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Immune cells are highly heterogeneous and show diverse phenotypes, but the

underlying mechanism remains to be elucidated. In this study, we proposed a

theoretical framework for immune cell phenotypic classification based on gene

plasticity, which herein refers to expressional change or variability in response to

conditions. The system contains two core points. One is that the functional subsets

of immune cells can be further divided into subdivisions based on their highly plastic

genes, and the other is that loss of phenotype accompanies gain of phenotype

during phenotypic conversion. The first point suggests phenotypic stratification or

layerability according to gene plasticity, while the second point reveals expressional

compatibility and mutual exclusion during the change in gene plasticity states.

Abundant transcriptome data analysis in this study from both microarray and RNA

sequencing in human CD4 and CD8 single-positive T cells, B cells, natural killer cells

andmonocytes supports the logical rationality and generality, as well as expansibility,

across immune cells. A collection of thousands of known immunophenotypes

reported in the literature further supports that highly plastic genes play an

important role in maintaining immune cell phenotypes and reveals that the

current classification model is compatible with the traditionally defined functional

subsets. The system provides a new perspective to understand the characteristics of

dynamic, diversified immune cell phenotypes and intrinsic regulation in the immune

system. Moreover, the current substantial results based on plasticitomics analysis of

bulk and single-cell sequencing data provide a useful resource for big-data–driven

experimental studies and knowledge discoveries.

KEYWORDS

gene plasticity, plasticity-based classification, plasticitome, plasticitomics,
immunophenotype, parathymosin, SPINK2, CDHR1
Introduction

Immune cells are highly heterogeneous in phenotypes. This heterogeneity is reflected

not only in the different immune cell types from the perspective of lineage development but

also in the same cell types that comprise multiple functional subsets, such as Th1, Th2, Th9,

Th17, Th22 and follicular helper T (Tfh) cells characterized by a specific cytokine profile in
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CD4+ T cells (1). It is similar for CD8+ T cells (cytotoxic T cells/Tcs)

since multiple effector subsets mirroring CD4+ T helper subsets

have been described, including conventional IFN-g-producing Tc1s,
interleukin (IL)-4-producing Tc2s, IL-9-producing Tc9s, IL-17-

producing Tc17s, and IL-22-producing Tc22s (2). From the

perspective of immune regulation, in addition to classic CD4+

Treg cells, there are multiple other subsets with regulatory

functions, such as CD8+ Treg cells (3), regulatory B cells (Bregs)

(4), regulatory DCs (DCregs) (5), and regulatory innate lymphoid

cells (ILCregs) (6).

It is not merely T cells that show high heterogeneity (7, 8), but

nearly all the main immune cell types, such as B cells (9, 10),

monocytes (11), macrophages (12, 13), DCs (14), NK cells and ILCs

(15), are highly heterogeneous. The heterogeneity of these cells

represents multiple functional cell states, which are associated with

diversified immunophenotypes. However, what is the mechanism

behind this heterogeneity? How is it determined? On the other

hand, different functional subsets are capable of conversion (e.g., the

transitions from Th17 or Th2 to Th1 or from Tregs or Tfh to Th17)

under certain conditions, which suggests phenotypic plasticity or

flexibility (16, 17). Therefore, are there common constraint

mechanisms or some undiscovered rules in the process of

phenotypic conversion of immune cells?

The existing classification system of immune cells focuses on

the developmental relationship between lineages, which cannot

effectively explain the diversified immune cell phenotypes and the

phenotypic transition, nor can it predict novel immune cell

phenotypes relevant to specific functional cell states. The high

heterogeneity of immune cell phenotypes has even led to a

dispute about the nomenclature of Th-cell subsets (18). The

current challenge for immunologists is to find a phenotypic

classification not only for Th cells (19) but also for other immune

cells. Therefore, it is necessary to establish a novel theoretical system

or framework that can explain the diversity of immune cells,

phenotypic plasticity and conversion, and underlying phenotypic

restrictiveness. Most importantly, the novel system should not

contradict the existing classification system; in addition, it should

have enough inclusive characteristics, that is, it should be open and

compatible with novel immune cell subsets discovered in the future.

In this study, we proposed a novel framework to classify

immune cells based on gene plasticity. In this study, immune cell

subsets mainly refer to functional subsets, which are associated

with specific functional cell states defined by various

immunophenotypes. The system includes two core viewpoints: (1)

immune cell subsets can be divided into subdivisions based on their

highly plastic genes; (2) we pay less attention to the developmental

relationships between immune cells but emphasize that the gain of

phenotype accompanies the loss of phenotype during phenotypic

change. Gene plasticity refers to the change in gene expression in

response to conditions (20). It reflects the dynamic change and

expressional variability. It is quantitatively measured by the gene

plasticity (GPL) score when considering the change in the amount

of mRNA and the resulting changes in the rank percentile values

(20, 21). Highly plastic genes present a broad range of expression

levels across samples; for example, they show high expression in

some conditions but no or low expression under other conditions.
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However, lowly plastic genes generally show widely high or low/no

expression across conditions. Highly plastic genes were previously

shown to be suitable for marker molecules to label immune cell

subpopulations (21). However, our previous study mainly focused

on Th cells and did not elaborate a novel classification system in a

broad sense.

To elaborate the current system, in this study, both RNA

sequencing (RNA-Seq) and microarray data from human T cells,

B cells, natural killer cells (NKs) and monocytes were collected and

used for gene plasticity analysis. We optimized the quantitative

evaluation method of gene plasticity and measured gene plasticity

for over 16,500 genes shared by both sequencing and array

platforms. Then, we collected and summarized thousands of

immunophenotypes reported in the literature and found that

highly plastic genes play an important role in maintaining

immune cell phenotypes, suggesting that the current classification

model should be compatible with the traditionally defined

functional subsets.

The current model explains the infinite diversity of immune

cells. Through correlated and anticorrelated gene analysis via

virtual sorting (21, 22), the acquired (or cophenotypes) and lost

(or mutually exclusive phenotypes) phenotypes related to highly

plastic genes were also analyzed. The single-cell transcriptome

supported the reliability of the results. The current gene plasticity

model also effectively predicts novel immune cell subsets, such as

SPINK2 and CDHR1 single-positive NKs, both of which are

implied to play an important role in maternal-fetal interactions

based on single-cell transcriptomic data, irrespective of their

differential phenotypes.

Therefore, the system provides a new perspective of the

characteristics of dynamic, diversity, layerability and intrinsic

regulation mechanisms, as well as the functional clues, of immune

cells. It is simple in concept and easy to connect with the known

concept of cell plasticity. Moreover, the large number of omics

results in this study will contribute to the discovery of novel

functional subsets and their regulation.
Materials and methods

Datasets and bulk transcriptomic
data analysis

Microarray datasets from the Affymetrix Human Genome U133

Plus 2.0 Array were directly from our previous reports (20–22) and

updated to incorporate the latest samples. The raw data were

downloaded from the Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/) (23) and uniformly processed as

described previously (20, 24). We focused on human CD4+ and

CD8+ T cells, B cells, NKs and monocytes in the current analysis.

The percentile rank scores of genes were calculated based on their

expressional signal values within each array (20, 21). Briefly, the

signal values were first sorted from smallest to largest and divided

into 100 equal parts with successive values from 1 to 100, which

were used for the percentile rank scores for the genes in each part.

By default, the rank score means the percentage rank score in this
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study. The probe set with the maximum expression level was

selected when a gene had multiple probe sets.

Bulk RNA-Seq datasets from high-throughput sequencing

(HTS) were downloaded from the Sequence Read Archive (SRA)

database (25). We applied NCBI’s SRA Toolkit to download and

convert SRA files to FASTQ files. Then, we applied FastQC (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/) to view the

read quality, used the STAR_2.5.3a (26) tool to align reads to the

human genome (hg19), and applied featureCounts v1.6.0 (27) to

calculate raw read counts at the gene level. All analyses were

performed based on the standard pipelines as described in the

corresponding tool manuals. Quality control was performed in each

sample as follows: the total read count of protein-encoding genes

was larger than or equal to 500,000; protein-encoding genes

accounted for more than 50% of the total read count of all genes;

and the number of detected protein-encoding genes was larger than

or equal to 10,000. In addition, when a sample had multiple run

data, although it was not very common, the SRA file containing the

largest number of genes was selected. Protein-encoding genes were

extracted from raw count files to calculate their TPM (transcripts

per million) values. Then, percentile rank scores, which range from

0 to 100, were converted directly from TPM values and were

calculated based on the formula: P = n/N*100, where P =

percentile rank score, N = number of nonzero TPM values, and n

= ordinal rank of a gene, and the TPM values of all genes were in

ascending order in each assay. When a gene’s read count equals

zero, its percentile rank score was set to 0.

For both microarray and RNA-Seq data, quality control was

also performed based on marker gene expression. Marker genes

were selected as follows: CD79A and CD79B for B cells; CD3D,

CD3G and CD4 for CD4+ T cells; CD3D, CD3G, CD8A and CD8B

for CD8+ T cells; GNLY (granulysin) and NKG7 (natural killer cell

granule protein 7) for NKs; and CD14 for monocytes (20, 28, 29).
Calculation of absolute gene
plasticity score

We previously used the gene plasticity (GPL) score to

quantitatively measure gene plasticity, with larger scores

indicating more variability or higher plasticity in gene expression

(20). The average rank score (ARS) of a gene was the mean of the

percentile rank scores in all samples and represented a gene’s

average expression level across various conditions (20). The

formula for the ARS calculation was:

ARS = o
n
i=1Pi
n , where P indicates the percentile rank score and

n is the number of samples. According to the distribution of rank

scores, the interquartile range (IQR) was defined as the difference

between the 1st quartile (25th percentile, 1st Qu, Q1) and 3rd

quartile (75th percentile, 3rd Qu, Q3) of expressional percentile

rank scores and used to measure gene plasticity as the GPL score

(IQR method) (20–22), that is, GPL score (iqr) = IQR = Q3 –Q1. In

this study, however, the absolute GPL score was also used to

measure gene plasticity. This was the difference between the

maximum and minimum percentile rank scores in the samples,

that is, GPL score (absolute) = P (max) – P (min), where P indicated
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percentile rank score. Therefore, an absolute GPL reflects an

absolute level of expressional plasticity, and a larger absolute GPL

score indicates higher plasticity.
Collection of known immunophenotypes
and marker gene annotation

To systematically collect immune cell subsets in the literature,

publications from 56 journals related to immunology, such as

Nature Review Immunology, Annual Review of Immunology and

Nature Immunology, were downloaded. In addition, PubMed at

NCBI was searched by querying key words ‘(subset OR

subpopulation) AND (T cells OR Treg OR B cells OR Breg OR

plasma cells OR natural killer cells OR natural killer T cells OR

monocytes OR macrophages OR dendritic cells OR innate

lymphoid cells OR neutrophils OR granulocytes)’. The retrieved

result in the NBIB (NCBI PubMed Export File) file was used as

input to the reference managing software EndNote (https://

www.endnote.com/) to obtain the full text in PDF (Portable

Document Format) file format through an automatic built-in

download function of the tool. Then, all PDF files were converted

to text format files using the command ‘pdftotext’ developed by

Poppler Developers (http://poppler.freedesktop.org).

