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Next-generation humanized
NSG-SGM3 mice are highly
susceptible to Staphylococcus
aureus infection

Sophia Hung1,2,3, Amelie Kasperkowitz1, Florian Kurz4,
Liane Dreher1, Joachim Diessner5, Eslam S. Ibrahim1,6,
Stefan Schwarz2,3, Knut Ohlsen1† and Tobias Hertlein1*†

1Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany, 2Institute of
Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie
Universität Berlin, Berlin, Germany, 3Veterinary Centre for Resistance Research (TZR), School of
Veterinary Medicine, Freie Universität Berlin, Berlin, Germany, 4Institute of Pathology, University of
Würzburg, Würzburg, Germany, 5Department for Obstetrics and Gynecology, University Hospital of
Würzburg, Würzburg, Germany, 6Department of Microbiology and Immunology, Faculty of Pharmacy,
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Humanized hemato-lymphoid systemmice, or humanizedmice, emerged in recent

years as a promising model to study the course of infection of human-adapted or

human-specific pathogens. Though Staphylococcus aureus infects and colonizes a

variety of species, it has nonetheless become one of the most successful human

pathogens of our time with a wide armory of human-adapted virulence factors.

Humanizedmice showed increased vulnerability to S. aureus compared to wild type

mice in a variety of clinically relevant disease models. Most of these studies

employed humanized NSG (NOD-scid IL2Rgnull) mice which are widely used in

the scientific community, but show poor human myeloid cell reconstitution. Since

this immune cell compartment plays a decisive role in the defense of the human

immune system against S. aureus, we asked whether next-generation humanized

mice, like NSG-SGM3 (NOD-scid IL2Rgnull-3/GM/SF) with improved myeloid

reconstitution, would prove to be more resistant to infection. To our surprise, we

found the contrary whenwe infected humanizedNSG-SGM3 (huSGM3)micewith S.

aureus: although they had stronger human immune cell engraftment than

humanized NSG mice, particularly in the myeloid compartment, they displayed

even more pronounced vulnerability to S. aureus infection. HuSGM3 mice had

overall higher numbers of human T cells, B cells, neutrophils and monocytes in the

blood and the spleen. This was accompanied by elevated levels of pro-inflammatory

human cytokines in the blood of huSGM3 mice. We further identified that the

impaired survival of huSGM3 mice was not linked to higher bacterial burden nor to

differences in themurine immune cell repertoire. Conversely, we could demonstrate

a correlation of the rate of humanization and the severity of infection. Collectively,

this study suggests a detrimental effect of the human immune system in humanized

mice upon encounter with S. aureus which might help to guide future therapy

approaches and analysis of virulence mechanisms.

KEYWORDS

humanized mice, Staphylococcus aureus, MRSA, NSG, NSG-SGM3, staphylococcal
abscess, Staphylococcus aureus immune response, humanized hemato-lymphoid mice
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Introduction

The evaluation of promising new treatments against infectious

diseases is challenging and the path to clinical application is

plastered with failures. Staphylococcus aureus has emerged as a

prominent example in this group. This bacterial pathogen causes a

wide array of diseases, ranging from superficial skin infections to life

threatening bacteremia, endocarditis, pneumonia and osteomyelitis

(1–3). Its genetic flexibility, evolution of host-specific virulence

factors and notorious acquisition of antimicrobial resistance genes

makes it one of the most important bacterial pathogens of our time

(4, 5).

Despite huge clinical and economic impact, all immunotherapies

- most importantly vaccination attempts - have so far failed (6, 7).

Multiple reasons for the lacking efficacy of these approaches during

clinical trials, although being effective in pre-clinical models, have

been proposed by the scientific community with two standing out: (I)

the lack of understanding of host-pathogen interaction during

infection in humans and (II) the poor translational power of pre-

clinical data (7, 8).

Humanized mice, or humanized hemato-lymphoid system

mice, have drawn attention in recent years as a promising

solution to at least some of these problems (9). This model is

based on highly immunodeficient mouse strains which are

engrafted with human hematopoietic stem cells, which in turn

differentiate into various human immune cell lineages in these mice

(10, 11). This makes it possible to investigate host-pathogen

interaction as well as the interplay of different human immune

cell populations in a highly complex in vivo system.

