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Renal cell carcinoma (RCC) is associated with high mortality rates worldwide and

survival among RCC patients has not improved significantly in the past few years.

A better understanding of the pathogenesis of RCC can enable the development

of more effective therapeutic strategies against RCC. Hyaluronan (HA) is a

glycosaminoglycan located in the extracellular matrix (ECM) that has several

roles in biology, medicine, and physiological processes, such as tissue

homeostasis and angiogenesis. Dysregulated HA and its receptors play

important roles in fundamental cellular and molecular biology processes such

as cell signaling, immune modulation, tumor progression and angiogenesis.

There is emerging evidence that alterations in the production of HA regulate

RCC development, thereby acting as important biomarkers as well as specific

therapeutic targets. Therefore, targeting HA or combining it with other therapies

are promising therapeutic strategies. In this Review, we summarize the available

data on the role of abnormal regulation of HA and speculate on its potential as a

therapeutic target against RCC.
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1 Introduction

Kidney cancer represents around 3% of all cancer diagnoses and deaths worldwide,

with a higher incidence being reported in developed nations (1, 2). Renal cell carcinoma

(RCC) is the most common malignant tumor accounting for 80-85% of all kidney cancers

(3). The three main histological subtypes of RCC are clear cell RCC (ccRCC, 70%),

papillary RCC (pRCC, 10-15%) and chromophobe RCC (chRCC, 3-5%) (4, 5). Age, gender,

race, geographic location (1, 6), obesity (7, 8), smoking (9, 10), and hypertension (11, 12)

are associated with development of RCC, while lifestyle and dietary modifications may

reduce risk of developing RCC (13). RCC is associated with high mortality rates because its

poor sensitivity to therapies, and high recurrence risk after nephrectomy, providing a 60-

70% 5−year survival rate (14). Metastasis is present in approximately 30% of RCC cases at

initial diagnosis, which lead to poor clinical outcomes (15). Existing targeted
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1127828/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1127828/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1127828&domain=pdf&date_stamp=2023-03-02
mailto:zongyunfeng@zju.edu.cn
https://doi.org/10.3389/fimmu.2023.1127828
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1127828
https://www.frontiersin.org/journals/immunology


Jin and Zong 10.3389/fimmu.2023.1127828
immunotherapies and other therapeutic strategies against RCCs

have limited efficacy, which has prompted interest in the

development of alternative strategies (16).

Hyaluronan (HA) is a ubiquitous polyanionic glycosaminoglycan

(GAG) found in the extracellular matrix (ECM) that also forms a

pericellular coat surrounding cells. HA plays important roles in a variety

of physiological functions, including cell motility and inflammation

(17). Research has been conducted on the specific roles of HA in

diseases such as cancer, rheumatoid arthritis and infectious diseases

(18). Signal transduction and functions of HA depend on its molecular

size. Highmolecular weight HA (HMW-HA; >500 kDa) promotes anti-

inflammatory effects in most cases, whereas low molecular weight HA

(LMW-HA; <120 kDa) acts as a pro-inflammatory “danger” signal that

triggers local inflammation (19).

High levels of HA are associated with unfavorable prognosis in

multiple cancers (20, 21). HA has recently emerged as a key player in

nephrology and urology that plays a role in inflammation and ECM

organization (22). However, there is no clear consensus on the

importance of HA in RCC. Emerging evidence suggests that HA

accumulation abnormally in RCC may contribute to aggressive

malignancies and metastatic carcinomas, and may serve as an

essential therapeutic target (23). Herein, we highlight the

characteristics of HA and its main receptors in RCC, with specific

focus on its abnormal regulation and potential as a therapeutic target.
2 HA biology and kidney

HA was independently identified by Meyer and Palmer in 1934,

and was previously named from hyaloid and uronic acid (24). HA is

a GAG synthesized by a wide range of living organisms. It consists

of repeating disaccharide units of glucuronic acid (GlcA) and

N-acetylglucosamine (GlcNAc) bound together (25). HA is well

known for its water absorption abilities and its capacity to generate

higher concentrations of gels (26). Eukaryotic cells use HA synthases

(HAS1-3) to synthesize HA on their plasma membranes (Table 1,
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Figure 1). Among them, HAS1 is the least active enzyme, and requires

a high concentration of UDP-GlcNAc to function (39), while HAS3

is the most active synthase. HAS1 and HAS2 synthesize HMW-HA,

while HAS3 synthesizes LMW-HA (40). HAS2 is the primary

HA synthase during development (41). In mammals, expression of

HASs varies between normal and pathologic conditions based on

tissue and cell types.