The phenotypes of immune cell subsets are generally described

as a form comprising both marker molecules and expression labels

(often as superscripts), such as ‘CD45RA+CCR7-’ T cells, where the

plus sign indicates positive expression while the negative sign

indicates no expression, and this immunophenotype generally

refers to the protein level. Therefore, the ‘grep’ command under a

Linux operation system was used to extract all possible

immunophenotypes in the text format publications by regular

expression patterns, such as ‘.{0,20}[+−].{0,12}[TB].{0,12}cell’. In

the pattern, the dot indicates any character, the numbers in curly

braces indicate the minimum and maximum repeat times, and the

characters specified within square braces indicate any matching

could match the majority of T and B-cell phenotypes. In addition,

expression labels, such as ‘lo’, ‘bright’, ‘dim’, ‘int’, ‘medium’, ‘mid’,

‘high’ and ‘hi’, were also taken into consideration during pattern

matching. The retrieved immunophenotypes were further

deduplicated and checked for species sources.

Marker molecules extracted from immunophenotypes are often

not the standard gene symbols. Therefore, we converted all of the

aliases to the standard Entrez gene symbols (30). These

standardized immunophenotypes were further deduplicated

irrespective of the writing order of marker genes. After

conversion, a nonredundant gene set was obtained and used to

perform subsequent analysis.
Functional enrichment analysis of
gene sets

Functional annotations of marker gene sets were performed

using the online DAVID database (2021 update) (31), which

incorporates a series of functional annotation categories, such as
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Gene Ontology (GO), KEGG (Kyoto Encyclopedia of Genes and

Genomes) pathways, UniProtKB Keywords (UP_KW) protein

domains and interactions. GO depicts three main biological

concepts: biological process (BP), molecular function (MF) and

cellular component (CC). The enrichment with annotation terms

with p value ≤ 0.05, as well as the adjusted p values, was selected and

shown based on the online results (31).

Gene set enrichment analysis (GSEA) is an enrichment analysis

method used to determine whether members of a gene set S tend to

occur toward the top (or bottom) of list L (32). We made a list of

retrieved marker genes from known immune cell subsets as the gene

set S and compared them with the list of all plastic genes ranked by

absolute GPL score (in descending order) as the list L in each cell

type. The GSEAPreranked module was used to run GSEA. Herein, it

determines whether the marker gene set shows statistically

significant enrichment at either end of the ranked gene set, that

is, how often members in the marker gene set occur at the extremely

high (top of the list) or low (bottom of the list) plastic genes.
Virtual sorting analysis

Virtual sorting (or in silico sorting) means analyzing a large

number of data samples in a virtual way because there are no actual

immune cells sorted as done in the FACS process (21, 22). It was

used to select cell samples according to gene expression intensity,

which was similar to the gating process in flow cytometry, to

perform a series of analyses (20–22). In this study, we conducted

virtual sorting to identify the correlated and anticorrelated genes of

a highly plastic gene; however, in contrast to previous studies (21,

22), the k-means (k = 2) method but not quartiles was used to divide

samples into two groups based on the differential expression states

of a highly plastic gene. The difference ARSs, namely, the delta (d)
value, of all genes in the two groups were calculated using the

formula di = ARSi(g1)-ARSi(g2), where i indicates the i
th gene in both

groups with the same gene order. For a highly plastic gene, the

positive or high group was the first group (g1), whereas the negative

or low group was the second group (g2). Delta values of all genes

were sorted in descending order and the virtual sorting results were

further filtered with Pearson correlation coefficients larger than or

equal to 0.5 for the correlated genes, whereas the results were

filtered with Pearson correlation coefficients less than 0 and cosine

similarity less than or equal to 0.1 for the anticorrelated genes. In

this study, the cosine similarity varied from 0 to 1. When two

vectors (expressional values of paired genes) had the same

orientation, the angle between them was 0, and the cosine

similarity was 1; however, when two vectors had a 90-degree

angle between them and a cosine similarity of 0.
Coexistence and mutually exclusive
rate analysis

For microarray, the coexistence rate between two or paired

genes across samples was calculated based on the formula:

coexistence rate = (CPP+CAA)/N, whereas CPP and CAA indicated
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absent, AA) of the genes’ expression within the same samples

according to the detection call (24) and N was the total sample

number. The formula for the APA (absent-present and present-

absent) rate was APA rate = 1 - coexistence rate. Therefore, the APA

rate represented the degree of mutually exclusive expression as

described in our previous study (21). For RNA-Seq data, a series of

cutoffs of TPM values including 1, 2, 3, 4, 5, 10 and 20 were tested to

evaluate coexistence or mutual exclusion. For example, when the

cutoff was set to 5, PP meant both genes had TPM values larger than

or equal to 5, whereas AA meant both genes’ TPM values were less

than 5.
Single-cell RNA-Seq analysis

Single-cell datasets were mainly from two resources, the GEO

database and UCSC Cell Browser (http://www.cells.ucsc.edu/) (33). For

datasets from GEO, a standard analysis pipeline using the R Seurat

package (version 3.1.2) (34) was used for single-cell analysis. Cell types

were annotated based on the labels directly from data submitters or

according to marker gene expression. Briefly, the raw count of genes in

each cell was first normalized (unless a normalized expression matrix

was provided by the data submitter), and then the top 2,000 highly

variable genes (HVGs) were selected. After the data were scaled and

centered, principal component analysis (PCA) based on HVGs was

conducted. For dimensionality reduction for single-cell cluster

visualization, the uniform manifold approximation and projection

(UMAP) method was used. Cell type labels were directly from the

authors’ annotation. When there was no annotation, cell type-specific

marker genes, either from typical well-known markers or directly from

the respective literature, were used to confirm cell types, such as CD3D

and CD4 for CD4+ T cells, CD8A and CD8B for CD8+ T cells, CD79A

for B cells, CD14 for monocytes and NKG7 for NKs (28, 29). For

datasets from the UCSC Cell Browser, the website provides a gene

expression matrix, cell meta annotation and dimensionality reduction

coordinates for each dataset; therefore, immune cells could be directly

extracted and annotated based on this known information.
Isolation of human peripheral blood
mononuclear cells

The anticoagulant whole blood samples of healthy people in this

study were obtained from Peking University People’s Hospital.

Sample collection was given informed consent by providers and

approved by the Peking University Biomedical Ethics Committee.

Fresh anticoagulation whole blood was diluted with an equivolume

of RPMI 1640 medium, and the diluted blood was spread above the

separating medium. The interface was kept clear and then

centrifuged at 500 g for 20 minutes at room temperature (brake

adjusted to 0). After centrifugation, the lymphocyte layer (the white

layer) was carefully absorbed and washed 3 times at 4°C. Then the

lymphocytes were stained for flow cytometry or cultured in RPMI

1640 medium with 10% heat-inactivated fetal bovine serum (FBS)

and 1% penicillin streptomycin mixture (PS). For the lymphocyte
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activation test, the cultured lymphocytes were activated by PMA

and ionomycin mixture (BioLegend, 423301, 1:500) stimulation for

8 h, 16 h and 24 h before expressional detection by flow cytometry

(see below).
Flow cytometry

The flow cytometry antibodies used in this study were as

follows: anti-human CD3-APC-Cy7 (BD, 557832); anti-human

CD4-BV510 (BD, 562970); anti-human CD8-PE-Cy7 (BD,

557746); anti-human CD45RA-BV605 (BD, 562886); anti-human

CCR7-APC-R700 (BD, 565867); anti-human-CD8-APC

(BioLegend, 300912); anti-human-CD25-PE (BioLegend, 302605);

anti-human CD26-PE (BioLegend, 302705); anti-human CD49f-

FITC (BioLegend, 313605); and the fluorescent dye 7-AAD

(BioLegend, 420404). The cells were incubated with 1% Fc

receptor blocker for 10 minutes and incubated with antibodies for

30 minutes. Flow cytometry analyses were conducted using the BD

FACS Canto system. The data were analyzed with FlowJo software.
Results

A proposed model for phenotypic
classification of immune cells based on
gene plasticity

Immune cell phenotypes are generally expressed by

marker genes and their combinations, which constitute

immunophenotypes. In experiments, marker molecules are also
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used to label, identify and isolate immune cells. Different functional

subsets, which are relevant to specific biological significance, are

commonly distinguished and illustrated in different cell clusters

based on the determination of the level of expression of

fluorescently labeled marker molecules. Our previous studies

revealed that gene plasticity could be used for marker evaluation

and discovery of novel immune cell subpopulations (20, 21). These

previous studies on gene plasticity, marker evaluation and immune

cell subpopulation prediction prompted us to propose a model of

immune cell phenotypic classification, as shown in Figure 1. This

model could be called the gene plasticity model because the

phenotypic classification was based on gene plasticity. It could

also be called the ‘3s’ model because it represents subtle immune

cell subdivisions of the initial subpopulations based on a series of

successive highly plastic genes.

The system included two core points. One was that immune cell

subsets associated with specific immunophenotypes could be

divided into subdivisions based on their highly plastic genes when

they existed. For example, as shown in Figure 1, among the initial

cells with high expression of A, which indicated that A was low

plastic in A+ cells, the highly plastic gene B in A+ cells produced

phenotypes such as A+B+ and A+B-, which represented cell states

with high and low/no expression of B, respectively. Similarly, each

of an additional highly plastic gene, such as C and further D, would

produce novel phenotypes represented by these genes and their

combinations, making multiple subdivisions of the greater layers.

