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Pathogenesis and treatment
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State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, Collaborative
Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
Sjogren’s syndrome (SS) is a chronic autoimmune disease accompanied by

multiple lesions. The main manifestations include dryness of the mouth and

eyes, along with systemic complications (e.g., pulmonary disease, kidney injury,

and lymphoma). In this review, we highlight that IFNs, Th17 cell-related cytokines

(IL-17 and IL-23), and B cell-related cytokines (TNF and BAFF) are crucial for the

pathogenesis of SS. We also summarize the advances in experimental treatment

strategies, including targeting Treg/Th17, mesenchymal stem cell treatment,

targeting BAFF, inhibiting JAK pathway, et al. Similar to that of SLE, RA, and MS,

biotherapeutic strategies of SS consist of neutralizing antibodies and

inflammation-related receptor blockers targeting proinflammatory signaling

pathways. However, clinical research on SS therapy is comparatively rare.

Moreover, the differences in the curative effects of immunotherapies among SS

and other autoimmune diseases are not fully understood. We emphasize that

targeted drugs, low-side-effect drugs, and combination therapies should be the

focus of future research.
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1 Introduction

Sjogren’s syndrome (SS) is a chronic autoimmune disease associated with functional disorders

of the exocrine glands (e.g., parotid and lacrimal glands) and extraglandular manifestations. In

1892, JH Mikulicz reported the first case of SS. In 1933, the Danish ophthalmologist Sjogren

reported on 19 female patients with dryness of the mouth and eyes, 13 of whom had rheumatoid

arthritis (RA). To distinguish this ailment from xerophthalmia (vitamin A-deficiency-related

dryness of the eyes), Sjogren defined the syndrome as keratoconjunctivitis sicca. KJ Bloch

presented the clinical features of the currently recognized syndrome and introduced primary

Sjogren’s syndrome and secondary Sjogren’s syndrome, which presents without and with an

independent connective tissue disease (CTD), respectively (1).

According to a worldwide epidemiological study based on PubMed and Embase data, the

incidence rate of SS is 6.92 per 100 000 person-years and the prevalence rate is 60.82 cases per

100 000 inhabitants, or 1 case per 1644 persons. Moreover, the age of patients peaks at 56. In
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the last 15 years, the disease has affected females more than males (2).

Patients with SS experience an enduring and intolerable pain with

multiple physical symptoms, such as dental caries, vaginal dryness,

and arthralgia (3).

Given the immense social and economic burden caused by SS, we

aimed in this review to characterize the current paradigm of the

pathogenesis and treatment of SS to motivate and inform the

development of efficient treatment strategies, particularly

immunological treatments.
2 Brief review of clinical manifestations

Sjogren’s syndrome is a systemic disease with heterogeneous

manifestations that involve disorders or damage to the tissues of

the exocrine glands (Figure 1). The diagnosis of SS is a multistep

process, including the evaluation of oral and ocular dryness, detection

of anti-SSA/Ro and anti-SSB/La antibodies, and glandular biopsy.

Dryness of the eyes and mouth, which is caused by the dysfunction of

salivary and lacrimal glands, is the most salient and common clinical

symptom. Severe sicca symptoms of the eyes and mouth profoundly

impede quality of life. An aqueous-deficient mouth has a severe effect

on oral health and is associated with an increased risk of developing

caries (4). A recent study reported that the oral microbiome of

patients with SS who have salivary hypofunction was under stress

and dysregulated; Veillonella parvula is a potential biomarker of

Sjogren’s syndrome (5).
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Because SS presents with multiple extraglandular manifestations

(Figure 1), the European Alliance of Associations for Rheumatology

(EULAR) developed The EULAR SS disease activity index (ESSDAI)

to assess disease activity in patients with sicca symptoms and simplify

diagnosis. ESSDAI evaluates the severity of disease within 12 clinical

domains (i.e., constitutional, lymphadenopathy, glandular, articular,

cutaneous, pulmonary, renal, muscular, peripheral nervous system,

central nervous system, hematological, biological), and it aims to

obtain a standardized evaluation in clinical trials and practice (6).

The involvement of the nervous system was first reported in the

1980s (7). Several neurological diseases have since been associated

with SS (8–12), which indicates the importance of precise

neurological diagnostic assessments. Interstitial lung disease (ILD)

is the most frequent and severe pulmonary complication of SS and

contributes substantially to morbidity and mortality. In an Italian

cohort, approximately 20% of patients with comorbid SS presented

with ILD, and approximately 10% presented with amyloidosis and

primary lung lymphoma (13). Efficient clinical examination,

including lung biopsy or screening of serological markers, could

assist in the early diagnosis and intervention of SS-ILD (13).