HA undergoes rapid turnover in the ECM, with a third of the 15g

mass in an average adult human undergoing turnover each day. An

increase in HA levels may be associated with higher turnover, which

may reflect the pathological conditions. HA undergoes turnover and

catabolism after internalization by many tissues through receptor-

mediated endocytosis. HMW-HA is degraded by hyaluronidases

(HYALs) (32), reactive oxygen species (ROS) (42) or ultraviolet

(UV) radiation (43) (Figure 1). HA is mostly excreted in the liver

each day, while only 1-2% of HA is removed in the kidney (44–47).

Excretion through the kidney is limited to LMW-HA (< 12 kDa) that

can pass through the glomerular barrier. In mammals, the main

members of the family of HYALs include HYAL1-4, PH20 and

HYALP1 (Table 1). HYAL1 cleaves HA of different molecular

weights (32), while HYAL2 degrades HMW-HA into approximately

20 kDa fragments (31). HYAL3 is widely expressed, while the

expression of HYAL4 is mostly in the placenta and skeletal muscle.

In humans, HYALP1 is expressed as a pseudogene, but its function is

unclear. PH20 plays a role in fertilization and is almost exclusively

expressed in the testes (33). However, PH20 is overexpressed in other

malignant tissues, such as breast (48), prostate (49) and laryngeal (50)

cancers. Proteins such as TMEM2 (transmembrane protein 2) and

CEMIP (cell migration-inducing protein, also called HYBID or

KIAA1199), are capable of depolymerizing HA (51, 52). HA

degradation products such as LMW-HA and oligosaccharides (<10

kDa) activate signaling cascades that promoting inflammation and

angiogenesis and are generally associated with pathological states

(Figure 1), such as cancer (19).

HA is predominantly produced in the interstitium of the renal

papilla (medulla) in normal kidney, while its production in the renal
TABLE 1 HA synthases and hyaluronidases in humans.

Enzyme Gene Chromosome Characteristics Reference

HAS1 HAS1 19q13.3-19q13.4 The least active HASs; synthesize HMW-HA. (27, 28)

HAS2 HAS2 8q24.12 More catalytically active; synthesize HMW-HA. The major HA synthase during development. (27, 28)

HSA3 HAS3 16q22.1 The most active HASs; degrade HMW-HA into LMW-HA. (27, 28)

HYAL1 HYAL1 3p21.3 pH optimum near 3.7. (29, 30)

HYAL2 HYAL2 3p21.3 pH optimum of below 4; synthesize ~20 kDa fragments. (30, 31)

HYAL3 HYAL3 3p21.3 pH optimum of below 4. (30, 32)

HYAL4 HYAL4 7q31.3 Weak hyaluronidase activity. (30, 32)

HYALP1 HYALP1 7q31.3 Pseudogene. (30, 32)

PH20 SPAM1 7q31.3 Neutral pH; fertilization. (30, 33)

TMEM2 TMEM2 9q21.13 Neutral pH; degrade HMW-HA into ~5 kDa fragments. (34, 35)

CEMIP CEMIP 15q25.1 Degrade HMW-HA into intermediate and LMW-HA. (35, 36)
f

HAS, HA synthase; HYAL, hyaluronidase; TMEM2, transmembrane protein 2; CEMIP, cell migration-inducing protein.
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cortex is very low accounting for 1-3% of the production in themedulla