As inferred by the model, when a highly plastic gene became the

marker gene to label cell subpopulations, its plasticity decreased.

This was because marker genes generally showed a broad range of

either high or low expression levels in the relevant cell populations

and in their descendant subdivisions.
FIGURE 1

Gene plasticity model in the phenotypic classification and discovery of immune cell subsets. It represents a theoretical framework for subtle
subdivisions of immune cell subpopulations based on gene plasticity. The core idea of the model is that small functional subsets can be divided from
their greater subsets so that immune phenotypes can be continuously defined according to highly plastic genes, accompanied by gene plasticity
changes in the marker genes. Therefore, phenotypic stratification can be conducted via the addition of highly plastic genes in each of the greater
layers. During the process, the cophenotypes and mutually exclusive phenotypes related to these highly plastic genes are accompanied.
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For example, based on highly plastic genes, CD3+ T cells (layer

1) were divided into CD3+CD4+ and CD3+CD4- T cells based on

the marker CD4 molecule (layer 2). When FOXP3 was introduced

(layer 3), the highly expressed FOXP3 in CD3+CD4+ cells could

label Treg cells. The fourth layer comprises highly plastic genes in

Tregs that further produce Treg subsets, such as CXCR3+ Tregs,

CCR6+ Tregs, LAG3+ Tregs, TIM3+ Tregs and HLA-DRA+ Tregs

(21). More subdivisions would be expected among these Treg

subsets when their highly plastic genes were identified.

The other core point was that the loss of phenotype was

accompanied by the gain of phenotype. In this model, we did not

consider the sequence of genes and paid less attention to the

developmental relationships among these cell subdivisions. The

initial layer could be determined according to specific application

scenarios in practice; therefore, there was no need to indicate that

the first layer must start with an exact gene. However, we were

concerned that when a layer was added to an existing phenotype,

what phenotypes were destined to be lost (that is, the mutually

exclusive phenotypes). This meant that when a highly plastic gene

tended to be highly expressed (‘the gain of phenotype’) in response

to conditions, a set of other genes tended to be coexpressed

( ‘cophenotype ’) or inevitably lost expression ( ‘the loss

of phenotype’).

The model did not mean that all involved functional cell states

could be observed under only one or only limited conditions. It

represented a comprehensive framework and a scenario that

considered all possible conditions, such as individuals, tissues,

induction or stimulation, disease states, and even development

stages. This was because gene plasticity analysis represented

condition-associated stratification. With the increase in

experimental conditions, gene plasticity would also increase, at

least for some genes, causing some specific phenotypes to be

observable. On the other hand, the model also suggested that a

lowly plastic gene would become highly plastic when it was placed

in a greater layer. Considering the numerous highly plastic genes

under various conditions, immune cell phenotypes should be

continuously dividable and constitute infinite diversity. The

following analysis explained and supported the logical rationality

of the current model from multiple aspects.
Genes show generally high plasticity
revealed by either bulk RNA sequencing or
microarray data

Our previous gene plasticity analysis was performed based on

microarray data (20–22). In recent years, RNA sequencing (RNA-

Seq) data have rapidly accumulated and can be made publicly

accessible. RNA-Seq technology has several advantages over

hybridization-based techniques, such as improved specificity and

sensitivity and increased dynamic range in gene expression

measurement. In this study, for the first time, we used RNA

sequencing (RNA-Seq) data for gene plasticity analysis, which

also facilitated comparison in various platforms. Therefore, we

compiled two sets of datasets from human CD4+ T cells, CD8+ T

cells, B cells, NKs and monocytes from both microarray (updated in
Frontiers in Immunology 06
this study) and bulk RNA-Seq data. After quality control, we finally

obtained 2,468 microarray samples, which covered 20,283

nonredundant genes, from 632 (CD4+ T cells), 415 (CD8+ T

cells), 503 (B cells), 149 (NKs) and 769 (monocytes) samples of

the indicated cell types. In addition, 3,029 bulk RNA-Seq samples,

including 768 (CD4+ T cells), 620 (CD8+ T cells), 377 (B cells), 204

(NKs) and 1060 (monocytes) samples, were finally processed to

generate TPM values of 20,589 protein-encoding genes. These data

were used for subsequent gene plasticity analysis.

As shown in Figure 2A, the average rank scores (ARSs) derived

from both platforms were highly positively correlated with Pearson

correlation coefficients of 0.9054 (B cells), 0.9068 (CD4+ T cells),

0.9068 (CD8+ T cells), 0.9015 (monocytes), and 0.8925 (NKs) in the

respective cell types. This suggested that the data from the two

platforms (microarray & RNA-Seq) should be comparable after

percentile rank normalization. However, the overall distribution of

ARSs from the microarray was above that from RNA-Seq

(Figure 2A). In addition, when the common genes were extracted

in both platforms to recalculate their ARSs, an overall higher

distribution of ARSs from the microarray datasets was also

observed, although the correlation strength was further improved

(Figure S1). This suggested decreased noise signals in the RNA

sequencing data. For example, the ARSs of EEF1G (eukaryotic

translation elongation factor 1 gamma) were larger than 99 in all

five cell types from the array; however, the ARSs were limited to no

more than 2 in these cells from RNA-Seq (Table S1). Similar results

were also observed for LUC7L2 (LUC7-like 2, premRNA splicing

fac tor ) , PDE4C (phosphod ie s t e ra se 4C) , and PIGY

(phosphatidylinositol glycan anchor biosynthesis class Y) (Table

S1). Therefore, the high expression of these genes in the microarray

may result from a high noise signal caused by nonspecific binding in

the process of DNA hybridization.

For the microarray, the average absolute GPL scores of all genes

in the five cell types were 62.88 (B cells), 65.31 (CD4+ T cells), 64.75

(CD8+ T cells), 66.71 (monocytes) and 56.01 (NKs), whereas for

RNA-Seq, the average absolute GPL scores were 57.52 (B cells),

63.89 (CD4+ T cells), 71.42 (CD8+ T cells), 67.29 (monocytes) and

56.26 (NKs). Considering that the maximum absolute GPL score

was 100, the scores from both platforms revealed that genes

generally showed high plasticity. However, in contrast to the ARS,

there was no apparent linear correlation in either quartile GPL

scores (Figure 2B) or the absolute GPL scores (Figure 2C). This may

be explained by the independent samples related to various

conditions observed in different platforms.

A list of 16,513 genes and the associated ARSs and GPL scores

identified in both platforms are shown in Table S1, which provides a

quick evaluation of gene plasticity and average gene

expression levels.
Highly plastic genes play an important role
in defining immune cell subsets and
maintaining immune cell phenotypes

To investigate whether the existing immune cell subsets

conform to the current gene plasticity model, we first tried to
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collect known functional subsets reported in the literature, extracted

the marker genes from the immunophenotypes and evaluated their

expressional gene plasticity. In total, approximately 170,000 papers

from 56 immunological journals were analyzed. This made a total of

4,990 subsets with nonredundant immunophenotypes, including

2,757 human and 2,233 mouse subsets, from all the main immune

cell types, such as T cells (including Treg cells and other T cells), B

cells, plasma cells, NKs, natural killer T (NKT) cells, monocytes,

macrophages, dendritic cells (DCs), innate lymphoid cells (ILCs)

and granulocytes (including neutrophils, eosinophils, basophils and

other granulocytes). These subsets represented functional subsets

related to specific functional cell states, which were generally gated

by FACS technology.

We mainly focused on human CD4+ T cells, CD8+ T cells, B

cells, NK cells and monocytes, which were the most abundant

among the collected human immunophenotypes (Table S2). In

total, we obtained 1,529 (T cells), 414 (B cells), 257 (NKs) and 141

(monocytes) immunophenotypes for the indicated cell types (Table

S2). Among T cells, 830 and 379 immunophenotypes were directly
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annotated as CD4 and CD8 single-positive T cells, respectively.

These immunophenotypes involved 171 (CD4+ T cells), 122 (CD8+

T cells), 116 (B cells), 104 (NKs) and 83 (monocytes) nonredundant

marker genes in the respective cells (Table S2).

Gene set enrichment analysis (GSEA) represents an efficient

and unbiased evaluation of the gene plasticity of these known

marker genes. As shown in Figure 3, marker genes extracted from

CD4+ T cells, CD8+ T cells, B cells and monocytes were significantly

enriched in the highly plastic gene regions from either microarray

or RNA-Seq. Significant enrichment of marker genes was also

observed in NKs from RNA-Seq but not in NKs from

microarrays (Figure 3). We considered that this could result from

the lowest sample size of NKs in the microarray data because

limited conditions affected the observed gene plasticity states of the

marker genes. We also found that the normalized enrichment score

(NES) from RNA-Seq data in each cell type was higher than that

from the microarray (Figure 3), suggesting that RNA-Seq data offer

improved gene plasticity evaluation. We found that NES values

were positively correlated with the marker gene numbers,
FIGURE 2

Scatter plots show the relationships between measured values calculated using RNA-Seq and microarray datasets. (A–C) represent the average rank
score (ARS), interquartile range (IQR) and absolute GPL score, respectively. In each panel, the x-axis indicates values from RNA-Seq data, while the
y-axis indicates values from microarray data. The Pearson coefficient (r) is shown in each panel. Therefore, there is a high linear correlation between
the ARSs of the two platforms.
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suggesting that when there were enough subsets identified, the

marker genes would become more aggregated in highly

plastic genes.

However, there was minor aggregation in lowly plastic gene

regions (Figure 3). This was because some marker genes, although

they were contained in immunophenotypes, were widely either

expressed or not expressed in the cell types and showed relatively

low plasticity. For example, lineage marker genes, such as CD19,

CD20 (also known as MS4A1/membrane spanning 4 domains A1)

and CD79A in B cells, showed extensively high expression and low

plasticity in B cells (Table S2). In addition, because the current
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immunophenotypes mainly represented the protein level, it was not

excluded that some marker genes might be highly plastic at the

protein level but lowly plastic at the RNA level. It was also possible

that the currently limited samples and conditions led to high

plasticity states not observed for some genes. The sparse

occurrence of marker genes in the moderately plastic regions in

the cells (Figure 3), such as CD4+ T cells, CD8+ T cells and

monocytes, further confirmed that marker genes were generally

highly plastic.