Recent publications in this field suggest that humanized mice are

an interesting and viable option to investigate S. aureus infection. They

show that humanized mice are much more susceptible to S. aureus

infection than wild-type, murinized (immunodeficient mice with

engrafted murine stem cells) and even non-engrafted

immunodeficient mice in models of peritonitis (12), pneumonia

(13), skin infection (14), osteomyelitis (15) and deep tissue infection

(16). These studies furthermore delivered proof, that some virulence

factors of S. aureus show much higher activity against human than

murine cells and factors during in vivo infection (13, 14). Nonetheless,

it has to be stated that the humanized mouse models studied thus far

harbor a serious drawback, particularly in studying S. aureus infection:

the numbers of human myeloid and monocytic cells are rather low.

This is due to the application of NSG mice, which are widely used in

the field, but are unable to sustain high numbers of these immune cells

after engraftment due to the lack of necessary human growth factors

and cytokines (17, 18). Several strategies have been applied to

overcome this problem: the administration of these factors during

humanization (19, 20), hydrodynamic injection of human cytokine-

encoding plasmids (21) or genetically engineered humanized mice,

which are producing these factors (22, 23).

Since neutrophils and the macrophage-monocyte axis play a

prominent role during the immune response against S. aureus (24–

26), we asked whether next-generation humanized mice perform

better or worse during S. aureus infection than the above-

mentioned humanized NSG mice. Therefore, we humanized

NSG-SGM3, which provide high numbers of human monocytes
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and neutrophils due to genetical integration of human SCF, GM-

CSF and IL-3 genes (17), and compared their performance during

S. aureus deep tissue infection with those of humanized NSG mice.
Material and methods

Ethics statements

All animal studies were approved by the local government of

Lower Franconia, Germany (approval numbers 55.2-2532-2-836

and 55.2-2532-2-1129) and performed in strict accordance with the

guidelines for animal care and experimentation of the German

Animal Protection Law and the DIRECTIVE 2010/63/EU of the

EU. The animals were housed in IVC cages under standardized

lighting conditions and had ad libitum access to food and water. All

experimentations with anonymized and non-traceable human cord

blood was approved by the ethics committee of the University

Wuerzburg (approval number 20191212 02).
Humanization and murinization procedure
(incl. CD34+ cell isolation)

We included female and male NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/

SzJ) and NSG-SGM3 (NOD.Cg-Prkdcscid Il2rgtm1Wjl Tg(CMV-IL3,

CSF2,KITLG)1Eav/MloySzJ) mice from the Jackson Laboratories

(Bar Harbor, ME, USA) and female Balb/c mice (BALB/cJRj, Janvier

labs, Le Genest-Saint-Isle, France) in all experiments. The human

CD34+ hematopoietic stem cells were isolated from human cord blood

by magnetic separation (EasySep™Human Cord Blood CD34 Positive

Selection Kit II, STEMCELL technologies, Cologne, Germany)

following the manufacturer’s protocol. The quality of the cell

preparation was controlled by staining for hCD34+ and hCD3+ cell

markers by flow cytometry. Only preparations with > 85% hCD34+

purity and < 1% hCD3+ cell content were used for humanization

purposes. Humanized NSG (huNSG) and NSG-SMG3 (huSGM3)

mice were generated by engrafting 100,000 hCD34+ cells (of a donor

mix) at the age of 6 – 8 weeks, similar to the procedures described in

earlier publications (15–17, 27). Briefly, after whole-body irradiation

with a sub-lethal dose of 2 Gy, mice were injected intravenously with

the human hematopoietic stem cells. Murinized NSG-SGM3 mice

(muSGM3) received a similar treatment than huNSG and huSGM3

mice, but 100,000 bone marrow cells from a Balb/c donor instead of

human CD34+ cells were injected. The peripheral blood of humanized

mice was analyzed every two weeks after engraftment for the presence

and frequency of murine CD45+, as well as human CD45+, CD66b+,

CD3+ and CD20+ cells by flow cytometry.
Determination of blood hemoglobin
content and erythrocyte and
reticulocyte numbers

Every two weeks during the course of the humanization and at

the end of the bacterial thigh muscle infection, peripheral blood was
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collected and mixed with EDTA as anticoagulant (pluriSelect Life