Unfortunately, no effective treatment strategy exists for SS-ILD

(14). As an autoimmune disease, SS can also lead to synovitis and

RA, with the latter causing structural damage. A previous study

showed that the medication strategy of RA had some success in SS,

but the best-performing regimen is unclear (15).

Renal complications have only been observed in less than 10% of

patients with SS. Tubulointerstitial nephritis (TIN), caused by
FIGURE 1

Typical glandular and extraglandular manifestations of SS.
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lymphocyte infiltration around the renal tubes, occurs in two-thirds

of patients with SS and renal dysfunction (16, 17). However, the low

prevalence of renal manifestations may be an artefact of the ineffective

diagnosis of TIN (18). Non-Hodgkin’s lymphoma (NHL) is the most

severe extraglandular complication of SS, with the B cell type being

predominant (occurs in approximately 5% of SS cases) (19).

Hypergammaglobulinemia or the aberrant expression of other

antigens in the blood stimulate the expansion of rheumatoid factor-

reactive B cells (20). Meanwhile, B lymphocyte-activating factor

(BAFF) and germinal center (GC)-like structures amplify the

activation of B cells (21, 22). Some studies have reported that SS-

NHL is also associated with abnormal activation of nuclear factor

kappa B (NF-kB) (23, 24). Additionally, a multicenter clinical study

showed that more than a quarter of patients with SS presented

systemic symptoms beyond the current ESSDAI classification,

including cardiovascular; digestive; pulmonary; ear, nose, and throat

(ENT); cutaneous; and urological features (25).
3 Pathogenesis

3.1 Brief introduction

In a 2013 review by G Nocturne and X Mariette of the

pathogenesis of SS (26), three key steps were identified based on the

initial genome-wide association study (GWAS): aberrant activation of

the innate immune response, especially through the interferon (IFN)

and NF-kB pathways, atypical recruitment to lymphoid follicles

mediated by CXCR5, and T cell activation with ascending HLA

susceptibility along the IL-12–IFN-g axis. BAFF was considered to

be vital in coordinating the innate and adaptive immune responses to

the disease. They also highlighted the pathophysiological role of

natural killer (NK) and epithelial cells as well as the dysfunction of

the neuroendocrine system.

Mavragani et al. reviewed the treatment strategies and molecular

targets of the innate and adaptive immunity pathways (27). Regarding

the regulation of innate immunity, previous research focused on

inhibiting the production of proinflammatory factors, such as IL-1,

IL-6, and tumor necrosis factor-a (TNF-a), which has proven to be

effective in other autoimmune diseases. IFN-associated pathway

inhibitors were another research topic of interest. For example,

downregulating the expression of the primary dendritic cell surface

receptor ILT7 to reduce TLR7/9-mediated IFN production was

considered a potential treatment route. Regarding adaptive

immunity, previous research focused on antigen presentation, co-

stimulation, B-cell activation, T-cell proliferation, and germinal

center formation. Overall, most strategies were aimed at regulating

aberrant inflammation.
3.2 IFN

IFN is an immunoregulatory protein that promotes innate and

acquired immunity and antiviral activation. IFN is categorized into

three types based on structure and origin, i.e., I, II, and III. In 1981,

researchers detected type-I IFN in the blood of patients with
Frontiers in Immunology 03
autoimmune disease, and linked its expression to the clinical

manifestations (28). IFN-I plays an important role in the

progression of SS by promoting the activity of immune cells, such

as NK cells, CD8+ T cells, and even macrophages. In addition,

dendritic cells, the main producers of IFN-I, were observed in the

salivary glands of patients with SS, which suggests a role for IFN-I in

the formation of salivary gland lesions (29, 30) (31, 32).

IFN activates the overexpression of canonical interferon-

stimulated genes (ISGs) through the Janus kinase (JAK)-STAT

signaling pathway, which is defined as the “interferon signature.”

IFN phosphorylates STAT1, STAT2, STAT3, and STAT5, which

activate downstream signals leading to the activation of immune

cells (33–35). This signature in gene expression is considered a

biomarker of autoimmune diseases (36).

Under physiological conditions, in vitro-derived pathogens or in

vivo-derived apoptotic cells can trigger a rapid innate immune

response through pattern recognition receptors (PRRs), including

TLRs, RLRs, and NLRs (37). PRRs can recognize nucleic acids and

induce the production of numerous proinflammatory cytokines and

type I IFNs; thus, aberrant activation of the self-antigen recognition

Toll-like receptor (TLR) leads to the development of autoimmune

disease (38).