(53–57). The gene expression levels are HAS2 > HAS1 > HAS3 (58,

59). It is important to note that RCC mostly originates from the renal

cortex. Extracellular HA is degraded by HYAL2 in all kidney regions,

whereas intracellular HA is degraded by HYAL1 (60). Normal kidneys

have low production of HA, with increased production of HA in the

renal interstitium being linked to several renal diseases, such as acute

kidney injury (61), chronic kidney diseases (62), allograft rejection (63),

diabetic nephropathy (64), obstructive uropathy (65), IgA nephropathy

(66), and kidney stones (67). It has been proposed that altered

production of HA in papillary interstitial tissues regulates renal water

handling through its effects on the matrix’s physiochemical properties

and interstitial hydrostatic pressure (55, 68, 69). Ito et al. (70)

demonstrated that CD44 in renal proximal tubular epithelial cells

(PTCs) modulates HA-mediated regulation of cell function through

TGF-b mediated mechanisms. Van den Berg et al. (71) found that

glomerular endothelial HA contributes to glomerular structure and

function, but whose production is lost in diabetic nephropathy. In

addition, immunemediators may induce cortical fibroblasts to produce

more HA (54, 72), suggesting that inflammation causes accumulation

of HA in the cortex. There is need for further studies to identify the

exact nature of the cells responsible for HA synthesis or the factors that

contribute to its increased production in kidney diseases like RCC.
3 TME, ECM and immunity

Cancer is a complex systemic disease. The tumormicroenvironment

(TME) is composed of tumor cells and adjacent noncancer

components, such as immune cells, fibroblasts, ECM and many

others (73). Constant interactions between tumor cells and other

components constitute a highly complex, dynamic and
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heterogenous network of the TME that supports tumor growth

and invasion (74). RCC is associated with high infiltration of several

immune cells, making it one of the most immunoreactive tumors

(75–78). It also consists of various myofibroblasts and endothelial

cells (79). Targeting cancer cells in the TME has become an

appealing strategy for treating RCC (80, 81). Better understanding

of the RCC may lead to the identification of specific therapeutic

targets in the microenvironment, which can be used to improve the

prognosis of patients.

The ECM is highly dysregulated in cancer, and may play pro-

tumorigenic or anti-tumorigenic roles. During cancer progression,

ECM recognizes various cell surface receptors and initiates signaling

pathways that promote tumor growth (82). Unlike the ECM in healthy

kidneys, RCC ECM represent is composed of a complex network of

components such as GAGs, collagen, fibronectin, tenascin C, and

laminins (83, 84). GAGs are regulated by alteredmetabolic pathways in

RCC, which are associated with tumor aggressiveness and recurrence

(85–87). HA is a widely produced GAG of the ECM that can have

tumor promoting or tumor suppressing roles. Meanwhile, HA is

mostly produced in tumor cells as well as cancer-associated

fibroblasts (CAFs) in the TME (88), with the level of production

varying according to the stage of the tumor. Many pro-tumorigenic

effects are attributed to HA fragments (89). Under steady-state

conditions, HMW-HA (>500 kDa) is the dominant HA size in most

tissues and inhibits tumor progression, while LMW-HA (<120 kDa)

may regulate tumor growth, invasion and metastasis through HA

receptors in TME, such as CD44 and RHAMM (19, 88). Size-specific

HA signaling may be related to unique conformational changes in the

external receptor•HA complexes (90).

In some tumors, tumoral HA and its degradation products induce

tumor angiogenesis and activate both innate and adaptive immune

responses (91–93), but this association has not been studied in RCC.
FIGURE 1

Simplified schematic diagram of HA synthesis, degradation and signaling pathways. HA is synthesized by HASs using UDP-GlcA and UDP-GlcNAc as
substrates, and degraded into LMW-HA by HYALs or free radicals. The HA receptors are activated by LMW-HA and involved in various cellular
functions. HA, hyaluronan; LMW-HA, low molecular weight HA; HASs, HA synthases; HYALs, hyaluronidases. Figure adapted from Ref (37, 38).
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Tumoral HA is known to recruit tumor-associated macrophages

to promote tumor neovascularization (94). LMW-HA can induce

dendritic cells (DCs) activation and maturation, release

proangiogenic cytokines and modulate proangiogenic properties

in TME (93). Furthermore, HA has frequently been implicated in

T cell trafficking and induction of cell death in activated T cells

through CD44 (95, 96). Regulatory T cells (Tregs) are potent

immunosuppressive cells that promote tumor angiogenesis (93) with

HA binding populations being functionally more suppressive (91). In

addition, interaction between natural killer (NK) cell receptor and HA

on tumor cells possible to augment NK cell cytotoxicity (97). Thus, it is

not surprising that HA plays significant roles in the regulation of

tumor immunosuppression.
4 HA in RCC

Increased production of HA in tumor parenchyma, TME or serum

is associated with tumor growth and poor outcome in cancer patients,

including RCC (23), breast cancer (98), head and neck squamous cell

carcinoma (99), lymphomas (100), gliomas (101), melanomas (102),

lung carcinomas (103), hepatocellular carcinoma (104), and other

cancers. Kaul et al. (22) reported several kidney diseases, including

RCC, which are associated with changes in production of HA.