Therefore, the global analysis further supported that highly

plastic genes were suitable to label immune cell subpopulations
FIGURE 3

Functional enrichment analysis of marker gene sets based on gene plasticity measured by absolute GPL score. (A, B) represent results from
microarray (A) or RNA-Seq (B) data in the indicated cell types.
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(21). In addition, this result revealed a key role of highly plastic

genes in defining functional subsets and maintaining

immunophenotypes. For example, based on the absolute GPL

scores from either microarray or RNA-Seq data, the characteristic

cytokines for Th1 (IFNG), Th2 (IL4, IL5, IL13), Th17 (IL17A,

IL17F, IL22, IL26), Th9 (IL9), Th22 (IL22), Tfh cells (IL4, IL21) and

Tregs (IL10, TGFB1) were extremely plastic in CD4+ T cells (Table

S1) (1, 16, 21). In addition, master transcription factors, such as

TBX21 (T-box transcription factor 21, also known as T-bet) for Th1

cells, RORC (retinoic acid receptor-related orphan receptor gamma,

also known as RORgt) for Th17 cells, FOXP3 (forkhead box protein
P3) for Tregs, and BCL6 (B-cell lymphoma 6/BCL6 transcriptional

repressor) for Tfh cells, were also highly plastic (Table S1) (1, 16,

21). More examples of extremely plastic genes as markers of known

immune cell subsets in CD4+ T cells, CD8+ T cells, NKs, B cells and

monocytes are shown in Figure S2 and Table S2 (see below).
Known functional subsets are compatible
with the gene plasticity model and can be
further subdivided

In the classification model, the high plasticity genes used as

markers were layered. This model did not consider the order of

marker genes, and any single marker gene could be used as the first

layer, which represented the marker gene itself. From the second

layer, immune cell subdivision represented a combination of

marker genes. To systematically explain the role of highly plastic

genes in known phenotypes, we divided the immunophenotype into

an immunophenotypic unit, which was composed of the marker

gene and its expression tag, which was used to explain the

express ion intens i ty . Therefore , each known parent

immunophenotype with more than one layer could be split into

several nonredundant child immunophenotypes, irrespective of the

order of the phenotypic units. For example, the immunophenotype

‘CD4+FOXP3+CD25hi’ could be split into three phenotypic units

( CD4 + , FOXP3 + a n d CD2 5 h i ) a n d t h r e e sma l l e r

immunophenotypes, CD4+FOXP3+, FOXP3+CD25hi and

CD4+CD25hi, based on a two-layer combination of phenotypic

units. Obviously, the functional states of immune cells

corresponding to the child and parent entries were not identical.

However, the immunophenotype split was important to understand

the ‘3s’ model.

Therefore, each of the known immunophenotypes could be

divided into one, two, three or more layers. Since the majority (~

83%) of immunophenotypes were composed of no more than three

genes (Table S2), we mainly analyzed them from layers 1-3, and

more layers could be inferred from this. Therefore, we analyzed the

impact of gene plasticity on the phenotypic composition.

The 1st layer represented the involved marker genes themselves,

as shown in Table S2. We examined their absolute GPL scores. The

results showed that there were approximately 92.98% (159/171) for

CD4+ T cells, 93.44% (114/122) for CD8+ T cells, 92.24% (107/116)

for B cells, 80.77% (84/104) for NKs and 87.95% (73/83) for

monocytes of the known marker genes with absolute GPL scores

≥ 50 in either array or RNA-Seq platforms (Table S2, Sheet 7). In
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addition, when the cutoff increased, there were still approximately

86.55% (148/171, CD4+ T cells), 87.70% (107/122, CD8+ T cells),

77.59% (90/116, B cells), 61.54% (64/104, NKs) and 79.52% (66/83,

monocytes) of the known marker genes with an absolute GPL score

≥ 70 (Table S2, Sheet 7).

In T cells, there are many immunophenotypes containing

neither CD4 nor CD8. Therefore, a total of 236 marker genes of

these cells were also examined for GPLs in either CD4+ or CD8+ T

cells, and we found that the marker genes with absolute GPL scores

≥ 50 accounted for approximately 92.80% (219/236) and 93.64%

(221/236) of CD4+ and CD8+ T cells, respectively. When the cutoff

increased, there were still approximately 84.32% (119/236, CD4+ T

cells) and 85.59% (202/236, CD8+ T cells) of the marker genes with

absolute GPL scores ≥ 70 in either cell type. Therefore, the results

from all five cell types further confirmed that marker genes were

generally highly plastic and that highly plastic genes were

potentially suitable to label and classify immune cells.

A highly plastic gene implied that there should be at least two

functional states corresponding to the high and low (or no)

expression levels of the gene. Therefore, a combination composed

of two high ly p la s t i c genes inc luded four poss ib le

immunophenotypes, and a combination composed of three highly

plastic genes included eight possible immunophenotypes,

irrespective of the order of phenotypic units. For the two-layer

combination, the known immunophenotypes were divided into 487

(CD4+ T cells), 241 (CD8+ T cells), 173 (B cells), 148 (NKs) and 26

(monocytes) nonredundant two-layer phenotypes, whereas for the

three layers, the nonredundant combinational numbers were 809

(CD4+ T cells), 403 (CD8+ T cells), 148 (B cells) and 91 (NKs). For

monocytes, there were few phenotypes containing multiple specific

marker genes when the lineage markers CD14 and CD45 (also

known as PTPRC/protein tyrosine phosphatase receptor type C)

were removed (Table S2).

According to gene plasticity analysis, there were approximately

91.17% (CD4+ T cells), 94.19% (CD8+ T cells), 97.69% (B cells),

70.27% (NKs) and 76.92% (monocytes) of the two-layer phenotypes

with both genes’ GPL scores simultaneously larger than or equal to

50 (Table S2, Sheet 7). For the three-layer phenotypes, the ratios

were still remarkable, particularly for the cell types with a large

number of marker genes, such as CD4+ T cells, CD8+ T cells and B

cells. The ratios reached 91.72% (CD4+ T cells), 82.63% (CD8+ T

cells) and 98.65% (B cells), and even when the threshold of GPL

scores was set to 70, the supportive ratios were also notable, with

79.48% (CD4+ T cells), 59.55% (CD8+ T cells) and 51.35% (B cells)

in the cells (Table S2, Sheet 7). There were relatively low numbers of

marker genes, as well as the number of observed combinations, in

NKs and monocytes. This may explain the slightly lower proportion

of highly plastic gene combinations in these cells (Table S2, Sheet 7).

The r e f o r e , t h e r e su l t s s ugge s t t h a t con t inuous

immunophenotypes could be defined and stratified by highly

plastic genes. Marker genes of high plasticity formed a complex

interaction network and constituted diversified phenotypes. This

was consistent with the ‘3s’ model of this study. Because all the

marker genes were derived from known functional subsets, the

results suggest that the current model should be compatible with the

traditional immune cell phenotypic classification and that novel
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phenotypes could be discovered via combinations of highly

plastic genes.

The expressional highly plastic gene indicated that it had

different expressional states at either the RNA or protein level

and was able to subdivide the greater layers of phenotypes.

Therefore, we used an experimental example to illustrate

phenotypic subdivision. We selected three genes, CCR7 (C-C

motif chemokine receptor 7), DPP4 (dipeptidyl peptidase 4, also

known as CD26) and ITGA6 (integrin subunit alpha 6, also known

as CD49f), in combination to define functional T-cell subsets, that

is, CCR7/DPP4/ITGA6-based subsets. The absolute GPL scores of

these genes were 93.7 (CCR7), 98.9 (DPP4) and 98.9 (ITGA6) in

CD4+ T cells and 99.9 (CCR7), 98.8 (DPP4) and 98.8 (ITGA6) in

CD8+ T cells according to RNA-Seq data (Table S1). Therefore,

these genes were extremely highly plastic; in addition, their protein

antibodies were easily obtained for flow cytometry assays.

As shown in Figure 4A, CCR7, CD26, and CD49f divided both

CD4 and CD8 single-positive T cells into two subsets according to

their positive and negative expression of a single marker gene. These

subsets included CCR7+ and CCR7- T cells, CD26+ and CD26- T

cells, and CD49f+ and CD49f- T cells. There were more CD26+ but

fewer CD49f+ cells in CD4+ T cells than in CD8+ T cells. CD26+

cells accounted for ~70% of CD4+ T cells, whereas CD49- cells

accounted for a similar proportion of CD8+ T cells. Interestingly,

based on CD26 expression, T cells were divided into three

functional subsets with high (CD26hi), moderate (CD26int) and

low (CD26lo) expression, which was consistent with a previous

report (35).

Next, a double combination of the three genes was used to

confirm two-layer phenotypes. As shown in Figure 4B, a

combination of any two genes could divide both CD4+ and CD8+

T cells into four subsets. For the three-layer subsets shown in

Figure 4C, after CCR7 clustering of CD4+ T cells and CD8+ T cells,

CD26 and CD49f were introduced to cluster both CCR7+ and

CCR7- T-cell subsets. This would produce a total of eight unique

immunophenotypes in a three-gene combination when either of

them was set as the 1st layer. The most abundant cells were

CCR7+CD26+CD49f- in either CD4+ or CD8+ T cells, with an

average proportion of 54% and 78% in CD4+ or CD8+ T

cells, respectively.

Combined CD26 and CD49f also divided existing T-cell subsets

into subdivisions. According to the expression of CD45RA and

CCR7, human T cells can be divided into four subsets, including

CD45RA+CCR7+ naïve (TN), CD45RA-CCR7+ central memory

(TCM), CD45RA-CCR7- effector memory (TEM), and

CD45RA+CCR7- effector memory reexpressing CD45RA

(TEMRA) T cells (36). As shown in Figure S3, these cells could

be further divided into more subdivisions based on the combined

expression of CD26 and CD49f. In both CD4+ and CD8+ T naïve

cells, CD49f-CD26+ cells had the highest cell proportion, reaching

80%. In CD4+ TCM and CD4+ TEM, CD49f+CD26+ has a relatively

high cell proportion, approximately 40%-50%. In CD8+ TEM and

CD8+ TEMRA cells, CD49f-CD26- cells had the highest cell

proportion, particularly with ~70% in CD8+ TEMRA cells. This

result revealed that the additional highly plastic marker genes and

known phenotypes could be further divided into subtle divisions,
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of gene plasticity undoubtedly increases the diversity of immune cell

phenotypes and the complexity of the immune system.
Loss of phenotype accompanies the gain
of phenotype

This classification system suggested that there was infinite

diversity of immune cell phenotypes. The dynamic change in

gene expression of a highly plastic gene was always accompanied

by a set of correlated and anticorrelated genes, which resulted in

cophenotypes and the loss of certain other phenotypes because of

the loss of gene expression. An inevitable relationship in gene

expression was previously called the ‘internal phenotype’ (22),

which provided a new perspective of the rules for immune cell

phenotypic conversion. Therefore, another distinctive feature of the

current system was described as ‘loss of phenotype accompanying

gain of phenotype’ or ‘phenotypic gain and loss’ in this study. The

method of virtual sorting established in our previous studies

provided a feasible and effective way to evaluate coexisting and

lost phenotypes, which were represented by correlated and

anticorrelated genes, respectively (22). All genes with absolute

GPL scores greater than or equal to 50 in both array and HTS

platforms were used for virtual sorting.