Some studies have reported the enhanced expression of the cell

adhesion molecules VACM-1, ICAM-1, and programmed death

ligand-1 (PD-L1) in patients with SS (39–41). The aberrant

expression of these cytokines is mediated by IFN-I and IFN-II

through the JAK-STAT pathway (42, 43). A recent study used

reactive oxygen species (ROS) and N-acetylcysteine (NAC) to

induce or block the expression of ICAM-1 and PD-L1 and revealed

that the IFN signature that regulates the expression of ICAM-1 and

PD-L1 in SS was related to oxidative stress (43–45).

Several recent studies have suggested that IFN-III contributes to

SS. Type III IFNs, which consist of IFN-l1, IFN-l2, IFN-l3, and IFN-
l4, are mainly produced by plasmacytoid dendritic cells (pDCs) (46,

47). pDCs respond to the secretion of IFN-III and show improved

survival under stimulation with IFN-III in vitro. IFN-III enhances the

production of IFN-I and TNF-a in pDCs and promotes the

expression of CD80 and CD86, which contribute to the maturation

of pDCs (35). IFN-III regulates the immune response by upregulating

the polarization of Th1 and CD8+ T cells and downregulating Th2

cytokines and Tregs (48).
3.3 Genome loci associated with SS

Etiological research has revealed the pathogenesis of SS at the

genomic level. A GWAS of autoimmune diseases identified an

association between HLA regions and SS, including HLA-DR,

HLA-DQB1, and HLA-DQA1 (Table 1). The allele with the

strongest association was HLA-DQB1*0201 (Pmeta = 1.38 × 10–95).

All HLA alleles were correlated with the expression of rs115575857.

In addition, six non-HLA regions that surpassed the suggestive

threshold (Pmeta < 5 × 10–5) were also shown to be involved in SS,

including IRF5, STAT4, BLK, IL-12A, TNIP1, and CXCR5, with the

expression of IRF5 and STAT4 being the most significant contributors

after HLA regions (Table 1) (49).
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3.4 Type 17 helper T (Th17) cells/IL-17

Th17 cells are distinct from Th1/Th2 cells and regulate immune

responses independently (50, 51). Th17 cells polarize naïve T cells after

stimulation by TGF-b and IL-6 from antigen-presenting cells (APCs).

IL-1b secreted from the ductal epithelium and IL-23 secreted fromDCs

also participate in Th17 cell polarization. IL-17 and IL-22 are produced

by and are themain effective cytokines of Th17 cells. Th17 cellsmediate

inflammation by producing the proinflammatory cytokines TNF-a
and IL-6 (52). Previous research revealed that IL-17/IL-23 expression

was enhanced in mouse models with SS, indicating that Th17

participated in lymphocytic infiltration of salivary glands and

contributed to lesion formation (53, 54). Another study showed that

IL-22, IL-23, and IL-17 were increased in the peripheral blood of

patients with SS, both at the protein and mRNA levels. Notably, in

addition to Th17 cells, NKp44+ NK cells can also produce IL-17 in

patients with SS (55). Besides, Th17 cells are potent inducers of matrix

metalloproteinase 1 (MMP1) and MMP3 (56), and a study has shown

that SS is related to disorders of MMP3/tissue inhibitor of

metalloproteinase 1 (TIMP1) and MMP9/TIMP1 ratios (57).

Both Treg and Th17 cells can be induced by TGF-b from activated

T cells, indicating that theremight be a balance between these opposing

inflammation-related cells. An imbalance in the Th17/Treg ratio has
Frontiers in Immunology 04
been reported in several other autoimmune diseases, including

inflammatory bowel disease (IBD) (58, 59), autoimmune thyroid

disease (AITD) (60), psoriasis (61), multiple sclerosis (62), and RA

(63, 64). In these diseases, function and stability of Treg cells are

impaired, and the aberrant induction and proliferation of Th17 cells

result in the activation of other immune cells, which then drive an acute

autoimmune response. Metabolic pathways play an important role in

the regulation of the Th17-Treg cell network. Th17 cells are glycolysis-

dependent; thus, by inhibiting the mammalian target of rapamycin

(mTOR) pathway with rapamycin, glycolysis is inhibited and the

polarization of Th17 cells is decreased, whereas the expression of

Treg cells is increased (65). Tregs tend to increase glycolysis and

enhance fatty acid oxidation, while Th17 cells rely on fatty acid

synthesis (66). However, current metabolic models of Th17/Treg cell

regulation through the glycolysis pathway are inconclusive.

