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Risk stratification based on
DNA damage-repair-related
signature reflects the
microenvironmental feature,
metabolic status and therapeutic
response of breast cancer

Chunzhen Li †, Shu Yu †, Jie Chen, Qianshan Hou, Siyi Wang,
Cheng Qian* and Shulei Yin*

National Key Laboratory of Medical Immunology and Institute of Immunology, Naval Medical
University, Shanghai, China
DNA damage-repair machinery participates in maintaining genomic integrity and

affects tumorigenesis. Molecular signatures based on DNA damage-repair-

related genes (DRGs) capable of comprehensively indicating the prognosis,

tumor immunometabolic profile and therapeutic responsiveness of breast

cancer (BRCA) patients are still lacking. Integrating public datasets and

bioinformatics algorithms, we developed a robust prognostic signature based

on 27 DRGs. Multiple patient cohorts identified significant differences in various

types of survival between high- and low-risk patients stratified by the signature.

The signature correlated well with clinicopathological factors and could serve as

an independent prognostic indicator for BRCA patients. Furthermore, low-risk

tumors were characterized by more infiltrated CD8+ T cells, follicular helper T

cells, M1 macrophages, activated NK cells and resting dendritic cells, and fewer

M0 and M2 macrophages. The favorable immune infiltration patterns of low-risk

tumors were also accompanied by specific metabolic profiles, decreased DNA

replication, and enhanced antitumor immunity. Low-risk patients may respond

better to immunotherapy, and experience improved outcomes with

conventional chemotherapy or targeted medicine. Real-world immunotherapy

and chemotherapy cohorts verified the predictive results. Additionally, four small

molecule compounds promising to target high-risk tumors were predicted. In

vitro experiments confirmed the high expression of GNPNAT1 and MORF4L2 in

BRCA tissues and their association with immune cells, and the knockdown of

these two DRGs suppressed the proliferation of human BRCA cells. In summary,

this DNA damage-repair-related signature performed well in predicting patient

prognosis, immunometabolic profiles and therapeutic sensitivity, hopefully

contributing to precision medicine and new target discovery of BRCA.
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1 Introduction

As the most commonly diagnosed malignancy globally, breast

cancer (BRCA) has become a major driver of cancer-related deaths

in women (1). Advances in early detecting techniques and

multidimensional therapeutic modalities such as surgery,

neoadjuvant chemoradiotherapy, and hormonal therapy have

largely decreased the mortality of BRCA, but a proportion of

patients still suffer from poor outcomes attributable to factors

including tumor metastasis, recurrence, and drug resistance (2).

Immunotherapy, as represented by adoptive cell therapy (ACT),

tumor vaccines, and immune checkpoint blockade (ICB) therapy,

etc., has added new perspectives and alternatives for cancer

treatment. Nowadays, ICB agents such as Pembrolizumab and

Atezolizumab have shown relatively satisfactory efficacy in

treating triple-negative breast cancer (TNBC), especially in

patients who were responsive (3–5). However, the response rate

of patients receiving immunotherapy remains suboptimal,

restricting patients from further benefit from immunotherapy (5).

Therefore, identifying new prognostic indicators, therapeutic

response predictors, and even promising molecular targets is of

great relevance to further improve the prognosis of BRCA patients.

Genomic instability is one of the pervasive hallmarks of cancer

(6). DNA damage and repair (DDR) mechanisms serve an

indispensable role in the maintenance of genome stability.

Accumulating evidence has indicated that DDR mechanisms

contribute to regulating the oncogenesis, progression, genetic

susceptibility, and therapeutic sensitivity of neoplasms (6, 7).

Defects in DDR-related genes and resulting genomic instability

are relevant to the malignant progression of breast cancer, leading

to worsening disease and poor prognosis of patients (8, 9). It has

been demonstrated that germline mutations in BRCA1 or BRCA2

are major drivers of the genetic susceptibility of BRCA (10). Poly

(ADP-ribose) polymerase (PARP) inhibitors, capable of stunting

the base excision repair function of PARP and promoting the

formation of DSB (DNA double-strand breaks), leading to

enhanced cell apoptosis, have shown effectiveness in treating

patients with BRCA1 or BRCA2 mutations (8, 11). In addition,

TNBC with homologous recombination repair (HRR) deficiency

and BRCA1 methylation accompanied by low mRNA expression

proved more sensitive to platinum-based agents (12). Therefore, the

DDR pathway is a promising direction to explore prognostic

biomarkers and interference targets in BRCA.

Accumulating evidence has demonstrated that tumor

microenvironment (TME) constituents including infiltrative

immune cells and stromal cells and even their secreted substances

significantly influence therapeutic resistance and survival outcomes

in BRCA patients (13–15). Microenvironmental status is associated

with cancer progression along with alterations in the DDR pathway

(16). In addition, the DDR pathway alterations of tumor cells can

also affect the immune infiltration pattern and antitumor immune

response by modulating the immune checkpoint expression and

immune recognition of tumor cells (17, 18). Importantly,

combinational therapy with DDR inhibitors and ICB agents

significantly increased infiltrative lymphocytes and augmented T
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cell-mediated immune killing and antitumor immunity against

cancer cells (18–21). Hence, the investigation of the interaction

between the tumor DDR signaling and TME could facilitate

adequate uncovering of the value of DDR-related molecules as

prognostic and therapeutic biomarkers for BRCA patients.

This study presents a DNA damage-repair-related prognostic

signature performing well in indicating patient prognosis,

microenvironmental features, and therapeutic preferences. BRCA

patients stratified by this signature exhibited remarkably different

clinicopathological outcomes, tumor immune microenvironment

landscapes, antitumor immune function, and therapeutic

sensitivity, hopefully yielding novel insights into the target

discovery and precision medicine of BRCA.
2 Materials and methods

2.1 Data collection

From the Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/) we obtained RNA-seq data and clinical

information of 1109 BRCA samples and 113 normal samples. The

Molecular Signatures Database (MSigDB, https://www.gsea-

msigdb.org/gsea/msigdb/) and published studies were used to

collect DNA damage-repair-related genes (DRGs) (22–24). For

signature validation, two independent datasets (GSE20685 and

GSE96058) were downloaded from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo). GSE20685

dataset includes RNA expression and clinical data such as the

recurrence and metastasis information of 327 BRCA patients. The

RNA-seq, tumor size, histological grade, lymph node involvement,

as well as survival data of 3273 BRCA patients in the GSE96058

dataset were also collected from the GEO database. More clinical

information about the three cohort was shown in Supplementary

Table S1.
2.2 Screening of prognostic DRGs and
visualizing the interaction network

Firstly, we extracted differentially expressed DRGs through

running the R package “limma”, with parameters set as log2|(fold

change (FC))| > 0.585 and FDR < 0.001. Subsequently, Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analyses were conducted. RNA expression

data were merged with survival information of patients, while

duplicates and samples with an overall survival time of less than

60 days were removed, so that 1023 samples were used in the

prognostic analysis. Prognostic DRGs were screened from

differentially expressed DRGs utilizing univariate Cox regression.