In total, we obtained 8,666 (CD4+ T cells), 10,676 (CD8+ T

cells), 7,385 (B cells), 6,025 (NKs) and 10,107 (monocytes) genes

with absolute GPL scores ≥50 shared by both platforms. These

genes were subjected to virtual sorting as shown in Figure S4, and

again we found that larger d values were tightly associated with

increased coexistence rates, whereas smaller d values corresponded

to higher mutually exclusive or APA rates (Figure S5), which was

consistent with our previous results (21). Considering that the

medians of the positive and negative d values in all of the results

were approximately 4 and -2, respectively, the d values were set to be
larger than or equal to 20 for the correlated genes and less than or

equal to -10 for the anticorrelated genes in the current analysis. On

the other hand, because negative marker genes were generally more

difficult to find (20), if - 20 was set as the filter condition, the

number of anticorrelated genes would be far less than the number of

positively correlated genes. Under further strict filter conditions

with Pearson correlation and cosine similarity (see Methods), there

were finally 4,058 (CD4+ T cells), 3,895 (CD8+ T cells), 2,877 (B

cells), 3,028 (NKs) and 4,183 (monocytes) genes with at least one

correlated or anticorrelated gene (Table S3). For example, there

were 99 genes, including 51 correlated and 48 anticorrelated genes,

for ITGA6 in CD4+ T cells (Table S3).

Interestingly, there were many cytokine-encoding genes in the

anticorrelated gene set, such as IL2, IL4, IL9, IL17A, IL21, IL22 and

IFNG, suggesting that the loss of cytokine production should

accompany the gain of high ITGA6 expression. ITGA6 was also

observed in the anticorrelated genes of several cytokines, including

IL2, IL3, IL9, IL10, IL13, IL21 and IL22 (Table S3), which suggests

that high expression of these cytokines accompanies the loss of

ITGA6 expression. Therefore, ITGA6 and these cytokines

constituted mutually exclusive phenotypes. Similar to the function
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of ITGA6, which is a cell adhesion molecule, other molecules

related to cell adhesion, such as EPHA4 (EPH receptor A4),

AMIGO1 (adhesion molecule with Ig-like domain 1), DCHS1

(dachsous cadherin-related 1), EPHA1 and DSC1 (desmocollin

1), were significantly enriched in the correlated gene set of ITGA6

(Table S3). Therefore, the results suggest that there should be a

mutually exclusive regulatory mechanism between cell adhesion

and the inflammatory response mediated by cytokine secretion.

ITGA6 mRNA showed relatively higher expression in naïve T

cells based on the single-cell transcriptome (Figure S6A). We next

analyzed the human naïve CD4+ T-cell activation transcriptome

from the publicly available GEO dataset (ID: GSE39594). The

normalized expression values from the data submitter were

directly used for analysis. As shown in Figure 5A, when naïve

CD4+ T cells were activated by anti-CD3 and anti-CD28, the genes

correlated with ITGA6 tended to be downregulated upon

stimulation, whereas the anticorrelated genes showed an overall

upregulation. In addition, the single-cell transcriptome in human T

cells also revealed similar expression patterns among the correlated

genes and anticorrelated genes (Figure S6A). In CD8+ T cells, under
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less strict conditions, many cytokine-encoding genes, such as CSF1

(colony stimulating factor 1), IFNG, IL13, LIF (leukemia inhibitory

factor), TNF, LTA (lymphotoxin alpha) and CCL22, were also

observed to be anticorrelated to ITGA6. We found that the cell

surface molecule IL2RA (also called CD25) was one of the topmost

anticorrelated genes of ITGA6 in CD8+ T cells. The anticorrelated

expression of IL2RA and ITGA6 was further confirmed at the

protein level (Figures 5B–D). After stimulation with PMA and

ionomycin, the frequency (proportion) of ITGA6+ T cells, as well as

the expressional intensity of ITGA6 as indicated by the mean

fluorescent intensity (MFI), gradually decreased after 0, 8, 16 and

24 hours of stimulation; however, as expected, IL2RA increased

gradually in either the expressional proportion or intensity in

response to stimulation (Figures 5B–D). This result further

confirmed that the acquisition of ITGA6 expression was

accompanied by an inevitable loss of IL2RA expression at either

the mRNA or protein level.

Next, we systematically evaluated the results in Table S1 based

on the single-cell transcriptome of human PBMCs. Because the

results in Table S1 were from bulk RNA-Seq, an evaluation based on
FIGURE 4

Three-layer classification of human T cells identified by CCR7, CD26 and CD49f. Three highly plastic molecules, CCR7, CD26, and CD49f are used
to identify functional subsets in T cells. The 1st layer in (A), the 2nd layer in (B) and the 3rd layer in (C) use one, two and all three highly plastic
molecules, respectively, to label the functional T-cell subsets.
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single cells represented an independent way to check the reliability.

Two methods, including Pearson correlation and present-present

(PP) rate (or coexistence rate), were used (24). For each gene pair

between the highly plastic genes and the correlated or anticorrelated

genes, the former represented linear coexpression, while the latter

indicated a cell proportion with coexistence of the genes based on

their unique molecular identifier (UMI) counts simultaneously

larger than zero in the current situation. As shown in Figure 6,

there were remarkable differences in the distributions of either

Pearson correlation coefficients (Figure 6A) or PP rates (Figure 6B),

indicating stronger correlation and coexistence in the correlated

gene sets than in the anticorrelated gene sets in each cell type.

However, the absolute values of either the correlation coefficients or

the PP rates were small, which was caused by the generally large
Frontiers in Immunology 12
proportion of zero values or dropouts in single-cell data owing to

the low initial amounts of RNA obtained from a single cell (37).

Therefore, we further used SAVER (single-cell analysis via

expression recovery), an expression recovery method in noisy and

sparse single-cell RNA-seq data (38), to recover the true gene

expression in each cell type. After imputation by SAVER, the

correlation strength was greatly improved for the correlated gene

sets, but there was no obvious improvement in terms of Pearson

correlation for the anticorrelated gene sets (Figure 6C). This was

exactly in line with the current logic and our expectation because

the anti-correlation identified by virtual sorting represented typical

nonlinear relationships (21, 22), and the results of anticorrelation

were filtered by cosine similarity, which was not a measure of linear

association such as Pearson correlation. Therefore, the above results
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FIGURE 5

The correlated and anticorrelated genes of ITGA6 identified by virtual sorting are differentially expressed during T-cell activation. (A) Differential
expression of the correlated and anticorrelated genes when naïve CD4+ T cells are activated by anti-CD3 and anti-CD28 at different time points. The
dataset is derived from GSE39594. The arrow indicates the gene ‘ITGA6’. The correlated and anticorrelated genes with double slash separation are
indicated on the left of the panel. (B) The scatter plot shows the decreased CD49f+ and increased CD25+ T cells after activation. (C, D) represent
FACS results of anticorrelated expression between CD49f (ITGA6) and CD25 (IL2RA) in either positive cell frequency (proportion) (C) or MFI (D) in
CD8+ T cells. In (B–D), CD49f (ITGA6) is downregulated, whereas the anticorrelated gene CD25 is upregulated when CD8+ T cells are activated by
PMA and ionomycin at different time points. CD8+ T cells were isolated from four independent healthy individuals.
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from either single gene or systematic analysis of thousands of highly

plastic genes supported the gain and loss of phenotypes

accompanying the dynamic expressional change of highly

plastic genes.
Single-cell transcriptome combined with
gene plasticity analysis facilitates the
discovery of novel functional subsets of
immune cells

The current phenotypic classification system is an open system.

In addition to the ability to explain phenotypic diversity, indicate

subdivisions and imply phenotypic regulation during cell state

conversion, the system functioned as a discovery model and was

able to predict and identify novel immune cell subsets. Highly

plastic genes were described to be suitable for marker genes to label

immune cell subsets in our previous study (21). The next analysis
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focused on single-cell omics, which greatly assisted in discovering

novel immune cell subsets based on gene plasticity analysis.

It is logically reasonable and feasible to use highly plastic genes,

particularly extremely plastic genes with expressional bipolar states,

to classify immune cells and predict novel functional subsets.

However, during routine isolation of target cells from blood or

other tissues by flow cytometry, the purity of target cells is usually

difficult to reach 100%. Therefore, cell samples with insufficient cell

purity during bulk RNA-Seq or microarray assays may increase

gene plasticity, at least for some genes that are highly expressed in

unwanted or contaminated cells. Cell purity has a minor influence

when the genes are expressed at low levels in the target cells because

they also show low expression in the observed bulk samples;

however, cell purity must be considered when high expression

states are observed in bulk samples, which might be caused by

other cell contamination. Single-cell RNA sequencing (scRNA-Seq)

examines gene expression at single-cell resolution and has

advantages for cell type-specific analysis, particularly for genes
A

B

C

FIGURE 6

The single-cell transcriptome supports the virtual sorting results derived from bulk RNA sequencing data. (A, C) indicate the distributions of Pearson
correlation coefficients before and after imputation by SAVER. A higher correlation (A) and coexistence rate or present-present/PP rate (B) between
highly plastic genes and their correlated genes are also observed in the single-cell dataset. After imputation, the correlation strength is further
greatly improved (C).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1128423
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2023.1128423
with high expression states. Therefore, we used single-cell data to

trace the highly plastic states with polarized gene expression (or

polarized genes for short) and to discover novel functional immune

cell subsets.