Fortunately, Compass (67), a powerful algorithm based on scRNA-

sequencing and flux balance analysis, was recently produced to predict

the relationship between cellular metabolic states and pathogenicity,

and has already been utilized in research on the Th17-Treg network.

Type 17 follicular helper T (Tfh17) and IL-17-producing B (B17)

cells also contribute to IL-17 production. A recent study revealed that

the number of IL-17-producing cells increased in the peripheral blood

and spleen of NOD/ShiLtJ mice with STZ-induced type I diabetes and
TABLE 1 Genome loci associated with SS.

Gene loci SNP Encoding protein Effect pathway P value of Meta-analysis

HLA

rs112357081

MHC-II Antigen presentation 7.65 × 10-114 ~ 1.37 × 10-85

rs3135394

rs115575857

rs3129716

rs116232857

rs9271588

IRF5

rs3757387

Interferon regulatory factor 5 Activate IFN 2.73 × 10-19 ~ 3.20 × 10-6

rs4728142

rs17339836

rs17338998

rs10954213

IL-12A
rs485497
rs583911

Interleukin-12 a T-cell-independent production of IFN 1.17 × 10-10 ~ 9.88 × 10–9

BLK

rs2736345

B lymphocyte kinase Activate B cells 4.97 × 10-10 ~ 7.96 × 10-8rs2729935

rs6998387

CXCR5
rs7119038

CXC chemokine receptor 5 Mediate migration of B cells 1.10 × 10-8 ~ 6.82 × 10-8

rs4936443

TNIP1
rs6579837

TNFAIP3-interacting protein 1 Regulate NF-kB 3.30 × 10-8 ~ 5.32 × 10-7

rs7732451

STAT4
rs10553577

signal transducer and activator of transcription 4 Regulate differentiation of helper T cells 6.80 × 10-15 ~ 9.45 × 10-9

rs13426947
Various genome loci were reported to be associated with the pathogenesis of SS. Both HLA regions (HLA-DR, HLA-DQB1, HLA-DQA1) and non-HLA regions (IRF5, STAT4, BLK, IL-12A, TNIP1,
and CXCR5) were established as risk loci.
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SS. Surprisingly, the infiltration of IL-17-producing cells in the

salivary glands increased in metabolically disordered murine

models, and was also associated with greater severity of SS (68). It

was subsequently found that the aberrant expression of IL-17 induced

by metabolic abnormalities contributed to cell lesions and inhibition

of tissue recovery in the salivary glands of patients with SS.

Furthermore, retinoic A deficiency can exacerbate the imbalance in

the Th17/Treg ratio in patients with SS (69).
3.5 TNF/BAFF

TNF-a is predominantly produced by macrophages and T cells in

two forms: soluble TNF-a (sTNF-a) and transmembrane TNF-a
(Tm TNF-a). sTNF-a is an effective regulator of inflammation and

autoimmune diseases (70). TNF-a can bind with TNFR1 or TNFR2

and mediate inflammation by activating the NF-kB pathway and

mitogen-activated protein kinases (MAPKs) (71).

BAFF (orBLyS) is amemberof theTNF family thatplays avital role in

B cell survival. Usually, BAFF is produced by neutrophils, macrophages,

monocytes, DCs, and follicularDCs (72). Increased levels of IFN-I, IFN-g,
IL-10, andG-CSF can induce the expression of BAFF, while TLR3, TLR4,

or TLR9 participate in BAFF production (73, 74). B cells express BAFF

receptors (BAFF-RorBR3), aswell asTACI andBCMA.Aprevious study

reported that BAFF binds to BAFF-R and enhances the conversion ofNF-

kB2/p100 top52 (75).Additionally, BAFFbinds toBAFF-R, activating the
PI3K-AKT1 pathway, which regulates the activation of myeloid cell

leukemia sequence 1 (MCL1) and inhibits BCL-2-interacting mediator

of celldeath(BIM).TNFreceptor-associated factor3(TRAF3)andTRAF2

are intracellular signalingmolecules that bind to BAFF-RorTACI. BAFF-

R interacts with BAFF and recruits TRAF3, resulting in the degradation of

TRAF3 and inhibition of theNF-kBpathway.Nevertheless, the bindingof
TACI and BAFF results in the recruitment of TRAF2 or TRAF6 and

promotes the activation of the NF-kB pathway (72).