Jokelainen et al. (23) revealed that 39.6% of RCC samples were HA

positive. Furthermore, high cellular HA was associated with higher

tumor grades and was a marker of poor prognosis in RCC patients.

Thus, tumoral HAmay play a role in the progression of the cancer and

may act as a prognostic factor for RCC.

Zoltan-Jones et al. (105) reported that b-catenin regulated HA

production in Madin-Darby canine kidney (MDCK) cells and could

lead to epithelial-mesenchymal transition (EMT). Rilla et al. (106)

found that induction of HAS3 expression in MDCK cells may be

related to premalignant phenotypes. Moran et al. (84) reported that

HAS1 regulated the migration of renal carcinoma in vitro and found

no distant metastasis in mice after implanting HAS1-deficent cells.

Recent evidence demonstrates that microRNA-125a may play a role

in the progression of RCC through interaction with HAS1 (107),

suggesting that the tumor promoting properties of HA can be

explained by another mechanism.

Chi et al. (108) used Q-PCR to compare gene expression between

tumor tissues and adjacent normal tissue and found that HAS1 levels

were increased in ccRCC, pRCC and chRCC tissues. The expression of

HYAL4 in ccRCC and pRCC was higher than in oncocytomas, while

the expression of HYAL1 was lower in ccRCC than in normal kidney.

There was no difference in expression between normal and tumor

tissues among other members of the HA family including HAS2,

HAS3, HYAL2, HYAL3, PH20, HYALP1 and CD44v. Cai et al. (109)

found that the expression of HAS1-3 mRNA in human ccRCC was

higher than that in adjacent normal renal samples. However, only the

HAS3 protein expression was higher in ccRCC tissues at the protein

level. Immunohistochemical staining showed that weak HA staining in

human ccRCC tissues compared with normal adjacent samples.

Similarly, Ucakturk et al. (87) used UPLC-MS analyses to show that

no difference was found in HA production between RCC and normal

renal samples. It is putative that HASs transcription or protein
Frontiers in Immunology 04
expression levels in human RCC might not reflect HA levels. Taken

together, reports on the expression patterns of the HA family members

in RCC are inconsistent and may be due to different experimental

conditions. Also, additional mechanisms could be involved. Thus, the

exact role of HA in RCC is uncertain, and further studies that are more

sensitive and specific are required.

Kusmartsev et al. (110) observed an increase in HYAL2+PD-L1+

myeloid-derived suppressor cells (MDSCs) in ccRCC tumor tissue and

peripheral blood. Furthermore, stroma-associated PD-L1+ myeloid

cells showed significant production of HA. HYAL2+ myeloid cells

indicate the occurrence of HMW-HA degradation into LMW-HA,

suggesting that the relationship between myeloid cells and HA may be

involved in the promotion of cancer-related inflammation and

immune functions. Similarly, Dominguez-Gutierrez et al. (111)

found that LMW-HA was accumulated by HYAL2+ tumor

associated myeloid cells in human bladder cancer and associated

with elevated production of tumor angiogenic factors. Unfortunately,

it is still unclear how HA-immune interactions occur in RCC.
5 HA receptors in RCC

HA also interacts with specific proteins (Table 2) called

hyaladherins (129) such as TSG-6 (130), and various cell

receptors, including CD44 (131), receptor of HA-mediated

motility (RHAMM) (113), layilin (132), lymphatic vessel

endothelial receptor 1 (LYVE1) (118), intracellular adhesion

molecule 1 (ICAM1) (117), toll like receptors (TLRs) (114), and

hyaluronic acid receptor for endocytosis (HARE or Stabilin-2)

(120). The receptors are activated by LMW-HA and are involved

in various cellular functions including tumor metastasis and

lymphocyte activation. For example, LMW-HA regulates breast

cancer progression through CD44 and TLRs signaling (133). Only a

few studies have investigated the cellular mechanisms underlying

the role of HA receptors in RCC pathogenesis.