The STRING database (https://cn.string-db.org/) provided the

interactions of prognostic DRGs, those with scores less than 0.4

and disconnected nodes are removed (25). Differentially expressed

transcriptome factors (TFs) associated with prognostic DRGs

(determined as |correlation| > 0.3 & P < 0.001) were also screened
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and the Cytoscape software was applied to visualize the TF-gene

network (26).
2.3 Establishment and validation of
the signature

TCGA-BRCA cohort (N = 1023) worked as the training cohort,

and datasets GSE96058 (N = 3273) and GSE20685 (N = 327) were

used as testing cohorts for external validation. LASSO (Least

Absolute Shrinkage and Selection Operator) process was

carried out in TCGA-BRCA cohort for further determination

of the DRGs used for signature establishment and their

coefficients. Formula for calculating the risk score was: Risk   score =

o
n

i=1
Coefficient(i)*Expression(i). Then every patient was given a risk

score. In accordance with the median of calculated scores, the

TCGA-BRCA cohort was divided into high-risk and low-risk

groups. It also served as the grouping cutoff for validation

cohorts. Using the R packages “survival” and “survminer”, we

plotted the Kaplan-Meier curves for the comparison of survival

outcomes. The “pheatmap” package was applied to display the

expression of signature DRGs. To assess the prognostic accuracy of

the signature, the time-dependent receiver operating characteristic

(ROC) curves were drawn.
2.4 Clinicopathological significance of the
signature and development of the
predictive nomogram

Patients in the training cohort were further divided into

subgroups according to the PAM50 subtypes of BRCA, and

survival analyses were performed to confirm the stability of this

signature in patients with different PAM50 subtypes. Comparisons

of the outcomes between patients with different risk were also

carried out, and different types of survival such as disease-free

survival (DFS), progression-free survival (PFS), disease-specific

survival (DSS), metastasis-free survival (MFS) and recurrence-free

survival (RFS) were observed. Then the univariate and multivariate

regressions were conducted for assessing whether this signature

along with other clinicopathological variables were capable of

indicating the prognosis of BRCA patients independently.

Independent prognostic indicators were further extracted for

developing the predictive nomogram. The predictive accuracy of

the nomogram was evaluated using ROC and calibration curves.
2.5 Profile of the metabolism, DNA repair
and cancer-related characteristics

To investigate the metabolic status of tumors in different risk

groups, we calculated various metabolic process scores for each

sample using the “IOBR” package, a functional package for

decoding the oncological and biological features of tumors based

on GSVA (Gene Set Variation Analysis) and multiple integrated

signatures (27). We also incorporated cancer-related features such
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as DNA mismatch repair, hypoxia, apoptosis, ferroptosis, exosome,

epithelial-mesenchymal transition (EMT) and angiogenesis to fully

investigate the differences in functional phenotypes (27–29).
2.6 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was carried out to search

for significantly enriched pathways in risk groups stratified by the

signature to suggest putative molecular mechanisms. The “gmt”

files for the KEGG and GO gene sets were downloaded from the

MSigDB. R packages “org.Hs.eg.db” and “clusterProfiler” were

adopted to conduct the analysis. Five significantly enriched terms

or pathways in each group were selected and visualized.
2.7 Dissection of the
tumor microenvironment

Multiple algorithms were applied to characterize the TME in

this section. Proportions of tumor-infiltrating immune cells along

with their correlation with the signature score were analyzed using

the xCELL, CIBERSORT and MCPCOUNTER platforms.

Differences in the abundance of 22 immune cell subtypes

calculated by CIBERSORT between risk groups were shown.

Moreover, the relationship between the expression of DRGs

constituting the signature and the CIBERSORT immune cells was

analyzed based on the Spearman correlation method. With the R

package “estimate”, we calculated microenvironmental scores

including stromal score and immune score, etc. We also

compared RNA expression-based stemness scores (RNAss)

between risk groups. Thorsson et al. reported immunogenomic

landscapes of multiple cancers in TCGA database, and we

introduced data on the intra-tumor heterogeneity and

proliferation scores of BRCA patients derived from their team

(30). To gain a deeper understanding of the differences in factors

associated with antitumor immunity, we conducted the GSVA

analysis based on “IOBR” packages after selecting several gene

sets reported previously (27, 31, 32).
2.8 Identifying patient sensitivity to
immunotherapy and chemotherapy

Firstly, we analyzed the expression of antitumor immunity-

related molecules including major histocompatibility complex

(MHC), immune coinhibitory molecules and immune

costimulatory molecules. TIDE (Tumor Immune Dysfunction and

Exclusion) and IPS (Immunophenoscore) algorithms were applied

to quantify characteristics such as tumor immunogenicity and

immune evasion to further evaluate the effectiveness of

immunotherapy for specific patients (33, 34). Multiple scores

such as the TIDE score and interferon score calculated by the

TIDE algorithm, as well as the IPS score, together with several

antitumor immunity-related signatures from previous publications,

provided explanations for the differences in responsiveness to
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immunotherapy between patients. The sensitivity of each sample to

common chemical agents clinically used, including Cisplatin,

Paclitaxel and Doxorubicin et al., was represented by the IC50

(the half-maximal inhibitory concentration) values calculated by

the “pRRophetic” package (35). In order to further validate the

predictive results, we included transcriptomic and clinical data of

real-world patient cohorts receiving chemotherapy (GSE4779,

GSE20271 and GSE59515) or immunotherapy (GSE78220,

GSE91061, GSE126044 and GSE35640).

The Connectivity Map (Cmap, https://clue.io/) platform was

further applied to screen drugs that might target high-risk tumors.

After completing the differential analysis between risk groups, genes

with |log2FC| > 1 and FDR < 0.05 were retrieved. And expression

alterations of those genes were uploaded to the Cmap platform to

predict effective compounds for high-risk tumors (36). Utilizing the

Pubchem website (http://pubchem.ncbi.nlm.nih.gov/), structures of

those effective agents were displayed (37).
2.9 Proteomic expression of
DRGs associated with
clinicopathological features

After comparing the differences in mRNA levels of these DRGs

under different clinicopathological features, we utilized multi-omics

data from publicly available databases together with experimental

approaches to validate the expression of DRGs associated with

clinicopathological factors in tumoral and noncancerous tissues to

see whether the differences in protein levels were consistent with those

mRNA results above. The Human Protein Atlas (HPA) database

(https://www.proteinatlas.org/) provides immunohistochemistry

(IHC) data, and the Clinical Proteomic Tumor Analysis Consortium

(CTPAC) database (https://pdc.cancer.gov/pdc/) was available for

proteomic data (38, 39). We also carried out quantitative real-time

PCR (qRT-PCR) and IHC analyses using clinical BRCA samples.
2.10 Cell culture and tissue samples

Human breast cancer cell line MCF-7 were obtained from the

American Type Culture Collection. Cells were cultured in DMEM

(Gibco) supplemented with 10% FBS (Gibco) at 37°C with 5% CO2.

Five pairs of freshly resected BRCA tissues and corresponding

adjacent normal tissues were obtained from the Department of

Thyroid and Breast Surgery, Shanghai Changhai Hospital, with the

informed consents of the patients. Fresh tissues were snap frozen

and stored in liquid nitrogen until RNA extraction.
2.11 RNA extraction and quantitative
real-time PCR

Total RNA was extracted from cultured cells or tissue samples

using TRIzol reagent in accordance with the manufacturer’s

instructions. Reverse transcription of RNA to cDNA was
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performed using TaKaRa’s reverse transcription reagents (Oligo

(dT) primer and M-MLV Reverse Transcriptase) following

standard procedures. RNA expression was quantified by real-time

PCR with TB Green Premix Ex Taq (TaKaRa) and normalized by

the level of GAPDH. Relative expression level is calculated using the

2−DDCt method. All primers used were synthesized by Sangon

Biotech (Shanghai, China). The sequences of the primers were

listed in Supplementary Table S2.
2.12 Cell transfection and cell counting
Kit-8 assay

Small interfering RNAs (siRNAs) targeting the human GNPNAT1

and MORF4L2 were obtained from Genepharma (Shanghai, China).

