio of Treg/Th17 in intestinal mucosa. M1 macrophages release TNF-a that makes cells of Cajal lose the c-kit
phenotype and causes intestinal motility disorder. In the aganglionic segment of colon in patient with HSCR, mast cells release neurotrophic factors
(NTFs) to promote the proliferation and hypertrophy of nerve fibers. SP from peptidergic neurons promotes mast cells degranulation, resulting in
releasing of pro-inflammatory mediators such as TNF-a, IL-1b and trypsin, inducing neuronal injury. GDNF from EGCs can significantly inhibit mast cell
degranulation and reduce inflammation. A sharp arrow indicates functional promotion, while a flat arrow indicates inhibition.
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nerve was found to reduce intestinal inflammation (91). Vagal tone is

reduced in patients with Crohn’s disease, and stimulation of the vagus

nerve can be effective in treating active Crohn’s disease (92).

Abdominal vagus nerve stimulation improves postoperative bowel

obstruction (93). All of the above clinical studies suggest that

stimulation of the vagus nerve may be an effective way to prevent

and treat HAEC.
6 Prospect

The loss of neurons in the distal colon makes the colons of

patients with HSCR in a unique neuroimmune regulation

environment. Significant progress has been made in understanding

the mechanisms of HSCR and HAEC, but there is still a lot to be

explored about the neuroimmune regulation of HAEC. The study of

intestinal neuro-immune cell interactions can open up new ideas for

the treatment of HAEC. In terms of immune cell regulation,

treatment targeting macrophages or ICCs may represent promising

therapeutics (88). Targeted therapies against IL-8 (22) and against

pIgR-mediated sIgA translocation may be effective in treating HSCR-

induced inflammation (68). The modulation of mast cell function is

expected to reshape the neural distribution in the HSCR gut and

enhance the neuromodulatory effect, thus preventing HAEC. In the

regulation of neurotransmitters, neuropeptides such as substance P,

neuropeptide Y and vasoactive intestinal peptide carry a cationic

charge and can directly break the membrane to kill bacteria, which is

less likely to produce resistance than traditional antibiotics (94).

These may provide new ideas for anti-infective treatment of sepsis

due to severe HAEC. There are various ways to activate vagal

pathways to reduce inflammation, including direct stimulation by

physical means and the use of 5-HT agonists, and therapeutic

modalities derived from this have greater promise for clinical

application. For future studies, the application of human brain

neural interfaces may enhance gut neuroimmune regulation in

HSCR patients. In the field of basic medicine, further studies are

needed to elucidate whether immune cells under the influence of

specific neurotransmitters are innervated by the corresponding

neurons and the effects they produce under healthy and disease
Frontiers in Immunology 07
conditions, and the study of this process will provide a theoretical

basis for achieving precise neuroimmune regulation.
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