First, among the highly plastic genes with absolute GPL scores

≥50 shared by both array and HTS platforms, we further set a strict

condition with the requirement of the maximum rank score ≥90 in

both platforms to screen genes of interest. This meant that these

polarized genes had the potential to be dramatically expressed and

belonged to the top 10% of genes with the highest expression under

certain conditions. As a result, 2,600 (CD4+ T cells), 2,871 (CD8+ T

cells), 2,209 (B cells), 1,268 (NKs) and 3,110 (monocytes) genes

were identified to have polarized expression supported by both

platforms (Table S4).

Next, a total of 17 single-cell datasets related to human PBMCs

were first collected, which corresponded to Dataset 1 to Dataset 17

(Table S4, sheet 6). These datasets comprised a total of 2,563,048

single cells, including 909,248 CD4+ T cells, 557,317 CD8+ T cells,

482,179 B cells, 145,623 NK cells and 468,717 monocytes (Table S4).

However, these single cells from PBMCs only represented gene

expression in the blood tissue and could not cover extensive

functional states. Therefore, we further collected an additional 21

single-cell datasets derived from other tissues, including several

tumors, such as prostate cancer, hepatocellular carcinoma, lung

cancer, gastric cancer, breast cancer, melanoma, basal cell

carcinoma, squamous cell carcinoma and colorectal cancer. These

additional datasets comprised a total of 385,832 single cells,

including 12,2013 CD4+ T cells, 114,021 CD8+ T cells, 93,542 B

cells, 42,627 NK cells and 13,629 monocytes (Table S4). We

confirmed that there was a generally close positive correlation

between the expression proportion and the average expression

intensity at the whole gene level in each cell type. Therefore, the

percentage of gene expression could be used to evaluate to what

extent genes were expressed.

As shown in Table S4, the genes showed variable expression in

different datasets, suggesting that gene plasticity states should be

closely associated with conditions. A high proportion of expression

in single cells indicated a high plasticity state. For example, under a

filter condition of 25% single cells with detectable expression, 797

(CD4+ T cells), 887 (CD8+ T cells), 664 (B cells), 408 (NKs) and

1,212 (monocytes) genes were identified to be highly expressed in at

least one dataset (Table S4). Undoubtedly, the lower the filtering

conditions were, or the greater the single-cell datasets were collected

for the analysis, the better was it supported in the numbers of the

high plasticity genes in Table S4 by single cells. The following

represent several examples of novel functional subsets supported by

the single-cell transcriptome.

Parathymosin (PTMS) is a small acidic nuclear protein.

Although it was originally isolated from the rat thymus, PTMS

was not expressed in thymocytes in previous reports (39, 40).

However, PTMS was a highly plastic gene in T cells (Tables S1 &

S4), which meant it was not widely expressed under all kinds of

conditions, as was done for lowly plastic genes. The highly plastic

characteristic of PTMS implied that it should be highly expressed

under certain conditions but show very low or even no expression

under some other conditions. Based on the multimodal single-cell
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dataset (Dataset 1 in Table S4), which comprises over 161,000 single

cells from PBMCs (41), PTMS was expressed at low levels in B cells,

T cells, monocytes and NKs but showed the highest expression in

proliferating CD8+ T cells (Figures 7A–D). Interestingly, PTMS was

also highly expressed in hematopoietic stem and progenitor cells

(HSPCs) and dendritic cells (DCs), including plasmacytoid

dendritic cells (pDCs) and conventional DCs (cDCs), as well as

ASDCs, which are defined by the expression of AXL (AXL receptor

tyrosine kinase) and SIGLEC6 (sialic acid binding Ig-like lectin 6)

(42). However, when tracing the highly plastic state of PTMS using

tumor single cells, we found that PTMS was highly expressed in

tumor-infiltrating lymphocytes (TILs), particularly TILs from

squamous cell carcinoma (SCC), such as Tfh, Th17, Treg, and

activated and exhausted CD8+ T cells (Figures 7E–H), whereas

PTMS showed relatively low expression in naïve T cells

(Figures 7G, H).

We examined what phenotypes were lost (i.e., missing

phenotypes) and gained (i.e., cophenotypes) during the

acquisition of high levels of PTMS expression. Under the strict

filter conditions mentioned above, there were no genes with an

expressional positive correlation to PTMS in T cells (Table S3).

However, when we relaxed the filtering conditions and set the d
value ≥10 for the correlated gene set during virtual sorting, 166 and

147 genes were identified in the CD4+ and CD8+ single-positive T

cells, respectively (Table S5), and 66 genes were shared by both cell

types. Functional enrichment analysis revealed that biological

processes related to the cell cycle, such as cell division, mitotic

cytokinesis and chromosome segregation, were significantly

enriched in the correlated gene sets in both cell types (Table S5).

For the anticorrelated genes of PTMS, genes related to the

inflammatory response, such as S100A8 (S100 calcium binding

protein A8) and S100A9, were downregulated in PTMS+ T cells

(Tables S3 & S5). Functional enrichment further confirmed that

biological processes, such as neutrophil aggregation, neutrophil

chemotaxis and inflammatory response, were significantly

enriched in the anticorrelated genes in CD4+ T cells (Table S5).

This suggests that PTMS are highly plastic cell cycle–associated

molecules (HPCCMs) based on our previous definition (22) and

that PTMS+ T cells should be closely associated with a

proliferative phenotype.

Although the functional understanding is limited, studies have

shown that PTMS is involved in the replication of active chromatin

(43), in the remodeling of higher-order chromatin structure via

interaction with histone H1 (44) and in the regulation of

inflammation via inhibition of the transcriptional activity of NF-

kB (45). These studies support our above results regarding

functional clues. Moreover, in a recent study, PTMS was found to

be a brain-secretory protein with a neuroprotective role; neurons in

various brain regions not only released PTMS but also received

PTMS (46). Currently, there are no reports about the functions of

PTMS in the immune system; therefore, the exact role of PTMS+ T

cells in tumor immunity still awaits further investigation.

The serine peptidase inhibitor Kazal type 2 (SPINK2) and

cadherin-related family member 1 (CDHR1) were highly plastic

in NKs (Tables S1 & S4). Although both genes showed low

expression in NKs from PBMCs (Figures 8A–C), they were highly
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expressed in decidual natural killer cells (dNKs) (Figures 8E–I)

based on a recent dataset related to the maternal-fetal interface in

humans (47). Interestingly, SPINK2 and CDHR1 were

preferentially expressed in different dNK subsets, that is, dNK1

and dNK2, respectively. SPINK2 showed higher expression in

proliferating dNKs (dNK p) than CDHR1 (Figures 8G–I). Further

analysis of gain and loss of phenotypes revealed that SPINK2+ NKs

and CDHR1+ NKs showed distinct functional characteristics. The

correlated genes of SPINK2 in NKs were significantly enriched in

biological processes, including cell division, mitosis, cell cycle and

chromosome segregation (Table S5), whereas these processes were

significantly enriched in the anticorrelated genes of CDHR1 (Table

S5), suggesting diversified phenotypes between SPINK2 and

CDHR1 single-positive dNKs.

SPINK2 is a secretory protein and a strong inhibitor of acrosin-

trypsin. SPINK2 deficiency causes male infertility, suggesting an

important role in male reproduction (48, 49). SPINK2 is highly

expressed in the testis based on several public databases, such as

GTEx (50), but it was also highly expressed in maternal dNKs

because of gene plasticity, particularly in dNK1 cells. The dNK1

subset is suggested to play a role in recognizing and responding to

placental extravillous trophoblast cells (EVTs) (47). Interestingly,

we found that there were several genes, including EIF1AY

(eukaryotic translation initiation factor 1A Y-linked), ZFY (zinc

finger protein Y-linked), KDM5D (lysine demethylase 5D), USP9Y

(ubiquitin specific peptidase 9 Y-linked), RPS4Y1 (ribosomal

protein S4 Y-linked 1) and DDX3Y (DEAD-box helicase 3 Y-

linked), which are located on chromosome Y in the anticorrelated

gene set of SPINK2 (Table S5). Considering that female-specific

genes on chromosome X are generally anticorrelated to male-

specific genes on chromosome Y during virtual sorting (22), we
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further examined whether SPINK2, which is located on

chromosome 4, showed sex-associated expression in NKs.

Therefore, we selected two datasets from peripheral blood

(Dataset 1) and lung cancer (Dataset 20), which comprised

enough NKs (Table S4). The former included NKs from 6 males

and 2 females, while the latter included NKs from 38 males and 18

females. As shown in Figure 8, SPINK2 and at least one of the

correlated genes, AIF1 (allograft inflammatory factor 1), showed

higher expression in female NKs than in male NKs from either

PBMCs (Figure 8J) or the microenvironment of lung cancer

(Figure 8K). This result suggests that sex-associated regulation

and SPINK2+ NKs play an important role in female reproduction.

In contrast to SPINK2, the correlated genes of CDHR1 were

enriched in biological processes, such as the innate immune

response, defense response, leukocyte migration involved in the

inflammatory response, complement activation and cell-cell

adhesion (Table S5). Therefore, CDHR1 is a highly plastic

immune and defense response-associated molecule (HPIDM)

based on our previous definition (22). CDHR1 is a member of the

cadherin superfamily and is responsible for calcium-dependent cell-

to-cell adhesion, which serves an array of essential roles, including

structural aggregation, cell migration, cell-cell signaling and cell

polarity. CDHR1 showed high expression in several human tissues,

such as skin, gut and brain, based on the GTEx database. It is also

expressed in photoreceptors and ganglion cells in retinal tissue, and

its function is mainly focused on retinal cadherinopathies, such as

cone-rod dystrophy, late-onset macular dystrophy, and retinitis

pigmentosa (RP) (51).

As a cell surface molecule, the specific high expression of

CDHR1 in dNKs reminded us of CD49a (also called ITGA1), an

integrin alpha subunit that binds collagen and laminin, which is
FIGURE 7

PTMS-positive T-cell subsets are enriched in squamous cell carcinoma (SCC) based on single-cell transcriptomic analysis. UMAP plots were used to
show immune cell subsets in the datasets from multimodal human PBMCs (A) and SCC (E). The expression levels of PTMS are illustrated by feature
plots (B, F), dot plots (C, G) and violin plots (D, H) in either PBMCs (B–D) or SCC (F–H).
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considered a marker of tissue-resident NK (trNK) cell subsets (52).