Science, Leipzig, Germany). The hemoglobin content (Hämoglobin,

Diaglobal GmbH, Berlin, Germany) and the red blood cell count

(Erythrozyten Gower’s Reagenz, Bioanalytic GmbH, Umkirch/

Freiburg, Germany) was measured by fluorometric assays

following manufacturer’s instructions. During the humanization

period, we furthermore determined the reticulocyte numbers by

streaking blood samples on glass slides and counted the number of

reticulocytes among red blood cells after staining (Brillant cresyl

blue, Bioanalytic GmbH, Umkirch/Freiburg, Germany).
Thigh infection model (including
determination of bacterial burden)

HuSGM3 mice were infected intramuscularly (i.m.) at 12 weeks

and the huNSG mice at 18 weeks post hCD34+ stem cell injection as

described previously (16). At these points human CD45+ cell numbers

reached robust numbers in blood and the number of hCD3+ T cells

and hCD19+ B cells were at comparable levels. Balb/c, wild-type NSG-

SGM3 and murinized NSG-SGM3 mice were infected at the age of 18

weeks in order to match the age of the humanized NSG-SGM3 mice

(engraftment at the age of approximately 6 weeks and 12 weeks of

humanization). Briefly, Methicillin-resistant S. aureus (MRSA) LAC*

lux (28) was pelleted after overnight shaking at 37°C in Bmedium and

resuspended in 0.9% NaCl solution. The left thigh of each mouse was

then shaved, disinfected and injected with 1 x 108 CFU bacteria in a

total volume of 50 µL (16, 29). Besides huSGM3 and huNSG mice, we

used age-matched murinized NSG-SGM3, wild-type NSG-SGM3 and

Balb/c mice as controls. The wellbeing of each mouse was inspected

and scored every 12 hours p.i. and the weight measured every 24

hours. Those mice that did not reach the humane end point as defined

by the score sheet were either sacrificed on day 2 or on day 7 p.i.

Peripheral blood, the infected thigh muscle, kidneys, liver, spleen,

heart, lung and bone marrow from tibia and femur were then

harvested. The spleens were halved and one part homogenized by

pressing through a cell strainer for flow cytometry and bacterial

burden determination, while the second half was processed for

histological examination. The thigh muscle, kidneys, liver, lung and

heart were homogenized in 0.9% NaCl and serial dilutions were plated

on B agar plates in order to determine the bacterial burden. Bone

marrow was harvested by flushing both femurs and tibias with sterile

0.9% NaCl solution, followed by filtration through a cell strainer.
Histology

Histological sections and immunohistochemical stainings of splenic

tissue were performed using formalin-fixed and paraffin-embedded

(FFPE) tissue slides according to standard protocols. Briefly, spleens

were fixed overnight in 10% neutral-buffered formalin solution,

embedded in paraffin and cut to 5 µm slices. After deparaffinization,

samples were stained with H&E and immunohistochemistry staining

was performed with anti-human CD45 primary antibody (Agilent

Dako, Waldbronn, Germany) at the Institute of Pathology at the

University Clinics Wuerzburg according to the appropriate protocols
Frontiers in Immunology 03
within an automated immunostainer (Benchmark Ultra; Ventana/

Roche, Tucson AZ, USA). Specimens were then inspected by an

experienced pathologist (FK) for the presence and organization of

human immune cells in the spleens.
Flow cytometry

The peripheral blood of humanized mice was examined by flow

cytometry every two weeks after stem cell administration. Blood

samples were therefore stained with anti-human CD45/CD3/CD19/

CD66b and anti-mouse CD45. The rate of humanization was

calculated as: hCD45+ cells/(hCD45+ cells & mCD45+ cells), as

applied previously (16). The peripheral blood, the spleen

homogenate and bone marrow were interrogated for the presence

of immune cells on day 2 p.i. with combinations of anti-human

CD45/CD3/CD19/CD14/CD66b and anti-mouse CD45/Ly6C/

Ly6G antibodies after red blood cell lysis. All antibodies were

supplied by Miltenyi Biotec (Bergisch Gladbach, Germany). Flow

cytometric measurements were performed on a MACSQuant flow

cytometer and analyzed with MACSQuantify software 2.6 (Miltenyi

Biotec, Bergisch Gladbach, Germany).
Determination of cytokine levels and
myeloperoxidase activity