The sequences were listed in Supplementary Table S2. MCF-7 cells

were transfected with siRNAs (20nM) at confluency of 30–50% using

the Lipofectamine RNAiMAX Reagent (Invitrogen). The Opti-MEM

(Invitrogen) was utilized as the medium diluting siRNA and

transfection reagents, and subsequent experiments such as RNA

extraction and quantitative PCR and cell proliferation viability assay

were performed 48 hours after transfection. We investigated the effect

of GNPNAT1 and MORF4L2 knockdown on the proliferation ability

of BRCA cells by cell counting kit-8 (CCK-8) assay. Each group of cells

was inoculated in a 96-well plate (2×103 cells per well). The CCK-8

reagent (Vazyme) was added at 0h, 24h, 48h and 72h after cell

adhesion, and the absorbance measurements were performed

according to the manufacturer’s instructions.
2.13 Immunohistochemistry staining

The protein abundance of GNPNAT1 and MORF4L2 in BRCA

and normal paracancerous tissues was detected using IHC. Primary

antibodies against GNPNAT and MORF4L2 were purchased from

Proteintech and Origene, respectively. Antibodies against CD8 alpha

and CD68 were provided by Servicebio. The tissue samples were fixed

with 4% paraformaldehyde and then dehydrated, fixed, embedded and

sliced following standard procedures. Slides were incubated with

primary antibodies at 4°C overnight. Before incubating the secondary

antibody, wash the slides three times with PBS. Add the secondary

antibody and incubate for 1 hour at room temperature, protected from

light. The nuclei were stained using DAPI. Finally, microscopic

imaging and image acquisition were performed.
2.14 Software and statistical methods

Most of the bioinformatic analyses mentioned in this research were

achieved via R software (version 4.1.2), except for some online website-

based analyses such as the compound prediction. A variety of R

packages including “limma”, “ggpubr”, “pheatmap”, “GSVA”,

“survival”, “IOBR”, “estimate” and “pRRophetic”, etc. were

implemented in this study. The Student’s t-test was used to evaluate

continuous variables, whereas the c2 test was used to compare
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categorical variables. The Wilcoxon test was used to compare the

differences in gene expression between groups. Analysis of correlation

between variables was performed using Spearman and Pearson

methods. GraphPad Prism (version 9.0.0) was adopted to generate

the experimental analyses. For all statistical analyses, a p-value less than

0.05 was regarded as statistical significance.
3 Results

3.1 Identification of DNA damage and
repair-related genes with prognostic value

The overall framework of this study is illustrated in Figure 1.

The collected DRGs were intersected and de-duplicated with the

genes in TCGA-BRCA expression data, totaling 1581 DRGs were

obtained for subsequent analyses. According to the criteria of |log2
(FC)| > 0.585 and P < 0.001, a total of 448 differentially expressed

DRGs were identified, of which 128 were down-regulated and 320

were up-regulated in BRCA tissues (Figure 2A). They are mainly

enriched in biological pathways associated with breast cancer, cell

cycle and DNA replication, molecular functions such as DNA

strand uncoiling and binding, and cellular components including

chromatin and replication forks (Figure 2B). After the univariate

Cox regression, fifty-one prognostic DRGs were obtained (P < 0.05),

among which 27 were hazardous (Hazard ratio (HR) > 1) and 24

were benign (HR < 1) (Supplementary Table S3).
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3.2 Establishment of the DNA damage-
repair-related prognostic signature

Based on 51 prognostic DRGs, we conducted LASSO analysis to

determine the DRGs and their coefficients used for signature

establishment (Figures 2C, D). Subsequently 27 DRGs including 9

low-risk genes and 18 high-risk genes merged from the list and their

coefficients were shown in Figure 2E and Table 1. Additionally, for

more clarity on the interactions of these molecules, the protein-

protein interaction (PPI) and TF-gene regulatory network were

introduced. We drew a PPI network using those 51 prognostic

DRGs (Figure 2F). After correlation analysis of differential TFs with

27 signature DRGs, a network containing 22 signature DRGs

(including two TFs, PBX1 and JUNB) and 57 DRG-related TFs

was constructed (Figure 2G). Among them, the interactions

between JUNB and JUN, as well as PBX1 and MYB have been

investigated, so this regulatory network may bring ideas for

understanding the regulation of DRG expression (40, 41).

Subsequently, the risk score was calculated for each sample

based on the coefficients and expression of the 27 DRGs involved in

the signature. The median risk score in the TCGA-BRCA cohort

was 0.83425, which classified 511 low-risk and 512 high-risk

patients (Figure 3B). There was an obvious overall survival (OS)

benefit for low-risk patients as compared to those high-risk

individuals (P < 0.001, Figure 3A). In Figure 3B, C, patients’ risk

scores and survival status were shown along with the 27 DRG

expression among different risk groups. The area under the curve
FIGURE 1

The overall framework of this research.
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(AUC) of the 1-year, 5-year and 10-year ROC curves was 0.808,

0.754 and 0.803, respectively (Figure 3D). The signature was still

capable of distinguishing OS differences between high- and low-risk

individuals with Luminal A, Luminal B, Basal and Normal subtypes

(P < 0.05) (Figures 3E–I). Yet, unfortunately, among patients with

HER2 subtype, no statistically significant differences in OS were

observed (P = 0.267, Figure 3H). In addition, after subgrouping

patients based on their clinicopathological characteristics, high-risk

patients still had a poorer overall prognosis, suggesting that the

prognostic role of the signature was not vulnerable to

clinicopathological factors (Supplementary Figure S1A).

Moreover, high-risk patients experienced worse progression-free
Frontiers in Immunology 06
survival (PFS), disease-free survival (DFS), and disease-specific

survival (DSS) than those of low-risk patients (Figures 3J–L).
3.3 Clinicopathological relevance of the
signature and development of the
predictive nomogram

Risk stratification based on DNA damage-repair-related genes

correlated well with the clinicopathological characteristics of

patients. The elderly patients had higher risk scores compared to

those younger ones (P < 0.05, Figure 4A). We in turn investigated
A B

D E

F G

C

FIGURE 2

Screening for differentially expressed DNA damage and repair-related genes (DRGs) for prognostic signature establishment. (A) Volcano map of the
differentially expressed DRGs. (B) GO and KEGG enrichment results of differentially expressed DRGs. (C–E) LASSO analysis confirmed the candidate
DRGs and their coefficients. (F) PPI network of prognostic DRGs. (G) Interaction network of signature DRGs and their related TFs; The red and green
lines represent positive and negative correlations, respectively. The yellow and green graphs represent high-risk and low-risk MRGs, respectively.
Triangles represent TFs. Two hexagons represent TFs that also act as signature DRGs.
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the correlation of the signature with AJCC stage, survival outcome,

TNM stage, and disease progression status in BRCA patients, which

revealed that high-risk patients had more advanced tumors, worse

survival as well as treatment outcomes (Figures 4B–G). Cox

regression determined the independence of age and risk score as

prognosis predictors for overall survival from multiple clinical

indicators, and the risk score showed the highest HR (Figures 4H,

I). Subsequently, the nomogram incorporating two independent

prognostic indicators for quantitative prediction of OS were

constructed (Figure 4J). Time-dependent ROC and calibration

curves show higher efficiency of the signature-derived nomogram

in predicting patient OS (Figures 4K, L). Furthermore, the

independent prognostic role of the signature on PFS, DFS and

DSS was also demonstrated (Supplementary Figure S2).
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3.4 The prognostic value of the signature
was validated in two independent cohorts

The value of the DRG-based signature in indicating prognosis

was verified in two external cohorts (GSE20685 and GSE96058), as

evidenced by a shorter OS time for high-risk patients (P < 0.001,

Figures 5A, J). And the signature maintained a satisfactory

prognostic performance across different clinicopathological

subgroups in two external cohorts (Supplementary Figures S1B, C).