BAFF participates in the pathogenesis of various autoimmune

diseases, including RA (76), SLE (77), Graves’ disease (78), and anti-

GBM disease (79). Overexpression of BAFF elevates MHC-II

expression, enhances lymphocytic infiltration, and increases the

number of germinal center (GC)-like structures in SS murine

models (80). Increased GC-like structures are associated with

enhanced production of rheumatoid factor, anti-RO/SSA, anti-La/

SSB, and IgG in patients with SS (81). However, another study

claimed that BAFF is unable to mediate the differentiation of B cells

from GCs, which suggests the involvement of the inhibitory BAFF-

TACI pathway (80). Furthermore, BAFF stimulates monocyte

through binding with BAFF-R and fosters the production of IL-6,

which induces the aberrant production of IgG from B cells in SS (82).
3.6 Wingless/integrated signaling pathway

The Wnt signaling pathway is involved in several biological

processes, including cellular migration, proliferation, differentiation,

apoptosis, tissue homeostasis and regeneration, and stem cell self-

renewal (83). Dysregulation of the Wnt/b-catenin pathway plays a

vital role in the pathogenesis of many cancers and autoimmune

diseases (84, 85).
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The role of theWnt signaling pathway in T cell differentiation and

immune regulation has been elucidated (86–88). The disorder of Wnt

signaling inhibitors in autoimmune diseases was also noticed.

Proinflammatory cytokines promote bone damage by fostering the

production of Wnt signaling inhibitors, including secreted frizzled-

related, Wnt inhibitory factor 1, sclerostin, and Dickkopf (DKK)

family proteins (89–91). However, it was found that the role of DKK-

1 is different in various autoimmune diseases (92). In a clinical study

of 98 SS patients and 165 healthy volunteers, three Wnt/b-catenin
signaling pathway-related genes, LRP5, FRZB, and ADIPOQ, were

shown to increase the risk of SS, although the biological functions of

these genes have not yet been established (91). It implicates Wnt

pathway might be involved in the pathogenesis of SS. However, not all

studies support this idea. A clinical study reported that serum Dkk-1

and sclerostin levels were decreased in SS and SLE, and the Wnt1 and

Wnt3a levels had no significant changes (93).
3.7 IL-33/ST-2

The IL-33-ST2 axis participates in the pathogenesis of SS by

promoting transcriptional activation of CD86 and CCL2 in salivary

epithelial cells and activation of the NF-kB pathway. IL-33, combined

with IL-12 and IL-23, participates in the production of CD4+ T cell-

derived and NK/NKT-derived IFN-g (89, 94). An increase in serum

levels of IL-33 andST2 has been reported in patientswith SS (95). IL-33 is

a member of the IL-1 family and ST2 is one important member of IL-1

receptor family (90). IL-33 induces phosphorylation of the NF-kB
pathway and activates MAP kinases by interacting with ST2 to

stimulate downstream Th2-related immune responses. A recent review

described IL-33 as an alarmin, that is, a DAMP. Local increases in IL-33

expression can induce an immune response and result in organ lesions

(91). The IL-33-ST2 axis is a novel mode in the pathogenesis of SS and a

potential therapeutic target in related salivary gland disorders.
4 Experimental therapeutic strategies
of SS

4.1 Targeting the Treg/Th17

The Treg/Th17 plays a crucial role in the pathogenesis of

autoimmune diseases. Various drugs have been designed to target

the molecular mechanisms involved in the polarization and activation

of the Treg/Th17, including IL-17-related molecules (IL-17, IL-23),

transcription factors (RORgt, STAT3, Foxp3, and FoxO1), and

intracellular signaling pathways (ROCK and MAPK) (96). However,

compared to RA, SLE, IBD, and psoriasis, clinical or preclinical drugs

for SS are rare. Nevertheless, previous pharmacological exploration

and clinical trials have provided promising results for SS therapy.

IL-38—a member of the IL-1 family and, which was named as IL-

1F10 (97)—inhibits the secretion of Th17 cell-related cytokines,

including IL-6, IL-8, IL-17, IL-22, and IL-23, by binding with IL-36

receptors (98). A previous clinical study reported a selective anti-IL-

17A mAb, secukinumab, that can alleviate the symptoms of psoriasis

by blocking the expression of IL-17A, while that of IL-1 receptor

antagonist (IL-1ra) and IL-38 was downregulated (Figure 2) (99).
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A previous study tested the effect of IL-38 treatment on Th17 cell

activity and found that the expression levels of IL-17 and IL-23 were

decreased in a murine model of SS; IL-38 inhibited IL-17 expression

through the NF-kB and MAPK signaling pathways(Figure 2). They

also found that IL-17 can upregulate the expression of IL-38 (54). This

hints at a potential approach for the treatment of SS.