In order to determine cytokine levels in the thigh muscle,

homogenate was centrifuged at 3,000 x g for 5 minutes and the

supernatant stored at -80°C until further processing. The peripheral

blood samples were agglutinated overnight at 4°C, then centrifuged

at 15,000 x g for 15 minutes. The serum was harvested and stored at

-80°C until cytokine measurement. Levels of human or murine

CCL-2, IL-1b, IL-6, IL-10, IL-17A, and TNF-a as well as human IL-

8 were measured in the infected thigh muscles or in peripheral

blood with a custom-mixed Luminex assays from Bio-Techne

(Wiesbaden, Germany) following the manufacturer’s manual. In

order to test the specificity of the individual assay, we measured the

cytokine standards of the human kit with the mouse kit and vice

versa and could not detect values above background levels.
Statistical analyses

All statistical analyses were performed with GraphPad Prism

(9.1.2) and p < 0.05 was considered as significant. The applied

statistical tests can be found in the respective figure caption.
Results

Humanized NSG-SGM3 mice show strong
human immune cell engraftment and
develop anemia during prolonged course
of humanization

We generated humanized NSG (huNSG) and NSG-SGM3

(huSGM3) mice by sublethally irradiating the animals and
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intravenously injecting human cord blood-derived CD34+

hematopoietic stem cells. The mice were then continuously

monitored and weighed over a period of 18 weeks. A divergence

between the two groups in terms of body weight change (Figure 1A)

became obvious. While huNSG mice continually gained weight,

huSGM3 mice initially gained weight, too, but then started to

stagnate from week 12 to 18.

Overall , huNSG and huSGM3 mice showed similar

developments and levels of humanization rates and individual

immune cell populations than described earlier (16, 30). HuSGM3

animals had throughout the whole course of humanization a higher

rate of humanization and stronger increase in human immune cells

(Figures 1B–F). In particular, the amount of hCD66b+ cells was at

all times strongly enhanced compared to huNSG mice.

S i n c e s ymp toms o f s e c onda r y h emophago c y t i c

lymphohistiocytosis (HLH) and/or macrophage activation

syndrome (MAS) were described for NSG-SGM3 mice after

engraftment with human CD34+ stem cells (30–32), we measured

the numbers of erythrocytes, reticulocytes and the level of

hemoglobin in the blood of the humanized mice every two weeks

post engraftment (Figures 1H–J). While all three parameters

remained at a comparable level for the huNSG mice, we saw a

drop in erythrocyte numbers and hemoglobin levels as well as an

increase in reticulocyte numbers in huSGM3 mice during

prolonged course of humanization. The development and extend

of these changes fits to earlier description and started at 8 to 14

weeks post engraftment (30–32). Of note, this was accompanied by

a strong acceleration of hCD3+ T cell numbers in blood. The

reticulocytosis implies that this is caused by a decimation or

increased usage of erythrocytes, not a dysfunctional production

(30, 31).
MRSA thigh infection leads to strongly
reduced survival of huSGM3 mice

Based on the results from the humanization phase, we decided to

infect huNSG mice at 18 weeks and huSGM3 at 12 weeks after

engraftment. HuSGM3 mice showed at this point an overall

enhanced level of human immune cells compared to huNSG mice,

with slightly reduced levels of hemoglobin and erythrocytes and

increased numbers of reticulocytes. Both humanized mouse groups

were infected locally with 1 x 108 CFU S. aureus LAC* lux in the left

thigh muscle, with wild type NSG-SGM3, murinized NSG-SGM3

(which were treated equally to humanized NSG-SGM3, but received

murine bone marrow cells instead of human CD34+ stem cells) and

wild type Balb/c mice as controls. This type of infection causes the

formation of large deep tissue abscesses in wild-type mice as

described earlier (29). Since S. aureus utilizes various mechanisms

and virulence factors to acquire iron from hemoglobin (33, 34), we

decided to track the levels of erythrocytes and hemoglobin in the

humanized mouse groups during the course of infection. The overall

amounts were, for both factors, lower in huSGM3 mice than in

huNSG mice at the start of infection (Figures 2A, B). But the level of

erythrocytes in the blood of huSGM3 mice increased in the first 48

hours of infection, reaching the levels of huNSG.
Frontiers in Immunology 04
Mice were weighed and inspected every 12 hours throughout

the infection experiment and received a score based on weight loss

and signs of disease. The humanized mouse groups proved to be

much more susceptible to the deep tissue infection with S. aureus

than the control groups (Figure 2C), which fitted to earlier results in

this model (16). Nonetheless surprising was the extreme

vulnerability of next-generation humanized (huSGM3) mice

which showed early in the experiment very strong signs of disease

and weight loss, causing a strongly decreased survival rate

compared to all other groups, even significantly inferior to huNSG.
Bacterial burden in the thigh muscle and
inner organs of infected mice