In the GSE20685 cohort, The AUC of the 1-year, 5-year and 10-year

ROC curves were 0.773, 0.690 and 0.646, respectively (Figure 5B).

Since few patients in the GSE96058 cohort were followed for more

than 7 years, we specified the time-dependent ROC curve to year 7.

The signature also showed good prediction in the GSE96058 cohort
TABLE 1 Coefficients of the signature DRGs.

Gene Symnol Description Coefficient

MECOM MDS1 And EVI1 Complex Locus 0.12893

RPA3 Replication Protein A3 0.02782

MORF4L2 Mortality Factor 4 Like 2 0.00056

ACTL6A Actin Like 6A 0.00199

NFATC2 Nuclear Factor of Activated T Cells 2 -0.02164

S100A11 S100 Calcium Binding Protein A11 0.00021

VDAC3 Voltage Dependent Anion Channel 3 0.00066

PSMD14 Proteasome 26S Subunit, Non-ATPase 14 0.02283

TANK TRAF Family Member Associated NFKB Activator -0.08903

WNT7B Wnt Family Member 7B 0.02638

TONSL Tonsoku Like, DNA Repair Protein 0.03017

VAV3 Vav Guanine Nucleotide Exchange Factor 3 -0.00981

PLAU Plasminogen Activator, Urokinase 0.00402

GNPNAT1 Glucosamine-Phosphate N-Acetyltransferase 1 0.00092

PSME1 Proteasome Activator Subunit 1 -0.00594

JUNB JunB Proto-Oncogene, AP-1 Transcription Factor Subunit -0.00079

LEF1 Lymphoid Enhancer Binding Factor 1 -0.01138

RAD51 RAD51 Recombinase 0.00310

PSMA7 Proteasome 20S Subunit Alpha 7 0.00026

DAXX Death Domain Associated Protein -0.02490

PBX1 PBX Homeobox 1 0.01142

DCTPP1 DCTP Pyrophosphatase 1 0.01298

CCND2 Cyclin D2 -0.00200

SCD Stearoyl-CoA Desaturase 0.00025

ARMT1 Acidic Residue Methyltransferase 1 0.00163

TPT1 Tumor Protein, Translationally-Controlled 1 -0.00012

SGCB Sarcoglycan Beta 0.03111
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(Figure 5K). Patients from the GSE20685 cohort who experienced

death or tumor metastasis events had higher risk scores (P < 0.001,

Figures 5C, D). Risk scores were also higher but not statistically

significant in patients with tumor relapse (P = 0.3, Figure 5E).

Moreover, the signature was as effective in differentiating

metastasis-free survival (MFS) and relapse -free survival (RFS) in

high- and low-risk patients (Figures 5F, G). In the GSE96058 cohort,

patients with age > 60, more detected positive lymph nodes (LNs), or

death outcomes had higher risk scores (Figures 5L, M, P). High-risk
Frontiers in Immunology 08
patients were found to have larger tumor, and there was a

correlation between the risk score and tumor size (Figures 5N, O).

The positive correlation between the risk score and the histological

grade of the tumor was significant (P < 0.001, Figure 5Q). In

addition, the OS of high-risk patients was consistently worse

than that of low-risk patients, regardless of the PAM50 subtype

(all P < 0.05, Figures 5R–V). The independent prognostic

performance of the signature was also verified in these two

cohorts (Figures 5H, I W, X, respectively).
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FIGURE 3

Establishing the prognostic signature using the TCGA-BRCA cohort. (A) Kaplan-Meier overall survival curve of all patients. (B) Risk score and survival
status of each patient. (C) Heat map of signature DRG expression. The color from blue to red represents the gene expression from low to high.
(D) ROC curves for signature evaluation. (E–I) Kaplan-Meier overall survival curves of patients with different PAM50 types. PFS curve (J), DFS curve
(K) and DSS curve (L) of all patients.
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3.5 Identification and protein
expression of DRGs associated with
pathological progression

For further exploration of DRGs associated with clinicopathological

characteristics of BRCA patients, we analyzed differential

expression of DRGs involved in this signature between different

clinicopathological subgroups. Higher expression of MORF4L2 was

found in patients with age > 60, poor survival outcomes, and higher

lymph node (N) stage (Figures 6A, B, D). ACTL6A expression was

higher in patients with advanced T stage and AJCC stage and lower

in older patients. Both TANK and VAV3 were differentially
Frontiers in Immunology 09
expressed between subgroups based on age, T-stage, and AJCC

stage (Figures 6A, C, E). DCTPP1 and GNPNAT1 were highly

expressed in patients with death outcome and patients with higher

N stage, respectively (Figures 6B, D). We then checked the

differential mRNA expression of those 6 DRGs in noncancerous

and tumor tissues, and found that the other five DRGs with high

expression in BRCA tissues except for TANK with low expression

(Figure 6F). Besides, we explored the proteomic level differences of

these six DRGs in normal and BRCA tissues via CPTAC database

and HPA database. Figures 6G–L revealed that the levels of five

proteins, ACTL6A, DCTPP1, GNPNAT1, MORF4L2 and VAV3

were significantly upregulated in BRCA tissues, and the level of
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FIGURE 4

Investigating the association of the signature with the clinicopathological characteristics of patients in the TCGA-BRCA cohort. The association of
the signature with the age (A), AJCC stage (B), survival outcome (C), AJCC T-stage (D), AJCC N-stage (E), disease status (F) and AJCC M-stage (G).
(H, I) Univariate and multivariate Cox analyses confirmed the independent prognostic role of the signature. (J) The predictive nomogram containing
the risk score and another independent prognostic factor. (K, L) The ROC curve and calibration curve to assess the predictive accuracy of the
nomogram. (ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001).
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TANK protein was downregulated, but the difference was not

statistically significant. Immunohistochemical images derived from

the HPA database suggested that the levels of these six proteins in

normal and BRCA tissues were basically in keeping with those RNA

results from TCGA and proteomic results from CPTAC (Figure 6M).
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3.6 Landscape of tumor-infiltrating
immune cells

With growing evidence that DNA damage and repair could

affect tumor immunogenicity, immune infiltration patterns, and be
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FIGURE 5

Validating the prognostic value in two independent external cohorts. (A–I) Results based on GSE20685 cohort. The OS curve (A), MFS curve (F), RFS
curve (G) of patients. (B) The ROC curve to evaluate the predictive accuracy. The association of the signature with the survival outcome (C),
metastasis event (D) and relapse event (E). Confirming the signature independence via univariate (H) and multivariate (I) Cox analyses. (J–X) Results
based on GSE20685 cohort. (J) The OS curve of all patients. (K) The ROC curve to evaluate the predictive accuracy. The association of the signature
with the age (L), survival outcome (M), tumor size (N, O), lymph node involvement (P) and histological grade (Q). (R–V) Overall survival curves of
patients with different PAM50 types. Confirming the independent prognostic role via univariate (W) and multivariate (X) Cox analyses. (ns, not
significant, **P < 0.01, ***P < 0.001).
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involved in modulating intrinsic and adaptive immune responses,

we wanted to investigate the relevance between this DRG-based risk

signature and tumor-infiltrating immune cells (42, 43). The

immune infiltration patterns were characterized using three

different algorithms (xCELL, MCPcounter and CIBERSORT).