CD44 proteins are primary HA receptors that promote invasion

and metastasis of cancer cells by modulating intracellular signaling

through its interaction with RHAMM (131, 134). RHAMM regulates

cell proliferation and transformation and is overexpressed in most

cancers (113), the expression of RHAMM is an independent prognostic

factor for RCC (135). Chi et al. (108) found that RHAMM was

significantly higher in ccRCC, chRCC and pRCC than in normal

kidneys. Expression of CD44s and RHAMMwas also higher in ccRCC

and pRCC than in oncocytomas. These findings indicate that RHAMM

and CD44s expression levels in RCC tissues are potential predictors of

metastasis. Furthermore, HA and proteoglycan link protein 3

(HAPLN3) is overexpressed and may promote tumor progression in

ccRCC through immune cells infiltration (136).

Layilin is a HA receptor homologous to C-type lectin that has been

reported to regulate cell adhesion and migration through binding to

cytoskeletal proteins such as merlin and talin (137). The prognostic

value of layilin in hepatocellular carcinoma was reported by Zheng

et al. (121), who concluded that layilin is an unfavorable risk factor

since it suppresses the functions of the CD8+ T cells in TME. In

contrast, Mahuron et al. (138) reported that layilin enhanced the

cytotoxic potential of melanoma. Research on mice has shown that
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layilin is expressed in various organs, including kidney or normal rat

kidney cell line (137). Adachi et al. reported that layilin silencing

prevented EMT in human ccRCC in vitro (139). These results implied

that the exact function of layilin remains unclear.

In the renal papillae, HARE is localized to the endothelial cells that

internalize circulating HA (140). Tissues with the highest expression of

HARE are the most common targets of metastatic cancer (120). LYVE-

1 is another HA-binding receptor that is found in the lymphatic

vascular endothelial cells and renal tubular epithelium cells (141, 142).

LYVE-1 has been used to map lymphatic vessels within and around

tumor tissues to determine patient survival (143). Unfortunately, there

are no reports on the roles of LYVE-1 and other hyaladherins in RCC.
6 Potential therapeutic applications of
targeting HA in RCC

HA deposition persists in the TME contributes to pathophysiology

through induction of high tumor interstitial pressure (tIP) and

compression of tumor vessels, which results in tumor hypoxia (144,

145). The ability of HA to cover specific epitopes with enriched

pericellular matrix suggests that HA could act as an immune

regulator in human diseases, allowing affected cells to evade cellular

immune attack (20, 146, 147). For instance, McBride et al. (148)

reported that the HA pericellular matrix inhibits the formation of

synapses by immune cells and killing malignant cells in vitro. In

addition to formation of pericellular coats in vitro, HA can also form

cables that may facilitate communication between cells (149).

Breaching the HA barrier from the tumor leads to vascular

permeability and improved drug delivery, monoclonal antibody

(mAb), cytotoxic chemotherapy or immune cell therapeutic

efficacy (Figure 2).
Frontiers in Immunology 05
Research on HA signaling suggests that targeting HA and other

members of the HA family could be used to treat cancer (150). For

instance, inhibition of HAS1 induced apoptosis in bladder cancer in

vitro, thus inhibiting tumor growth and angiogenesis (151). 4-

methylumbelliferone (4-MU) is the best characterized chemical

inhibitor of HA that inhibits HA synthesis by downregulating HAS2

andHAS3. It has been reported that 4-MUhas potent anticancer effects

in various tumors, including pancreatic cancer (152), breast cancer

(153), esophageal cancer (154), skin cancer (155), bone cancer (156),

leukemia (157), ovarian cancer (158), prostate cancer (159) and liver

cancer (160). Additionally, HAS2 and HAS3 knockdown mimic the

effects of 4-MU in esophageal squamous carcinoma cells (161).