The strongly reduced survival rate of huSGM3 mice raised the

question of the cause for the enhanced vulnerability, particularly in

comparison to huNSGmice. In a first attempt to define the systemic

consequences of a local infection with S. aureus in the thigh muscle,

we analyzed the bacterial burden in various organs on day 2 p.i.

Later dates were not accessible since the number of surviving

huSGM3 mice was not sufficient for analysis. No difference in

terms of bacterial burden could be seen at the primary site of

infection (Figure 3A). The analysis of bacterial burden in kidneys,

liver, lung, spleen and heart revealed, that humanized mice showed

a tendency towards higher numbers of S. aureus in the respective

organs, although the differences were rather small and the results

varied (Figure 3B). The strongest difference could be measured in

the lungs with humanized mice displaying significantly higher

bacterial numbers than Balb/c mice (Figure 3C). Balb/c mice

showed the weakest bacterial spreading and infection of inner

organs, while it was similar for all other groups (Figure 3D).

Overall, a clear correlation of bacterial burden on day 2 p.i. and

survival during the course of infection could not be established.
Stronger response of human immune cells
in humanized NSG-SGM3 than in
humanized NSG mice

Since the number of bacteria during infection did not coincide

with the severity of infection, we next analyzed immune cell types

and effector molecules in order to identify differences which might

explain the high vulnerability of huSGM3 mice. First, we compared

major murine immune cell populations in the blood, spleen and

bone marrow of all mice (Figure S1). Both humanized mouse

groups had similar numbers of murine CD45+ cells, granulocytes

and monocytes, but significantly less than wild type or murinized

mouse groups (Figure S2). Immunophenotyping of human immune

cells in the blood of huSGM3 and huNSG mice at the start of the

infection and on d2 p.i. showed overall higher numbers of all

investigated cell types in huSGM3 mice, namely T cells, B cells,

granulocytes and monocytes (Figure 4A). The numbers remained

stable in huNSG within the first 2 days of infection, but a clearly

distinguishable pattern became visible for the huSGM3 mice. While

the number of hCD66b+ granulocytes increased between d0 and d2
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p.i., we could see significant drops of B and T cell numbers in the

blood. The pattern of higher human immune cell numbers in

huSGM3 mice was interestingly mirrored in the spleen

(Figure 4C) but not the bone marrow (Figure 4B) on d2 p.i. The

number of human cells in general, as well as of B cells, monocytes

and granulocytes in particular, were similar in the bone marrow of

huSGM3 and huNSG mice. In contrast to this, we could measure

five-fold more hCD45+ cells in the spleens of huSGM3 mice than in

huNSG mice, with all investigated human immune cell types

represented significantly stronger. Histological examination of the
Frontiers in Immunology 05
spleens from huNSG and huSGM3 mice showed similar hCD45+

cell patterns with strong accumulation in lymphoid follicles at the

periarteriolar lymphoid sheath and associated lymph follicles as

well as in the parenchyma (Figure 5).

Next, the levels of murine and human cytokines/chemokines

CCL2, IL-1b, IL-6, IL-10 and TNFa, as well as of human IL-8 were

determined in the infected thigh muscle and in the blood on d2 p.i.,

since we hypothesized that the higher immune cell numbers in

huSGM3 might be accompanied by higher levels of effector

molecules and an elevated inflammatory state. The levels of
A

B D

E F G

IH J

C

FIGURE 1

Weight, immune cell types and blood cells during the course of humanization of NSG and NSG-SGM3 mice. NSG or NSG-SGM3 mice were humanized
by intravenous administration of 100.000 cord-blood derived hCD34+ cells. (A) The weight gain of each mouse compared to their weight on the day of
engraftment was calculated and the mean values +/- SEM of each group is displayed. Statistical differences between both mouse strains was determined
with Mann-Whitney test for each respective point in time. (B–H) The blood cell numbers of human and murine CD45+ cells, as well as human T cells
(E), B cells (F) and granulocytes (G) were determined every two weeks post engraftment by flow cytometry. (D) The humanization rate was calculated as
hCD45+/(hCD45+ and mCD45+) cells. Visualized are the mean values +/- SEM for each group. (H–J) The level of hemoglobin, as well as the numbers
of erythrocytes and the percentage of reticulocytes was measured bi-weekly and is displayed as mean +/- SEM for each group.
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murine cytokines were similar for all groups in both compartments,