Figure 7A showed that the risk scores were negatively correlated

with the amount of CD8+ T cells, the main subset of T cells that

exert antitumor immunity. While the abundance of tumor-

associated macrophages (TAMs), particularly M2 macrophages

that suggest poor prognosis of BRCA patients, correlated

positively with the risk score (Figure 7A). Consistently, higher

levels of M0 and M2 macrophages, and lower levels of CD8+ T
Frontiers in Immunology 11
cells were found in the tumors of high-risk patients (Figure 7B).

Moreover, there were more naïve B cells, follicular helper T cells,

activated NK cells, monocytes, M1 macrophages and resting

dendritic cells in low-risk tumors (Figure 7B).

With the results of the CIBERSORT algorithm, we wanted to

explore the association between signature DRGs and the

abundance of infiltrative immune cells. The expression of six

DRGs, CCND2, DAXX, JUNB, NFATC2, PSME1 and TPT1,

presented a strong positive correlation with CD8+ T cells

(Figure 7C). In contrast, eight DRGs (ARMT1, GNPNAT1,

MORF4L2, PBX1, PLAU, SCD, SGCB and VAV3) exhibited a

strong negative association with CD8+ T cells (Figure 7C).
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FIGURE 6

Identification and protein expression of DRGs associated with clinicopathological features. (A–E) DRGs differentially expressed in different
clinicopathological subgroups. (F) Differential mRNA expression of six DRGs associated with clinicopathological features in normal and tumor tissues.
(G–L) Proteomic expression of six DRGs based on CPTAC database. (M) Immunohistochemical images derived from the HPA database showed the
levels of six proteins in normal and tumor tissues. (ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001).
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The positive correlations of five DRGs (ARMT1, MORF4L2, PBX1,

VAV3 and WNT7B) with M2 macrophages and resting mast cells

were also observed. Six progression-related DRGs showed distinct

correlation with immune cells. ACTL6A was positively correlated

with follicular helper T cells, activated CD4+ memory T cells, M1

macrophages andM0macrophages, while it was negatively correlated

with resting mast cells. The three progression-related DRGs,

GNPNAT1, MORF4L2 and VAV3, consistently correlated

negatively with CD8+ T cells and positively with M2 macrophages.

TANK expression was positively associated with multiple T cell

subtypes (CD8+ T cells, activated CD4+ T cells, etc.) except for

Treg. Interestingly, five DRGs (CCND2, NFATC2, S100A11, TANK
Frontiers in Immunology 12
and TONSL) showed inverse correlations with different macrophage

phenotypes, indicating that they may influence macrophage

polarization. These results show that both the signature and the

DRGs used for developing the signature exhibit good relevance to

immune cells.

There was no difference in stromal scores between the two

groups, while immune scores and ESTIMATE scores were elevated

in low-risk patients (P < 0.01, Figure 7D). Conversely, high-risk

tumors were purer and also characterized by stronger cancer-stem-

cell (CSC) properties (all P < 0.01, Figures 7E, F). Moreover, risk

scores showed a significant positive correlation with cancer-stem-

cell scores (P < 0.001, Figure 7G).
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FIGURE 7

Dissection of the tumor microenvironment. (A) The correlation between the signature and tumor-infiltrating immune cells estimated by three
algorithms. (B) Differential immune cells based on CIBERSORT algorithm between risk groups. (C) The relevance between the DRG expression and
microenvironmental immune cells based on CIBERSORT algorithm. (D, E) Differences in microenvironmental scores and tumor purity. (F, G)
Relationship between the signature score and tumor stemness. (ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001).
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3.7 Distinct metabolic profiles and cancer
hallmarks between the risk groups

Metabolic reprogramming acts as an important driver of the

tumoral adaptation to the microenvironment and can also influence

the efficacy of antitumor therapy, so we sought to unravel the

differences in metabolic status between the two groups. Metabolic

pathways were mainly classified into those related to the

metabolism of amino acids, lipids, carbohydrates, glycans,

nucleotides, energy and drugs (Figure 8A). Epigenetic activation

of the cholesterol synthesis is linked to treatment resistance and

biological malignancy of BRCA (44). Targeting nucleotide

metabolism, especially pyrimidine metabolism, is also considered

promising for improving the efficacy of antitumor immunotherapy
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(45). As expected, there were differences in various metabolic

pathways between groups, and the majority of them were

significantly more active in the high-risk group, such as

cholesterol biosynthesis, glycosaminoglycan biosynthesis,

pyrimidine metabolism, etc. (Figures 8A, B). Higher scores of

caffeine metabolism, alpha linoleic acid metabolism and

arachidonic acid metabolism were found in the low-risk group

(Figure 8B). According to the Figure 8C, the risk scores showed

significant positive correlations with cholesterol synthesis, fructose

and mannose metabolism, glycosaminoglycan biosynthesis and

pyrimidine synthesis. Yet the negative association between

arachidonic acid metabolism and risk score was relatively strong.

Furthermore, we also explored differences in cancer hallmark-

related function between risk groups. High-risk tumors exhibited
A

B C

FIGURE 8

Distinct metabolic profiles between risk groups. (A) Heat map of different metabolic processes in risk groups. The color from blue to red represents
the score from low to high. (B) Differential metabolic processes between risk groups. (C) Heat map of correlation between risk scores and metabolic
processes. In this heat map, the size of the circle represents the statistical significance and the color represents the correlation. The color from blue
to red represents the negative to positive correlation. (*P < 0.05, **P < 0.01, ***P < 0.001).
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significantly higher heterogeneity and higher scores for

proliferation, EMT, TGF-beta signaling, angiogenesis, m6A and

exosome secretion than low-risk tumors (Supplementary Figures

S3A–C). The apoptosis scores were elevated while the ferroptosis

scores were decreased in low-risk patients (Supplementary Figures

S3A, B). Moreover, the risk signature correlated well with those

cancer hallmarks (Supplementary Figure S3A). These results show

that high- and low-risk patients shared distinct tumor metabolic,

proliferative, apoptotic, and metastatic characteristics, suggesting a

good classifier effect of the prognostic signature.
3.8 Differences in DNA damage response
and antitumor immunity

Since the DRG-based signature has served as a good classifier in

terms of patient prognosis, immune microenvironment, and

metabolic activity, we wanted to explore in depth the functional

differences between high- and low-risk groups. GSEA results

demonstrated that immune response-related pathways such as

antigen presentation and processing, T cell activation, B cell and

T cell receptor signaling pathways, and cytokine - cytokine receptor

interactions were significantly enriched in low-risk tumors,

implying that low-risk tumors may be immune-enriched “hot

tumor” phenotypes (Figures 9A, B). In contrast, hormone

biosynthesis, cell cycle, and DNA replication pathways were

noticeably enriched in the high-risk group (Figures 9A, B). The

heat map demonstrated differences in DNA damage repair,

antitumor immune response, and cancer hallmark-related scores

among patients in different risk groups (Figure 9C). High-risk

tumors possessed notably enhanced DNA damage response and

DNA replication activities (Figures 9C, E). However, in terms of

antitumor immunity, low-risk patients scored significantly higher

in HLA signature, CD8+ effector T cells, tumor antigen

presentation, and interferon-gamma response than those high-

risk ones (Figures 9C, F). Moreover, the low-risk group

dominated in four of the seven steps of cancer-immunity cycle

(Figures 9C, F) (31, 46). In contrast, high-risk patients possessed

markedly increased myeloid-derived suppressor cell (MDSC)

scores, cancer-associated fibroblast (CAF) scores, and hypoxia

scores (Figures 9C, F). Besides, risk scores were negatively

associated with antitumor immunity-related signatures and

positively associated with DNA replication, mismatch repair,

CAF, MDSC and hypoxia-related signatures (Figure 9D). The

microbiota has been reported to significantly contribute to the

colonization of BRCA metastases and the efficiency of

immunotherapy (47, 48). Interestingly, the anti-microbial scores

were also notably higher in the low-risk group, which was in

accordance with the aforementioned results of fewer tumor

metastatic events and enhanced immunity in low-risk patients

(Figures 9C, F). These results reinforce that low-risk patients

experienced stronger antitumor immune responses and higher

potential to benefit from immunotherapy.
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3.9 The signature could distinguish
potential responders for immunotherapy