Chemical compounds, such as sulfated HA (sHA), that have the

ability to target HA degradation have been shown to inhibit the growth

of prostate cancer cells and induce apoptosis (162). Similarly, sHA

inhibits proliferation, motility, and invasion of breast cancer models

(163). The depletion of HA in TME using HYALs is also being

investigated as a potential cancer therapeutic strategy. PEGPH20 is

human recombinant HYAL that depletes stromal HA in several animal

models, and may induce reduction in tIP, increased penetration of

tumors by drug as well as immune cells and inhibit the growth of

tumor cells (164, 165). A variety of clinical trials are being conducted

for various cancers using a combination of HYALs, chemo or

radiotherapy (clinicaltrials.gov). However, whether depletion of HA

could be applied to treating RCC is still unknown.

Since CD44 is a key receptor for HA, it has been targeted in

different therapeutic strategies against cancer, such as vaccines, anti-

CD44 antibodies, and nanoparticles that deliver CD44 siRNA (166).

However, several phase I trials investigating CD44-targeted therapies

showed limited clinical success in treating cancer, and the occurrence of

severe side effects led to the termination of the project (167). Hence,

targeting CD44 as a cancer therapeutic target requires careful
TABLE 2 The roles of major hyaladherins in cancer.

Hyaladherin Gene Main functions Reference

CD44 CD44 Carcinogenesis and signaling regulator. (112)

RHAMM RHAMM Tumor cell migration and oncogenesis. (113)

TLR2/4 TLR2, TLR4 Tumor growth and lymph node metastasis. (114–116)

ICAM1 ICAM1 Cell adhesion, tumor progression. (117)

LYVE1 LYVE1 Tumor lymphangiogenesis. (118, 119)

HARE HARE Tumor metastasis. (120)

Layilin LAYN Negative regulator. (121)

TSG-6 TSG6 Inflammation and tumor metastasis. (122, 123)

SHAP ITIH1 Tumor metastasis. (124, 125)

HABP1 HABP1 Tumor metastasis and invasion. (126)

Brevican BCAN Tumor invasion. (127, 128)

Neurocan NCAN Tumor invasion. (127, 128)

Versican VCAN Tumor growth and angiogenesis. (29)
f

CD44, cluster of differentiation 44; RHAMM, receptor of HA-mediated motility; TLR, toll like receptor; ICAM1, intracellular adhesion molecule 1; LYVE1, lymphatic vessel endothelial receptor
1; HARE, hyaluronic acid receptor for endocytosis; TSG-6, tumor necrosis factor-(TNF) stimulated gene-6; SHAP, serum-derived hyaluronan associated protein; HABP1, hyaluronan-binding
protein 1.
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evaluation. Hirose et al. (168) suggested that inhibition of HARE could

be a potential strategy for preventing metastasis of melanoma to the

lung in mice. Studies by Gahan et al. and Benitez et al. showed that

combination of 4-MU and sorafenib inhibits the growth andmotility of

RCC cells by targeting RHAMM expression (169, 170), offering a

potential pathway for therapeutic intervention in RCC. In combination

with 4-MU, sorafenib also targets HAS3 and inhibits the growth of

microvessels in RCC (171). Additionally, HA is an attractive candidate

for conjugation to antitumor drugs or for use in nanoparticles (172–

174). Chemotherapy drugs can be effectively delivered through HA

nanomaterials. This may possibly increase the efficacy of

chemotherapeutics or other therapies in tumors.
7 Conclusions and future perspectives

HA signaling pathway (HASs, HYALs, and HA receptors) is

important in promoting tumor growth, metastasis, angiogenesis, and

immune response. Therefore, potential therapeutic methods that can

be developed include suppression of HA synthesis, clearance of the

existing HA, and conjunction of HYALs and HA receptors with

chemotherapy. Further studies are needed to identify the molecular

mechanisms underlying the relationship between HA production and

the development of cancers like RCC. There is also need to

comprehensively profile the genes, proteins and metabolites involved
Frontiers in Immunology 06
in HA metabolism in RCC, since the whole signaling cascade is crucial

to maintaining pro-cancer conditions. If these emerging strategies are

clinically effective against RCC, then they could be used as adjuvant

therapy in early disease to provide RCC patients with new options for

the future treatment.
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