indicating that the infection with S. aureus did not lead to different

activation of the murine immune cells (Figure S3). The examination

of human cytokine levels revealed that while the levels at the

primary site of infection were similar for huSGM3 and huNSG

mice, strongly increased levels of CCL2, IL-6, IL-8 and TNF-a
could be measured by the Luminex assay in the blood (Figure 6).

This indicates a systemic response of the human immune

system in huSGM3 mice against the S. aureus infection

and might furthermore reflect the response to systemically

spreading bacteria.
The stronger the humanization, the higher
the vulnerability to S. aureus infection

The decreased survival of huSGM3 mice following local S.

aureus infection in the thigh muscle compared to huNSG mice

was accompanied by higher human immune cell numbers in blood

and spleen, as well as with increased levels of immune effector

molecules in the blood, but not with increased bacterial burden.

Thus, we hypothesized, that the vulnerability does not originate

from the pathogen itself but rather from the human immune

system. This leads in consequence to the assumption, that a

higher rate of humanization might cause higher susceptibility

against S. aureus. Comparing the rate of humanization (prior
Frontiers in Immunology 06
infection) to the time at which each individual mouse reached the

humane end point (or survived until the end of the experiment on

day 7 p.i.), showed a clear negative correlation between both

parameters (Figure 7). In consequence, high numbers of human

immune cells prove to be detrimental for the mice during bacterial

infection with S. aureus.
Discussion

Humanized mice, respectively mice with a humanized hemato-

lymphoid system, emerged as a promising model to study infections

and their treatment or prevention in recent years. Most commonly,

they are generated by engrafting immunodeficient mice with human

CD34+ stem cells, which repopulate hematopoietic niches and give

rise to various human cell lineages within the mouse (10, 23). These

models have proven their worth for the investigation of human-

specific or human-adapted pathogens like HIV, Salmonella enterica

subsp. enterica serovar Typhi orMycobacterium tuberculosis (22, 35).

S. aureus is not limited to its capability to infect humans, but can also

infect other mammals or prosper as colonizer on different species (36,

37). However, it has become clear in the last decade, that those strains

of S. aureuswhich are exceptionally successful in clinics, have evolved

a large repertoire of virulence factors which can be regarded as highly

human-specific (24, 38). The idea that these strains might behave

differently when challenged with a human rather than with a murine
A B

C

FIGURE 2

Erythrocyte numbers, hemoglobin levels and survival during severe local S. aureus infection in the thigh muscle of mice. The number of erythrocytes
(A), as well as the amount of hemoglobin (B) was measured fluorometrically at the start and on day 2 after infection with 1 x 108 S. aureus LAC* lux.
Individual values per mouse as well as the respective medians per group are displayed. Statistical significance was tested with an ordinary two-way-
ANOVA and Sìdàk’s multiple comparison test (*p < 0.05, **p < 0.01). (C) The survival curve displays the percentage of animals per group which did
not reach the humane end point as determined by the score sheet at the respective time. Statistically significant differences between the group
survival was determined with Gehan-Breslow-Wilcoxon-test (*p < 0.05, **p < 0.01, ***p < 0.005).
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immune system during infection, resulted in the application of