We next explored the practicality of the signature in signaling the

responsiveness of immunotherapy recipients in a comprehensive

manner by comparing the expression of key immunomodulatory

molecules, TIDE scores, IPS scores, and other antitumor-immunity-

related scores between different risk group. Subsequently, publicly

available real-world immunotherapy cohorts validated the

distinguishing efficacy of the signature. The expression of MHC

complex-related molecules such as TAP1, TAP2, B2M and HLA

genes as well as immune checkpoints including PDCD1, CTLA4,

CD274, TIGIT, LAG3, CD40 and ICOS were elevated in low-risk

tumors (Figures 10A–C). Low-risk tumors also exhibited higher

interferon (IFN)-gamma scores, CD8+ T cell scores, and T-cell

dysregulation scores, and lower TIDE scores and T-cell exclusion

scores, indicating that low-risk patients had enhanced antitumor

immunity, lower chances to experience immune evasion and

improved responses to immunotherapy. (all P < 0.001) (Figures 10D–

H). Responders to immunotherapy were also more distributed among

low-risk patients (Figure 10I). IPS scores further confirmed the

difference in susceptibility to immunotherapy among patients.

Figure 10J showed that the low-risk patients achieved higher IPS

scores than the high-risk patients in any CTLA4 and PD-L1

subgroups (P < 0.001). GSVA results also showed that scores for

immune functional signatures including CD8+ T cells, cytolytic

activity, MHC-I molecules, DC function and IFN response were

enhanced in low-risk individuals (Figure 10K).

Given the important role of BRCA1/2 mutations in DNA damage

and repair, we also analyzed the relevance of this signature to BRCA1/2

mutations. The BRCA1/2 mutation information in the TCGA-BRCA

dataset was visualized using cBioPortal (www.cbioportal.org/)

(Supplementary Figure S4A). We assessed whether the performance

of the signature was stable by comparing the survival time between risk

groups. In patients with BRCA1/2 mutation, the OS of low-risk

patients remained longer than that of high-risk patients, but the

difference was not statistically significant (P = 0.052, Supplementary

Figure S4B). However, by comparing the TIDE scores we found that

low-risk patients in the population harboring the BRCA1/2 mutation

were still more favorable to benefit from immunotherapy (P < 0.05,

Supplementary Figure S4C). These results demonstrate that low-risk

patients were considered more suggestive as responders

to immunotherapy.

To further check the proficiency of this signature in predicting

immunotherapeutic benefits of patients, here we introduced four

publicly available real-world immunotherapy cohorts to validate the

above results. Analyses of three cohorts receiving anti-PD-1 therapy

revealed that patients with better therapeutic outcomes attained lower

risk scores, and a higher proportion of responders were found in the

low-risk group (Figures 10L–N). In addition, low-risk patients were

also more responsive to MAGE-A3 immunotherapy (Figure 10O).

Accordingly, the DRG-based risk signature could distinguish patient

sensitivity to immunotherapy, with low-risk patients being more likely

to achieve favorable responses and improved therapeutic outcomes.
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3.10 Chemotherapeutic sensitivity
assessment and screening for optimal
small molecule agents

To augment the utility of this signature for advising clinical

individualized regimens for BRCA, we applied the “pRRophetic”

package to predict the chemotherapy sensitivity of patients, and
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validated them in combination with three real-world cohorts. The

IC50 values for the majority of clinical conventional

chemotherapeutic agents (Cisplatin, Paclitaxel, Doxorubicin,

Gemcitabine, Methotrexate, Camptothecin and Vinorelbine) and

targeted agents (Tipifarnib and Gefitinib) were remarkably lower in

low-risk patients, suggesting that they were more sensitive to these

drugs (all P < 0.01) (Figures 11A–I). While the high-risk group
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FIGURE 9

Outlining the DNA damage response and antitumor immunity landscapes. (A, B) GSEA results. In these ridge plots, an enrichment peak greater than
0 indicates that the pathway/term is enriched in the high-risk group while conversely, it is enriched in the low-risk group. (C) Heat map of DNA
damage response and antitumor immunity signatures in risk groups. The color from blue to red represents the score from low to high. (D) Heat map
of correlation between risk scores and different signatures. In this heat map, the size of the circle represents the statistical significance and the color
represents the correlation. The color from blue to red represents the negative to positive correlation. Differential scores of DNA damage response
(E) and antitumor immunity (F) between risk groups. (***P < 0.001).
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showed better sensitivity to Lapatinib (P < 0.05) (Figure 11J).

Moreover, risk scores exhibited significant positive correlations

with the IC50 for the first nine drugs, with the most obvious

correlations with Gemcitabine and Gefitinib (all P < 0.001)

(Supplementary Figure S5). Validation using two cohorts

receiving neoadjuvant chemotherapy with Fluorouracil,
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Doxorubicin and Cyclophosphamide showed significantly lower

risk scores in the responder group than in the non-responder

group (all P < 0.05) (Figures 11K, L). Interestingly, the difference

in risk scores was still observed between the responder and non-

responder groups of the Letrozole-based endocrinotherapy cohort

(P < 0.05) (Figure 11M).
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FIGURE 10

The value of the signature in differentiating immunotherapy responses of patients. The differential expression of HLA members (A), immunoinhibitory
molecules (B) and immunostimulatory molecules (C). Differences in TIDE scores (D), IFN-gamma scores (E), T cell dysfunction scores (F), T cell exclusion
scores (G), CD8+ T cell scores (H), percentage of immunotherapy responders (I), IPS scores (J) and immune function scores (K) between risk groups.
(L–O) Four immunotherapy cohorts validated the predictive performance of the signature. (*P < 0.05, **P < 0.01, ***P < 0.001).
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Considering that high-risk patients suffered from poor outcomes

and potential resistance to multiple therapeutic regimens, we screened

for drug candidates suitable for high-risk patients by matching the

expression profile variations. Differential genes between two risk

groups were analyzed and uploaded to the Cmap database. Four

potentially effective small molecule compounds for high-risk tumors

were predicted, namely Naproxol (Figure 11N), GANT-61

(Figure 11O), Vorinostat (Figure 11P) and Cimetidine (Figure 11Q)

(Supplementary Table S4).
3.11 Experimental verification of the
expression and functional characteristics
of key DRGs

After a comprehensive evaluation of the DDR-based

signature, we aimed to further validate the expression and
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biological functions of key DRGs in BRCA. Two DRGs,