mTOR, a member of the phosphoinositol 3-kinase (PI3K) family,

is an atypical serine/threonine kinase that plays a vital role in cellular

metabolism and activity (100). mTOR likely prevents anergy

induction by IL-2 expression in T cells. A previous study found

that by blocking mTOR with rapamycin, the cell cycle of clonal T cells

was inhibited, while it induced cell anergy even with costimulations

(101). In the process of naïve T cell differentiation, mTOR mediates

the transformation to Th17 or Treg cells by altering the sensitivity of

T cells to TGF-b, which influences the effects of STAT3 signaling

(102). The inhibition of different mTOR complexes (including

mTORC1 and mTORC2) would activate different pathways of

polarization to Th17 cells, whereas a complete inhibition of mTOR

can promote polarization to Treg cells (103). mTOR plays a role in

Th17/Treg balance, given that mTOR inhibitors interfere with the

Th17/Treg ratio, which suggests a potential therapeutic target to

ameliorate glandular lesions in patients with SS. Given the anti-

inflammatory and immunomodulatory effects of metformin—an

AMPK-dependent mTOR-STAT3 inhibitor—researchers examined

its therapeutic effect in SS murine models and found that it

ameliorated inflammation in the salivary glands and, based on flow

cytometry, regulated the Th17/Treg ratio (Figure 2) (104). Yu et al.

reported that an alkaloid extracted from the traditional Chinese
Frontiers in Immunology 06
herbal medicine Stephania tetrandra S. Moore, fangchinoline, can

be used to treat SS by inhibiting the Akt/mTOR pathway, which

inhibits the proliferation of neoplastic B lymphocytes (Figure 2) (105).

More than that, a recent study reported that SSA/Ro-antigen-

specific Treg cells can downregulate the production of CD4+ T cell-

derived IFN-g and suppress inflammatory infiltration of the salivary

gland (106). Researchers reported that the combination treatment with

anti-CD4 mAb and autoantigen-specific peptide Ro480 induces SSA/

Ro-antigen-specific Treg cells in vivo and suppresses CD4+ T cell-

related IFN-g production in salivary glands, providing a potential novel
immunotherapeutic strategy for the treatment of SS (Figure 2) (106).
4.2 Mesenchymal stem cell treatment

Mesenchymal stem cells (MSCs) exert immunomodulatory effects

on both adaptive and innate pathways. MSC can manipulate the

balance between suppressive Treg cells and inflammatory T helper

cells (Th1, Th2, Th17, and Tfh) and ameliorate inflammatory

infiltration in the salivary glands (107, 108).

Xu et al. revealed that immunomodulatory functions of MSCs are

impaired in SS-like murine models, and allogeneic bone marrow

mesenchymal stem cells (BMMSCs) infusion can suppress SS-like

inflammation, showing therapeutic effects of BMMSCs on SS (109).

Furthermore, they also elucidated that the stromal cell-derived factor-1

(SDF-1)/C-X-C chemokine receptor 4(CXCR4) axis plays an important

role inMSCmigration and restoration of salivary glands.More than that,

they also treated twenty-four SS patients with umbilical cord-MSCs
FIGURE 2

Overview of novel experimental therapeutic strategies of SS. There are various experimental drugs (e.g. JAK inhibitors) or schemes (e.g. targeting Treg/
Th17 and BAFF) being investigated for SS treatment. Besides, mesenchymal stem cell treatment is reported to be a promising scheme to treat SS.
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(UCMSCs), and all patients showed alleviation of SS symptoms and well

tolerance of allogeneic UCMSCs (Figure 2) (109).

Zoukhri et al. revealed that a biotherapeutic strategy involving

bone-derived MSCs (BDMSCs) alleviated lacrimal glandular

manifestation in a SS murine model by inhibiting inflammation and

promoting the expression and activation of water channel aquaporin 5

(Figure 2) (110). Li et al. verified the immunomodulatory effects of

UCMSCs and found that UCMSCs induced CD4+FoxP3+ Treg cells in

vitro and caused anergy of inflammation-related T cells in vivo,

accompanied by an increase in Treg cells (111). Hua et al. assessed

the effects of labial gland-derived MSCs (LGMSCs) and their exosomes

on SS, and found that they ameliorated salivary gland inflammatory

infiltration by inhibiting the polarization of Th17 cells and promoting

the proliferation of Treg cells (Figure 2) (112). Furthermore, dental

pulp stem cells (DPSC) (113), murine embryonic MSCs (MEMSCs)