humanized mice. This hypothesis was recently tested in different

experimental models and it could be shown that humanized NSG

mice are more susceptible to S. aureus infection than wild-type,

murinized (immunodeficient mice engrafted with murine stem cells

instead of human ones) and even non-reconstituted immunodeficient

mice (12–16). These studies implemented disease models of

peritonitis, pneumonia, osteomyelitis, skin and deep tissue

infections, thus covering a wide range of the clinical manifestations

of S. aureus. All but one (13) of the above-mentioned studies applied

huNSG mice, which are widely used in the community but which

have a poor reconstitution of the human myeloid immune cell

compartment (17, 23). Since myeloid cells, particularly neutrophils,

play a major role in the defense against S. aureus (24, 25, 39), we

hypothesized that next-generation humanized mice with a stronger

reconstitution of the myeloid compartment might even be better

suited to investigate S. aureus infections. To test this hypothesis, we
Frontiers in Immunology 07
humanized NSG and NSG-SGM3 mice by administration of human

cord blood derived CD34+ hematopoietic stem cells. The genetically

integrated human SCF, GM-CSF and IL-3 genes enabled overall

higher numbers of human CD45+ cells in the blood of NSG-SGM3

mice, particularly of hCD66b+ granulocytes, similarly to earlier

publications (17, 40).

On the other hand, previous studies demonstrated that the

expression of the human cytokines/growth factors in NSG-SGM3

mice at supraphysiological levels comes with side effects during

humanization, namely a deficiency in hematopoiesis (41, 42) and

the development of secondary hemophagocytic lymphohistiocytosis

(HLH) and/or macrophage activation syndrome (MAS) (30–32).

We, too, could observe hallmarks of a MAS/HLH-like disease

starting at week 10 post engraftment, namely a decrease in

erythrocyte numbers as well as of hemoglobin content and an

increase of reticulocyte numbers in the blood of humanized NSG-

SGM3 mice. In order to prevent that these physiological changes
A B

DC

FIGURE 3

Bacterial burden in S. aureus-infected mice on day 2 p.i. The infected thigh muscle, as well as liver, kidneys, heart and lung were recovered on day 2
p.i. and homogenized. Serial dilutions were then plated to measure the colony forming units (CFU) of S. aureus in the respective organ. Displayed are
the individual bacterial burden in the thigh muscle (A), the lung (C) or the combined bacterial burden in investigated inner organs (kidneys, liver,
heart, spleen and lung) (B). The percentage of infected inner organs was furthermore calculated for each individual mouse (D). Statistical significance
was tested with Kruskal-Wallis with Dunn’s multiple comparison test (*p < 0.05, **p < 0.01).
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alter the outcome of a S. aureus infection experiment, we decided to

infect huSGM3 mice at 12 weeks post hCD34+ administration with

S. aureus when signs of anemia were still rather mild but the

number of human immune cells significantly higher than in huNSG
Frontiers in Immunology 08
mice. In order to identify differences in the susceptibility to S.

aureus infection, we included age-matched Balb/c, wild-type NSG-

SGM3 and murinized NSG-SGM3 mice as well as humanized NSG

mice at 18 weeks post stem cell administration.
A

B

C

FIGURE 4

Human immune cell types in S. aureus-infected huNSG and huSGM3 mice. Immune cells were measured by flow cytometry with antibodies against
hCD45, hCD3, hCD19, hCD66b and hCD14. (A) Blood samples were drawn at the start point of infection and on day 2 p.i. (B) Bone marrow was
harvested by flushing tibia and femur on day 2 p.i. (C) Spleens were recovered on day 2 p.i. and homogenized by pressing through a 70 µm cell
strainer. Displayed are the individual values per mouse as well as the medians per group. Statistical significance was tested with either Kruskal-Wallis
with Dunn’s multiple comparison test (A) or Mann-Whitney-test (B + C) (*p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001).
A B

FIGURE 5

Representative histological appearance of spleens from huNSG-SGM3 (A) and huNSG mice (B) during S. aureus infection. Spleens were harvested on
day 2 p.i. and processed to formalin-fixed and paraffin-embedded (FFPE) tissue slices. Specimens were then stained with anti-human CD45 and
H&E. Strong CD45 expression can be seen at the periarteriolar lymphoid sheath and associated lymph follicles.
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When huSGM3 and huNSG as well as the control groups were

infected with S. aureus into the left thigh muscle, we could observe

two outcomes: (I) both humanized mouse groups developed systemic

signs of disease and succumbed to the bacterial infection, while wild

type, immunodeficient or murinized mice survived and could control

the infection and (II) the next-generation huSGM3 mice were

significantly more vulnerable than huNSG mice. Interestingly, the

impaired survival of humanized mice was not accompanied by an
Frontiers in Immunology 09
increased bacterial burden in the infected thigh muscle or inner