GNPNAT1 and MORF4L2, exhibited strong correlations with

survival prognosis and tumor-infiltrating immune cells (CD8+ T

cells, macrophages, etc.) in the analysis above (Figure 7C and

Supplementary Table S3). Although GNPNAT1 has been reported

to be associated with radiotherapy sensitivity in BRCA, the

majority of roles of these two DRGs in BRCA have not been

adequately characterized, resulting in their focus by us. Through

survival analyses based on multiple external datasets, the

association of high expression of these two DRGs with shorter

OS, RFS, MFS, etc. was further revealed (Supplementary Figure

S6). Elevated expression of GNPNAT1 and MORF4L2 in BRCA

was verified by GEPIA database (http://gepia.cancer-pku.cn/) and

our qRT-PCR results of clinical samples (Figures 12A, B). IHC

sections also showed higher protein level of GNPNAT1 and

MORF4L2 in BRCA tissues (Figure 12C). Furthermore,

consistent with the findings described above, we found
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FIGURE 11

Chemotherapy sensitivity prediction and candidate drug exploration. Low-risk patients presented higher sensitivity to Cisplatin (A), Paclitaxel (B),
Doxorubicin (C),Gemcitabine (D), Methotrexate (E), Camptothecin (F), Vinorelbine (G), Tipifarnib (H) and Gefitinib (I), and lower sensitivity to Lapatinib
(J). (K–M) Three cohorts receiving neoadjuvant chemotherapy, chemotherapy, and neoadjuvant endocrinotherapy validated the predictive
performance of the signature. (N–Q) (*P < 0.05, **P < 0.01, ***P < 0.001). (ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001).
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significant co-localization of the positive stained regions of

GNPNAT1 and MORF4L2 with the marker of macrophages

CD68 (Figure 12D). However, few CD8+ T cells were detected

within these regions (Figure 12D). Since high levels of GNPNAT1

and MORF4L2 expression suggest poor prognosis, yet whether

they affect the proliferation of BRCA cells is unclear, so we

investigated their effect on the proliferation of MCF-7 cells. The

designed siRNAs of GNPNAT1 and MORF4L2 both possessed

favorable gene silencing efficiency (Figure 12E). CCK-8 assays

revealed that knockdown of both DRGs could result in impaired

proliferation viability of MCF-7 cells (Figures 12F, G).
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4 Discussion

The DNA damage repair (DDR) machinery is an essential part

for the cellular maintenance of genomic stability, and its function

deficiency or abnormality could induce alterations in basic

biological behaviors such as cell proliferation and apoptosis (6).

In breast cancer (BRCA), the most serious threat in cancer-related

deaths among women, the role of DDR machinery cannot be

neglected since it was proposed to be closely involved in the

initiation, progression, metastasis, recurrence, and treatment

resistance of tumors (6, 8, 9). For example, loss of BRCA1 or its
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FIGURE 12

Expression validation and functional exploration of two key DRGs. (A) GEPIA database analyses demonstrated the differential expression of GNPNAT1
and MORF4L2 in BRCA and normal breast tissues. (B, C) RT-qPCR and IHC (10×) experiments showed the elevated expression of GNPNAT1 and
MORF4L2 in BRCA tissues compared with adjacent normal tissues. (D) IHC assays (10×) revealed the association of key DRGs with macrophages and
CD8+ T cells. (E) The expression of GNPNAT1 and MORF4L2 was knocked down in the targeted group. (F, G) Knockdown of either GNPNAT1 or
MORF4L2 could suppress the proliferation activity of MCF-7 cells. (*P < 0.05, ****P < 0.0001).
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two partners NUMB and HES1 in the mammary epithelium

triggered DDR defects and promoted basal/mesenchymal

transdifferentiation and tumorigenesis (49). The presence of

RAD51 foci was reported to be a promising biomarker indicating

the poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi)

sensitivity in germline BRCA (50). High level of ATM protein,

one of the important kinases involved in DDR signaling, was found

to correlate with the recurrence of BRCA (51). Accordingly, it is

relevant to fully explore and identify DDR-related molecules with

prognostic and therapeutic value in BRCA.

Immunotherapy is believed to harbor great potential for clinical

application given its ability to activate the immune cells of the body

and reboot effective antitumor immunity. However, currently

immunotherapy suffers from a limited responsive population, and

several factors such as TME, metabolic reprogramming and genomic

instability affect the efficacy of immunotherapy (18, 52, 53). Hence, a

comprehensive and multidimensional characterization of BRCA

patients is necessary. Notably, although risk signature of BRCA

based on DNA damage- or repair-related genes with good

prognostic effects have been established previously, signatures

enabling comprehensive analyses of patient prognosis, TME, tumor

metabolic profiles, and immunotherapy and chemotherapy

sensitivity in an integrated multi-omics manner are still lacking

(24, 54, 55). Accordingly, we developed a prognostic signature

based on 27 DRGs and further comprehensively characterized

patients in terms of prognosis, immune microenvironment,

antitumor immunity and tumor metabolism, etc. Moreover, the

long-term prognostic efficacy and the generalizability to multiple

external cohort of this signature was also been focused on, as well as

the mining of key molecules and effective drugs.

The survival outcomes and clinicopathological features of

patients with different risk are a direct reflection of the prognostic

efficacy. The significantly distinct survival outcomes of high-risk

patients were demonstrated in multiple cohorts, survival types,

molecular subtypes, and pathological subgroups. Besides, risk

stratification by the model correlated well with clinical factors

such as survival outcomes, tumor stage, progressive events, and

tumor size of BRCA patients. Therefore, we wanted to learn more

about the 27 DDRmolecules comprising this robust signature. After

reviewing the existing literature, we found that the cancer-

promoting or cancer-inhibiting function of some of the 27 DRGs

in oncology has been reported. For example, MECOM (MDS1 and

EVI1 complex locus), was reported to be engaged in modulating the

cancer-stem-cell (CSC) properties in lung squamous carcinoma

(56). Replication protein A3 (RPA3) inhibited protective autophagy

and promoted cisplatin resistance in lung adenocarcinoma (57).

Activation of nuclear factor of activated T cells 2 (NFATC2) could

alleviate the functional exhaustion of tumor-infiltrating CD8+ T

cells (58). The unfavorable prognostic effects of S100A11 (S100

calcium binding protein A11) were reflected by pro-inflammation

and pro-fibrosis, and the facilitation of cancer cell proliferation and

migration in hepatocellular carcinoma models (59). Moreover, the

oncogenic role of WNT7B, the Wnt family member 7B, has been

reported in breast cancer previously, with a major focus on its

promotion of invasive behaviors such as angiogenesis and

metastasis (60, 61).
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Since the effects of some DRGs in regulating tumor behaviors

have been described, and their cancer-promoting or -suppressing

roles are broadly consistent with the risk of DRGs in this study, it

also reinforces the significance of this study. Therefore, we further

identified six DRGs associated with tumor progression by

clinicopathological relevance analysis. Actin like 6A (ACTL6A)

showed higher level in tumors with advanced stage, and it has

been recognized for its contribution to tumorigenesis, proliferation

and invasion, and it also promotes the repair of DNA damage

induced by cisplatin in tumor cells (62–64). The present study

found that high expression of mortality factor 4 Like 2 (MORF4L2)

was associated with worse clinical features, more infiltrated

macrophages, and stronger BRCA proliferative activity, as

reported for the first time so far. Its value in assessing 5-

Fluorouracil (5-FU) resistance and disease progression of tumors

has been revealed (65, 66). DCTP Pyrophosphatase 1 (DCTPP1)

was also reported to potentiate BRCA proliferation through DNA-

damage-repair pathway (67). The oncological role of TANK (TRAF

family member-associated NF-kB activator) was rarely reported,

but its known effect in antiviral innate immunity as well as

interaction with immunomodulatory molecules such as TRAF

family proteins and TBK1 makes it a promising target (18, 68).

High glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1)

expression predicted poor prognosis in lung cancer and breast

cancer, but was also observed in radiotherapy-sensitive breast

cancer cells (69–71). We first uncovered that knockdown of

GNPNAT1 inhibited the proliferation of human BRCA cells.

VAV3, Vav guanine nucleotide exchange factor 3, an independent

prognostic factor in BRCA, mediated lung metastasis and endocrine

therapy resistance of BRCA (72, 73). In the present study, apart

from the identifying the relationship of these DRGs with tumor

progression, their association with tumor-infiltrating immune cells

was also revealed.

The contribution of diverse infiltrative immune cells in TME to

survival prognosis and therapeutic resistance of patients cannot be

underestimated, especially for cancer immunotherapy (13). There

were more infiltrating CD8+ T cells, follicular helper T cells, gamma

delta T cells, and M1 macrophages, and fewer M0 macrophages and

M2 macrophages inside the low-risk tumors. In most cancers,

including BRCA, the intratumoral abundance of CD8+ cytotoxic

T lymphocytes, major antitumor effector cells within the TME, is a

favorable prognostic marker. Follicular helper T cells participated in

the regulation of B-cell immunity, and their crosstalk with CD8+ T

cells is required for the efficacy of immunotherapy (74, 75). M1

macrophages, in addition to possessing tumor-killing effects

themselves, could also augment the cytotoxic effects of CD8+ T

cells by attracting more T lymphocytes (76). While the M0 and M2

phenotypes of tumor-associated macrophages (TAMs) are generally

correlated with poor prognosis (77). M2 macrophages are

important immunosuppressive TAMs with the capability to

promote cancer invasion and metastasis and to constrain the

function of CD8+ T cells and immunotherapeutic efficacy (78).

Furthermore, high-risk patients also presented elevated CAF scores

and MDSC scores. CAFs and MDSCs also function to reshape the

immunosuppressive microenvironment and pave for the

development of malignant progression and therapeutic resistance
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of tumors (79, 80). Thus, tumor-infiltrating immune cell

characteristics in different risk groups enable a favorable link with

patient prognosis and response to immunotherapy.

Metabolic reprogramming of cancer cells is also one of the crucial

mechanisms for their adaptation to the survival environment (53).

Therefore, an integrated analysis of the immune microenvironment

and tumor metabolism is necessary. Lipid and cholesterol anabolism

is elevated in multiple highly proliferative cancer cells and is often

associated with tumor malignant invasiveness and treatment

resistance, especially to endocrine therapy (44). Furthermore, the

excessive accumulation of lipids and lactate typically shapes the

immunosuppressive microenvironment and aggravates immune

evasion (44, 53). The upregulated pyrimidine metabolism and

microenvironmental pyrimidine metabolites have been found to

diminish the tumor-killing effect of chemotherapeutic agents (45,

81). These findings support the features of high lipid metabolism

scores, immunosuppression status, and poor prognosis and treatment

responsiveness of the high-risk individuals in the present analysis.

Combining the infiltrative immune cell abundance, tumor

metabolic profile, immune function score, checkpoint expression,

and immunotherapy prediction algorithms including TIDE and

IPS, we derived the finding that low-risk patients stratified by this

DNA damage-repair-related signature could respond better to

immunotherapy. Additionally, low-risk patients also experienced

improved response to various traditional chemotherapeutic agents

and targeted agents. Six real-world cohorts, four receiving ICB or

MAGE-A3 therapy, two receiving combination chemotherapy,

further confirmed these predictive results. Notably, enhanced

lipid and cholesterol metabolism was reported to be associated

with endocrinotherapy resistance (44). And results of metabolic

scores and real-world cohort validation are compatible with that.

Despite the fact that high-risk patients may experience relatively

limited responsiveness to chemotherapy and immunotherapy, we

screened four promising agents, Naproxol, GANT-61, Vorinostat,

and Cimetidine. Among them, GANT-61 was described to inhibit

the invasion and metastasis of TNBC in combination with a nano-

delivery system (82). Naproxol belongs to non-steroidal anti-

inflammatory drugs, and it was reported that hyaluronic acid-

encapsulated naproxen could target BRCA stem cells in a

Cyclooxygenase (COX) non-dependent manner (83). As the

compound capable of modulating receptor status, inducing

apoptosis, and inhibiting EMT in BRCA, Vorinostat has been

used in combination with chemotherapeutic agents, antiestrogenic

drugs, monoclonal antibodies, and nano-delivery systems in several

studies (84–86). Cimetidine was also found to exhibit anti-

neoplastic properties inhibiting the growth of BRCA cells (87).

Although we have endeavored to present a comprehensive

characterization of prognosis, immune microenvironment and

immune function, tumor metabolism, and chemotherapy and

immunotherapy sensitivity of BRCA patients based on a

molecular signature consisting of 27 DRGs, and to provide

alternatives for high-risk patients with underlying resistance to

conventional therapeutic regimens, we are well aware that this

study does have some shortcomings. Firstly, the functions of

some of the signature DRGs have not been fully elucidated and
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need to be further clarified in subsequent studies. Secondly, the

prognostic efficacy of the signature remains to be tested in a larger

cohort of local patients. Finally, predictive models based on RNA-

seq data still face the problem of limited usage and available data in

clinical practice.
5 Conclusion

In summary, a prognostic signature based on 27 DRGs was

developed, which exhibited great performance in indicating

prognosis, immune microenvironment and immune function

profiles, tumor metabolic status, and therapeutic sensitivity of

BRCA patients. Candidate compounds were provided for patients

with underlying therapeutic resistance. Preliminary experiments

verified the expression characteristics as well as biological functions

of key DRGs, GNPNAT1 and MORF4L2. This study may

contribute new perspectives for precision medicine and molecular

target research of BRCA.
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SUPPLEMENTARY FIGURE 1

Validation of the prognostic performance of the signature in various
clinicopathological subgroups in cohorts TCGA-BRCA (A), GSE96058 (B)
and GSE20685 (C).

SUPPLEMENTARY FIGURE 2

Cox regressions identified the DNA damage repair-related signature capable
of acting as an independent prognostic indicator for PFS, DFS and DSS in

TCGA-BRCA cohort.

SUPPLEMENTARY FIGURE 3

Differences in cancer hallmark-related scores between risk groups. (A) Heat
map of correlation between risk scores and hallmark signatures. The color

from blue to red represents the score from low to high. (B, C) Differential
hallmark-related signature scores between risk groups. (ns: not significant,

*P < 0.05, **P < 0.01, ***P < 0.001).

SUPPLEMENTARY FIGURE 4

Association between the risk signature and BRCA1/2 mutations. (A)
Frequency and pattern of BRCA1/2 mutations in BRCA patients in the TCGA

cohort. (B) Survival differences between the high- and low-risk patients in
different BRCA1/2 mutation subgroups. (C) Differences in TIDE scores

between the high- and low-risk patients with wild-type BRCA1/2 or mutant
BRCA1/2. (*P < 0.05, **P < 0.01, ***P < 0.001).

SUPPLEMENTARY FIGURE 5

Correlation between risk scores and IC50 values of the 10 chemotherapeutic

drugs mentioned above.

SUPPLEMENTARY FIGURE 6

Analysis of external datasets demonstrated poor prognosis of BRCA patients

with high expression of GNPNAT1 (A) or MORF4L2 (B).
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