In the human uterus, there are a large number of CD49a+ trNK

cells, which are involved in fetal development (53). However, based

on the current analysis, as a highly plastic molecule, CD49a showed

wide expression in multiple tissues, such as gastric cancer, basal cell

carcinoma and colorectal cancer, whereas high expression of

CDHR1 was restricted to decidual tissue (Table S4, Figure S6B),

suggesting its specific functional significance in the decidua.

Therefore, the current study suggests the diversified roles of
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SPINK2+ and CDHR1+ single-positive dNKs and their important

role in maternal-fetal interactions.

For B cells, an example of DCAF12 (DDB1 and CUL4-

associated factor 12)-positive B cells is shown in Figure S7.

DCAF12 was highly expressed in the B cells of gut tissue (Dataset

30) (Table S4). DCAF12 is a cofactor of cullin-4 (CUL4) ubiquitin

ligase complexes and mediates substrate recognition and

recruitment. Known substrates of DCAF12 include melanoma

antigen gene (MAGE) family members (54) and Moloney
A B
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FIGURE 8

SPINK2 and CDHR1 single-positive NK cells are enriched in the decidua based on single-cell transcriptomic analysis. The indicated gene expression
levels are illustrated by feature plots (A, E, F), dot plots (B, G) and violin plots (C, H, I) in both PBMCs (A–C) and decidua (E–I). The UMAP plot in (D)
shows cell types in the decidua, as well as in peripheral blood (PB) for some cell types. SPINK2 and the correlated gene AIF1 show higher expression
in female NKs, as supported by either PBMC (J) or lung cancer (K) datasets. The genes TSIX, EIF1AY and DDX3Y represent positive controls to
indicate female (TSIX) and male (EIF1AY, DDX3Y) NKs. Some cell abbreviations are shown as follows. dNK1-3, decidual NK-cell cluster 1-3; dT CD4,
decidual CD4+ T cells; MAIT, mucosal-associated invariant T cells; dM1-3, decidual macrophage cluster 1-3; dNK p, decidual proliferative NK cells;
EVT, extravillous trophoblast; DC, dendritic cells; dS1-3, decidual stromal cell cluster 1-3; dP1-2, decidual perivascular cell cluster 1-2; Endo L,
lymphatic endothelial cells; Endo (m), maternal endothelial cells; SCT, syncytiotrophoblast; HB, Hofbauer cells; VCT, villous cytotrophoblast; Endo (f),
fetal endothelial cells; MO, maternal macrophages; fFB1-2, fetal fibroblast cluster 1-2.
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leukemia virus 10 (MOV10) (55). DCAF12 was initially identified

as a regulator of tissue growth and apoptosis in Drosophila

melanogaster (56). A recent study from Dcaf12 knockout (KO)

mice revealed that Dcaf12 deficiency led to a decreased sperm

count, dysregulation of immune cell populations, and increased

splenocyte apoptosis after T-cell activation (55).

DCAF12 is highly plastic in immune cells (Table S1). Although

DCAF12 showed low expression in peripheral B cells (Figures S7A–

C), it truly showed high expression levels in cycling immune cells,

such as cycling plasma cells, myeloid cells and B cells (Figures S7D–

G), suggesting a functional association with cell proliferation. The

association between proliferative phenotypes and high expression of

DCAF12 in B cells was also implied based on the correlated gene

analysis, which revealed that cell cycle-relevant biological processes

were significantly enriched in the correlated gene set of DCAF12

(Table S5). In addition, the correlated and anticorrelated genes

showed compatible and exclusive expression patterns, respectively

(Figure S7H), suggesting the reliability of functional evaluation by

virtual sorting.

None of these subsets have been studied in the field. Therefore,

a global view of gene plasticity provides a feasible and efficient way

to identify novel functional subsets of immune cells. In addition,

omics big data, particularly single-cell omics, provide an

opportunity to trace and validate where these subsets may exist.
Discussion

It is worth considering why there are so abundant functional

subsets of immune cells. In the current study, we proposed a novel

framework for immune cell classification based on gene plasticity. It

reflects the different phenotypes or functional cell states under a

series of various conditions. The system provides a reasonable

explanation of phenotypic diversity and plasticity. In this system,

we paid less attention to the cell type hierarchy as the Cell Ontology

does. Cell Ontology represents an annotation system of known cell

types based on their properties, such as the main functions and

histological and developmental lineage classes; the ontology system

is organized as a directed acyclic graph (57). In the era of massive

single-cell omics data, cell ontologies, a structured controlled

vocabulary for cell types in animals, provide a powerful way to

understand such knowledge about the cellular composition of the

human body (58), which in turn facilitates cell type annotation

during single-cell omics data analysis. However, Cell Ontology is

not a system aimed at novel subset discovery and provides a limited

explanation of cell states (58). It is unable to explain the diversity of

immune cell phenotypes and incapable of analyzing cophenotypes

and the loss of phenotypes. Therefore, it is different from the

purpose and application of the current system. However, the

phenotypes identified through the current system can finally enter

Cell Ontology once the required knowledge has been addressed. In

this regard, the two systems work synergistically.

One of the two core points of the system is that small subsets

can be divided from the greater subset based on their highly plastic

genes. The divisions are mainly based on systematic analysis rather

than referring to infinite immune cell phenotypes in only one
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individual or under extremely limited conditions. The

combinations among highly plastic genes constitute rich and

diverse phenotypes. Gene plasticity represents a series of

continuous plastic states, such as high, low and intermediate gene

plasticity states. During the change among the states, such as from

high to low expressional levels, or vice versa, correlated and

anticorrelated genes change in different directions. During this

process, the inevitable intergenic relationship among genes

implies an inherent regulatory mechanism, which we call internal

phenotype regulation (22). Therefore, in addition to the diversity,

layerability and predictability inferred by the system, it reflects the

underlying regulation of immune cell phenotypes. In addition, it is

conceptually simple and easy to connect with the known concept of

cell plasticity. The model is also suitable for large-scale systematic

computer analysis and prediction.

Based on gene plasticity, the cell functional state under a specific

condition could be represented by a group of highly plastic genes

accompanied by a group of correlated (cophenotypic) and

anticorrelated (mutually exclusive phenotypic) genes. These

highly plastic genes are in their respective plastic states with

either high, moderate or low levels, representing a result of

multiple intergenic interactions and compromise. However, for

the observer, due to the limited experimental conditions, the

observed cell states at the population level are limited. Similarly,

we could not observe all of the correlated and anticorrelated genes

simultaneously under limited conditions. However, low-plasticity

genes are generally either highly expressed or expressed at low levels

in a cell type (21). Therefore, the lowly plastic but highly expressed

genes should also play an important role in functional maintenance

across all cell states.

Although we analyzed only the five main cell types, including

human CD4+ T cells, CD8+ T cells, NKs, B cells and monocytes, the

gene plasticity model, which represents a general rule in cells, is also

suitable for other immune cells, such as macrophages and DCs, and

even for nonimmune cells, such as fibroblasts and even cancer cells.

It is an open system and compatible with the traditional immune

cell category. This is because the traditional lineage marker genes

are lowly plastic in the corresponding cell types (21) and are also

highly plastic if they are placed in a higher layer. This suggests that

gene variability analysis could be carried out at different layers, and

gene plasticity would change accordingly. For example, the lineage

marker CD3D is lowly plastic in T cells but shows increased

plasticity in cells mixed with T cells and non-T cells, to some

extent representing different proportions of CD3D+ T cells.

Similarly, when we mention a high plasticity gene, the

proportions of the cells with positive expression of the gene in a

large cell population will also be different under various conditions.

Therefore, gene plasticity is always associated with layering and the

accompanying plasticity transition. Correlation analysis with

stratification may help to more accurately analyze cophenotypes

and mutually exclusive phenotypes. Moreover, this model does not

particularly emphasize which gene acts as the starting layer.

However, under specific conditions, the gene order based on the

number of cells is worth considering.

Therefore, when classifying traditional immune cell subsets,

such as naïve, memory and effector T cells, it is necessary to identify
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the high plasticity genes in these cells. Massive omic big data

provide an effective way for the existence of highly plastic genes.

However, whether there are enough highly plastic genes depends on

the experimental conditions and the amount of detected data.

Although the traditional classification model can well reflect the

lineage relationship between different immune cell types, it cannot

well explain the high heterogeneity and plasticity of immune cells.

Plasticity implies dynamic characteristics, stratification and

subdivision as well as convertibility, whereas heterogeneity

implies dissimilarity and diversity. The dissimilar phenotypes in

the same or different layers represent heterogeneity. Therefore,

plasticity explains the underlying mechanism of heterogeneity.

However, the current gene plasticity based on rank profiles may

also have limitations. In this study, we focused on genes with high

plasticity. However, when the change in expression level has a weak

impact on the rank change, gene plasticity analysis may have

limited usage for discovering novel immune cell subsets and

phenotypes. For example, when the expression level of an

extremely highly expressed gene is further increased, the rank

score may not be accompanied by a large change or may even

remain the same. On the other hand, gene plasticity analysis is

subject to the experimental conditions associated with samples. For

example, when the highly or lowly expressed states of a certain gene

remain unidentified or the related samples have not been collected

in the current analysis, this may affect the observation of highly

plastic states of the gene. In this study, although each cell type has

hundreds of samples derived from different conditions, it may still

affect the observation of some highly plastic genes.

Although the current model proposes infinite immune cell

phenotypes, in practice, the discovery of immune cell subsets

remains limited due to technical limitations. In a recent report,

major T-cell subsets and immunophenotypes of human peripheral

blood and lymph nodes were detected using 31-parameter (29-

color) flow cytometry (59). However, the number of highly plastic

genes is much greater than the fluorescent colors currently used in

flow cytometry. With the development offlow technology, there will

be more technical methods to jointly detect more parameters and

fluorescence in the future. In addition, the availability of applicable

monoclonal antibodies is another problem because in the current

model, it is not limited to secreted proteins, cell membrane

molecules and transcription factors. There are very limited

monoclonal antibodies labeled by fluorescein for intracellular

molecules on the market.