(114), and olfactory ecto-MSCs (OEMSCs) (115) can be used to treat SS

by interfering with inflammation-related cytokines (IL-4, IL-6, IL-12,

and IL-17a) and suppressive cytokines (IL-10 and TGF-b)
(Figure 2) (116).
4.3 Inhibiting JAK pathway

JAK enzymes are involved in the JAK/STAT pathway through the

phosphorylation of STAT, which leads to the activation of signals

transferred to the nucleus. The JAK family consists of four members,

JAK1, JAK2, JAK3, and TYK2 (117). Membrane receptor subunits

usually bind to a specific JAK. For example, JAK3 can only selectively

binds to the gc chain, which is a common receptor chain of IL-2, IL-4, IL-

9, IL-15, and IL-21 (118).

The JAK/STAT pathway regulates the production of ILs, TNFs, GM-

CSFs, and IFN-gs, which are associated with inflammation and

autoimmunity (119). The JAK inhibitors tofacitinib (120), baricitinib

(120), oclacitinib (121), filgotinib (122), and upadacitinib (123) have been

applied in the treatment of autoimmune diseases (Figure 2). Renaudineau

et al. reported that AG490 and ruxolitinib, two JAK1/2 inhibitors, can

reverse ROS-induced production of ten-eleven translocation 3 (TET3)
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and IFNa-mediated DNA hydroxymethylation and could potentially

treat SS (Table 2) (45, 132). Tofacitinib is also a candidate drug for SS,

given that it can reverse the expression of IL-6 in ATG5-deficient 3D-

acini, which leads to the inhibition of inflammation (Table 2) (133).
4.4 Targeting BAFF

Belimumab is an anti-BAFF monoclonal antibody and a potential

biotherapeutic drug for SLE and SS (Table 2) (125, 135). A bi-centric

clinical trial reported that, after a 28-week regimen of belimumab (10

mg/kg, at weeks 0, 2, 4, and then every 4 weeks), 18 out of 30 patients

achieved two of five primary endpoints. The mean and standard

deviation of ESSDAI and EULAR Sjogren’s Syndrome Patients

Reported Index (ESSPRI) were both reduced (Figure 2) (125).

Ianalumab is a BAFF-blocking monoclonal antibody that leads to

B-cell depletion (Figure 2). A previous clinical study found that, in SS,

ianalumab reduced the ESSDAI, ESSPRI, and serum immunoglobulin

levels (Table 2) (129).

Besides, Zheng et al. reported a Chinese herb-derived drug,

Artemisinin (ART), which is used to treat chloroquine-resistant

malaria originally, has immunosuppressive effects in the SS-like

murine model (Figure 2) (126). The study demonstrated that ART

downregulates BAFF-induced NF-kB activity in B cells through

targeting TRAF6 ubiquitination, which results in the inhibition of B

cell survival and proliferation. Therefore, the levels of B lymphocyte-

related immunoglobulin and autoantibody in the SS-like murine

model were attenuated and lymphocytic infiltration in the salivary

gland was ameliorated (Table 2) (126).
4.5 Others

Bortezomib is a proteasome inhibitor used in the treatment of

multiple myeloma (Table 2). A Mexican case report described a

female patient that suffered from SS for 16 years and presented with

sicca complex, extreme fatigue, Raynaud phenomenon, generalized
TABLE 2 Experimental Biotherapeutic Drugs of SS.

Drug Effect target Mechanism Feasibility* References

Rituximab CD20 Induce ADCC and CDC - (124)

Belimumab BAFF Inhibit the combination of BLyS and B cells + (125)

Artemisinin BAFF Downregulate the BAFF-induced NF-kB activity + (126)

Iscalimab CD40 Inhibit the combination of CD40 and CD40L – (127)

Tocilizumab IL-6 receptor Block IL-6R - (128)

Ianalumab BAFF receptor Block BAFF receptor + (129, 130)

Abatacept CD80&CD86 Inhibit activation of T cells + (131)

Ruxotinib JAK/STAT pathway Inhibit IFN and ROS related DNA hydroxymethlation * (45, 132)

AG490 JAK/STAT pathway Inhibit IFN and ROS related DNA hydroxymethlation * (45, 132)

Tofacitinib JAK/STAT pathway Decrease expression of IL-6 * (133)

Bortezomib Proteasome pathway Inhibit activation and nuclear translocation of NF-kB + (134)
f

* Experimental effects on treating SS. “-” means none or low effect. “+” means promising effect. “*” means unclear.
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arthralgia, and heavy headaches. After ineffective conventional

glucocorticoid and rituximab therapy, doctors administered an

experimental regimen of bortezomib at a dose of 1.3 mg/m2 (2.0

mg/dose) at days 1, 4, 8, 11, 22, 29, 36, 43, 50, and 57. Surprisingly, the

patient’s headaches and fatigue were resolved after three months, and

serum globulin levels and viscosity decreased significantly (Table 2)

(134). However, the efficacy and safety of bortezomib for the

treatment of SS are still unconfirmed (Figure 2).