organs, suggesting that the detrimental outcome was not linked to

bacteria overwhelming the immune system in the early phase of the

infection. The comparison of the rate of humanization and the time

at which each individual mouse reached the humane end point

demonstrated a clear influence of the humanization on the

outcome of the infection. This is in line with earlier studies

demonstrating this correlation in huNSG mice (14, 16). On the
A

B

FIGURE 6

Levels of human cytokines in the infected thigh muscle (A) and the blood (B) of S. aureus-infected huNSG or huSGM3 mice on day 2 p.i. (A) The
infected thigh muscles were recovered and homogenized in sterile PBS. Cytokine levels in filtered homogenate were then determined by a Luminex
assay. (B) Blood serum was recovered on day 2 p.i. and the cytokine levels measured with a Luminex assay. Displayed are the individual values and
the respective median per group. Statistical significance was tested with Mann-Whitney test (**p < 0.01).
FIGURE 7

Correlation of rate of humanization prior infection and severity of disease during infection experiment. Blood was drawn from each individual mouse
prior infection and analyzed by flow cytometry for the presence of human and murine CD45+ cells. The experimental end point was defined by
either the mouse reaching the humane end point (according to the score sheet) or surviving until day 7 p.i. (when the experiment was ended).
Statistically significant differences between points in time were calculated by Kruskal-Wallis with Dunn’s multiple comparison test (*: p < 0.05).
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other hand, the humanization of both NSG and NSG-SGM3 mice led

to lower numbers of murine Ly6G+ neutrophils and Ly6C+

monocytes, which might as well have impacted the outcome of the

infection. Since the number of murine cells was similar for huSGM3

and huNSG, we can assume that the difference in susceptibility

between these two groups is not linked to the murine immune

system. The repertoire and capability of the human immune

system in huNSG and huSGM3 mice on the other hand appeared

largely different. HuSGM3 mice had overall higher numbers of

human CD45+ cells in the blood and the spleen with particularly

higher numbers of myeloid cells. But interestingly, the increased

number of human neutrophils in the blood of huSGM3 mice did

neither help to control nor limit the bacterial infection compared to

the huNSG mice, even though they play a decisive role in the human

immune defense against S. aureus (24, 25, 39). The higher human

immune cell content was accompanied by elevated levels of cytokine

in the blood, suggesting strong activation of the human immune

system in huSGM3 mice. Increased levels of IL-6, IL-8 and TNFa
have been shown to be significantly increased in S. aureus patients

compared to healthy controls (43) and are associated with

a complicated course of infection in S. aureus bacteremia

patients (44–46). Our data showed significantly higher levels

of these cytokines in the blood of huSGM3 than in huNSG

mice. This suggests, together with the decreased survival,

that huSGM3 mice might reflect the clinical course of severe

S. aureus infections closer than huNSG or wildtype mice and that

they might be a promising model to study cytokine intervention

therapy. On the other hand, further efforts to improve the current

humanized mouse models might be necessary to close the gap

between model and clinics. In particular, because both, huNSG and

huSGM3, deviate from the clinical representation by some missing,

underrepresented or immature immune cell lineages, impaired

antigen-specific adaptive immunity or limited graft-to-host

tolerance (23).

We can summarize, that both the increased human immune cell

reconstitution, particularly of myeloid cells, and the stronger

human immune response in huSGM3 mice failed to control or

resolve S. aureus infection in this deep-tissue abscess model. Our

study suggests on the contrary that the stronger humanization of

huSGM3 mice had a detrimental effect on the survival after local

infection with S. aureus. This might indicate the failure of the

human immune system to fight S. aureus as efficiently as the murine

one and/or the adaption of S. aureus to components of the human

immune system. Furthermore, humanized mice might help to

reveal the pathogenic potential of S. aureus, which is impaired

during infection in wild-type mice since many of the deployed

virulence factors have a high degree of human specificity. It might

be very interesting for future studies to reveal whether S. aureus

adapts its pathogenic strategy and gene expression when infecting

humanized mice compared to wild type mice. Taken together, we

could show that next-generation humanized mice are more

vulnerable to S. aureus infection than previous mouse models and

might help to understand in the future why and how S. aureus

became one of the most successful pathogens in humans.
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