Rituximab—a chimeric monoclonal anti-CD20 antibody—has

been reported to induce B-cell depletion and has been used to treat

autoimmune diseases (136, 137). It has also been used to treat SS over

the last 20 years, but with limited clinical efficacy (Table 2) (124, 138).

Researchers have investigated a combination therapy with the anti-

BAFF and anti-CD20 [NCT02631538]—belimumab and rituximab.

The results of the clinical trial provide evidence that simultaneous

targeting of the BAFF axis and B cells is a promising treatment

strategy for SS (Figure 2) (139). The drugs in development for SS

treatment are summarized in Table 2.

Various biotherapeutic drugs have been used to treat SS

experimentally. Some of them have been used to treat other

autoimmune diseases (e.g. Rituximab), and the others are novel drugs

targeting inflammation-related signaling pathways (e.g. AG490).

However, not all of them have prospective effects on treating SS (e.g.

Iscalimab, Tocilizumab).
5 Conclusion & discussion

As a systemic autoimmune disease, SS causes multiple organ lesions,

especially in salivary and lacrimal glands, which limits endocrine

function. Besides focal inflammation in the salivary gland, acinar

atrophy, duct dilation, and fibrosis are commonly observed in SS

patients. Due to a high disease specificity and limited invasiveness,

labial salivary gland biopsy is widely accepted as the best method to

diagnose SS currently (140). Lymphocytic infiltration around the striated

ducts in salivary glands, or so-called periductal foci, is a critical hallmark

for the diagnosis of SS (141). Since adipose tissue replacement in the

salivary gland is related to the stages of SS, and adipocytes are detected in

IL-6-rich regions, detecting the degree of adipose tissue replacement

provides aid to improve diagnosis accuracy (142). In addition,

comorbidities, such as secondary pulmonary disease, kidney injury,

and lymphoma, further reduce the quality of life of patients. The

pathogenesis of SS is characterized by the production of inflammatory

cytokines and lymphocyte infiltration. IFN and IL-17/Il-23 play pivotal

roles in the formation of inflammatory lesions, and B cells are crucial for

infiltrative injury. Th17, B, and dendritic cells play critical roles in the

aberrant regulation of the immune system.

Similar to other autoimmune diseases, such as SLE, RA, and

psoriasis, the traditional therapeutic strategy for SS is disease-

modifying antirheumatic drugs (DMARDs), such as glucocorticoids,

while novel biotherapeutic approaches take advantage of neutralizing

antibodies and inflammation-related receptor blockers. Compared with

the traditional strategy, this new scheme is more targeted, which can

promote safety and efficacy. Although considerable progress has recently

been made in the treatment of SS, disease-specific drugs are rare. Many

SS drugs are currently undergoing clinical trials. As Th17 andB cells play

important roles in the pathogenesis of SS, the targeting of Th17 cell- and
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B cell-related signaling pathways and molecular events has drawn

increasing attention.

Research on SS therapies is limited by a lack of systematic clinical

trials compared with other autoimmune diseases, such as SLE, RA, and

MS. Many potential therapeutic targets have been identified in the

pathogenesis of SS, and some targeted drugs have shown reasonable

efficacy under experimental conditions in vitro or in vivo.

Unfortunately, the translation of these drugs to clinical use is rare.

Additionally, it is unclear why immune inhibitors lack pharmacological

effect in SS compared to SLE, RA, and MS. Nevertheless, immune

inhibitors can be used in the management of complications to improve

the prognosis and quality of life of patients with SS. For example, BAFF

receptor blockers not only prevent inflammatory lesions but also

protect against B-cell lymphoma; however, such therapeutic

strategies are rare. Combination therapies have shown some efficacy;

however, inappropriate combinations of drugs may cause excessive

inhibition of the immune system, resulting in unexpected

complications, such as secondary infections. Thus, targeted and low-

side-effect drugs should be the focus of future research.
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