In recent years, single-cell sequencing technology has been

widely used in the discovery of novel immune ce l l

subpopulations. Because mixed cell types can be clearly identified

in single-cell technologies, it could be better to carry out gene

plasticity analysis in a single-cell transcriptome than in bulk RNA-

Seq. However, due to current technical limitations, the number of

genes detected per cell is extremely limited, ranging from tens to

thousands. In many studies, cells with a detection number of over

5,000 genes are often considered doublet or multiplet cells and are

removed in quality control, while cells with less than 200 detected

genes are also removed. Genes detected by single-cell sequencing

are often highly expressed genes but still retain missing values

(dropouts). Different cell types or their subsets exist in the form of
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cell clusters, which are complex to calculate and closely related to

sample batches, the number of genes tested, algorithms, and so on

(37, 60). Therefore, a new cluster does not necessarily represent a

novel subset during single-cell analysis. In single-cell research, the

higher the level of gene expression is, the greater the variation in

gene expression (61). This is different from the generally low

plasticity of highly expressed genes in gene plasticity analysis.

Single-cell technologies have limited resolution in the definition

of immune cell subsets because cell clustering is performed at the

population level rather than at the single gene level. In addition,

single-cell technologies cannot effectively distinguish cell subsets for

highly homogeneous cell structures. However, we are convinced

that single-cell technologies truly provide an effective way to

validate the current gene plasticity model.

Gene plasticity emphasizes a dynamic but not static process.

Corresponding to multiomics, gene plasticity can be reflected at

multiple levels, such as expressional gene plasticity at the mRNA

and protein levels and epigenetic gene plasticity at the methylation

level in our recent study (62). All plastic genes constitute the

plasticitome. Therefore, a systematic analysis of gene plasticity

will directly contribute to the development of ‘plasticitomics’,

which focuses on the study of gene plasticity at multiple levels to

explore the dynamic change rules of life molecules and the

underlying mechanisms, as well as applications based on gene

plasticity. Currently, massive amounts of omics big data provide

an opportunity for plasticitomics research. The integration of

multiomics data for the classification of the current model will

also be an exploration direction.

Similarly, the correlated genes identified in this study

contribute to cophenotypes and constitute the inclusive omics,

which means that these genes are compatible with each other and

can be highly expressed simultaneously in a cell or expressed as

‘high level compatibility’. For the genes with expressional

compatibil ity, i t does not mean that these genes are

simultaneously highly expressed under any conditions.

However, genes with mutually exclusive expression constitute

the exclusive omics, which means that these genes cannot be

simultaneously expressed at high levels or expressed as ‘high level

exclusion’. Therefore, for mutually exclusive gene pairs, only one

gene is highly expressed, but the other shows low or no expression.

Both the inclusive- and exclusive-omes belong to the plasticitome

and can exist at low levels or be expressed as ‘low level

coexistence’. Therefore, similar to gene plasticity, inclusiveness

and exclusiveness can be expressed at multiple levels, such as the

mRNA, protein and epigenetic levels. When a global view of a

series of cell states in terms of gene expression, methylation and

other events is used, gene plasticity analysis provides a novel

perspective to classify the functional states of both immune cells

and nonimmune cells.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1128423
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2023.1128423
Ethics statement

The studies involving human participants were reviewed and

approved by Peking University Biomedical Ethics Committee. The

patients/participants provided their written informed consent to

participate in this study.
Author contributions

PW designed the study and wrote the manuscript. YH did the

verification experiments and performed data analysis under the

help of PW. CL and WH provided help and suggestion during the

study and manuscript preparation. Conceptualization, funding

acquisition and project administration was from PW. All authors

contributed to the article and approved the submitted version.
Funding

This work was supported by grants from the National Natural

Science Foundation of China (No. 31972899 and No. 31670947).
Acknowledgments

We thank the undergraduates Changxian Xiong, Ling Tang, Ze

Chen, Zishuo Pei and Yaodie Peng for their interest in helping us
Frontiers in Immunology 19
collect the immunophenotype data. We thank Prof. Dalong Ma for

reading this article and giving reasonable suggestions.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1128423/

full#supplementary-material
References
1. Deenick EK, Ma CS, Brink R, Tangye SG. Regulation of T follicular helper cell
formation and function by antigen presenting cells. Curr Opin Immunol (2011) 23:111–
8. doi: 10.1016/j.coi.2010.10.007

2. St Paul M, Ohashi PS. The roles of CD8(+) T cell subsets in antitumor immunity.
Trends Cell Biol (2020) 30:695–704. doi: 10.1016/j.tcb.2020.06.003

3. Nakagawa H, Wang L, Cantor H, Kim HJ. New insights into the biology of CD8
regulatory T cells. Adv Immunol (2018) 140:1–20. doi: 10.1016/bs.ai.2018.09.001

4. Rosser EC, Mauri C. Regulatory b cells: origin, phenotype, and function. Immun
(2015) 42:607–12. doi: 10.1016/j.immuni.2015.04.005

5. Liu J, Cao X. Regulatory dendritic cells in autoimmunity: A comprehensive
review. J autoimmunity (2015) 63:1–12. doi: 10.1016/j.jaut.2015.07.011

6. Wang S, Xia P, Chen Y, Qu Y, Xiong Z, Ye B, et al. Regulatory innate lymphoid
cells control innate intestinal inflammation. Cell (2017) 171:201–16.e18. doi: 10.1016/
j.cell.2017.07.027

7. Wing JB, Tanaka A, Sakaguchi S. Human FOXP3(+) regulatory T cell
heterogeneity and function in autoimmunity and cancer. Immun (2019) 50:302–16.
doi: 10.1016/j.immuni.2019.01.020

8. Song W, Craft J. T Follicular helper cell heterogeneity: Time, space, and function.
Immunol Rev (2019) 288:85–96. doi: 10.1111/imr.12740

9. Romero-Ramirez S, Navarro-Hernandez IC, Cervantes-Diaz R, Sosa-Hernandez
VA, Acevedo-Ochoa E, Kleinberg-Bild A, et al. Innate-like b cell subsets during
immune responses: Beyond antibody production. J leukocyte Biol (2019) 105:843–56.
doi: 10.1002/JLB.MR0618-227R

10. Harms Pritchard G, Pepper M. Memory b cell heterogeneity: Remembrance of
things past. J leukocyte Biol (2018) 103:269–74. doi: 10.1002/JLB.4MR0517-215R

11. Guilliams M, Mildner A, Yona S. Developmental and functional heterogeneity
of monocytes. Immun (2018) 49:595–613. doi: 10.1016/j.immuni.2018.10.005

12. Udalova IA, Mantovani A, Feldmann M. Macrophage heterogeneity in the
context of rheumatoid arthritis. Nat Rev Rheumatol (2016) 12:472–85. doi: 10.1038/
nrrheum.2016.91
13. Khan A, Singh VK, Hunter RL, Jagannath C. Macrophage heterogeneity and
plasticity in tuberculosis. J leukocyte Biol (2019) 106:275–82. doi: 10.1002/jlb.Mr0318-095rr

14. Brown CC, Gudjonson H, Pritykin Y, Deep D, Lavallée VP, Mendoza A, et al.
Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell (2019)
179:846–63.e24. doi: 10.1016/j.cell.2019.09.035

15. Vacca P, Chiossone L, Mingari MC, Moretta L. Heterogeneity of NK cells and
other innate lymphoid cells in human and murine decidua. Front Immunol (2019)
10:170. doi: 10.3389/fimmu.2019.00170

16. Nakayamada S, Takahashi H, Kanno Y, O’Shea JJ. Helper T cell diversity and
plasticity. Curr Opin Immunol (2012) 24:297–302. doi: 10.1016/j.coi.2012.01.014

17. Murphy KM, Stockinger B. Effector T cell plasticity: flexibility in the face of
changing circumstances. Nat Immunol (2010) 11:674–80. doi: 10.1038/ni.1899

18. Tuzlak S, Dejean AS, Iannacone M, Quintana FJ, Waisman A, Ginhoux F, et al.
Repositioning TH cell polarization from single cytokines to complex help. Nat
Immunol (2021) 22:1210–7. doi: 10.1038/s41590-021-01009-w

19. Jankovic D, Ciucci T, Coffman RL, Coquet JM, Le Gros G, Mosmann TR, et al.
Comment on: Repositioning TH cell polarization from single cytokines to complex
help. Nat Immunol (2022) 23:501–2. doi: 10.1038/s41590-022-01144-y

20. Wang P, Yang Y, Han W, Ma D. ImmuSort, a database on gene plasticity and
electronic sorting for immune cells. Sci Rep (2015) 5:10370. doi: 10.1038/srep10370

21. Wang P, HanW, Ma D. Electronic sorting of immune cell subpopulations based
on highly plastic genes. J Immunol (Baltimore Md.: 1950) (2016) 197:665–73.
doi: 10.4049/jimmunol.1502552

22. Wang P, Han W, Ma D. Virtual sorting has a distinctive advantage in
identification of anticorrelated genes and further negative regulators of immune cell
subpopulations. J Immunol (Baltimore Md.: 1950) (2017) 199:4155–64. doi: 10.4049/
jimmunol.1700946

23. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res (2013)
41:D991–5. doi: 10.1093/nar/gks1193
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1128423/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1128423/full#supplementary-material
https://doi.org/10.1016/j.coi.2010.10.007
https://doi.org/10.1016/j.tcb.2020.06.003
https://doi.org/10.1016/bs.ai.2018.09.001
https://doi.org/10.1016/j.immuni.2015.04.005
https://doi.org/10.1016/j.jaut.2015.07.011
https://doi.org/10.1016/j.cell.2017.07.027
https://doi.org/10.1016/j.cell.2017.07.027
https://doi.org/10.1016/j.immuni.2019.01.020
https://doi.org/10.1111/imr.12740
https://doi.org/10.1002/JLB.MR0618-227R
https://doi.org/10.1002/JLB.4MR0517-215R
https://doi.org/10.1016/j.immuni.2018.10.005
https://doi.org/10.1038/nrrheum.2016.91
https://doi.org/10.1038/nrrheum.2016.91
https://doi.org/10.1002/jlb.Mr0318-095rr
https://doi.org/10.1016/j.cell.2019.09.035
https://doi.org/10.3389/fimmu.2019.00170
https://doi.org/10.1016/j.coi.2012.01.014
https://doi.org/10.1038/ni.1899
https://doi.org/10.1038/s41590-021-01009-w
https://doi.org/10.1038/s41590-022-01144-y
https://doi.org/10.1038/srep10370
https://doi.org/10.4049/jimmunol.1502552
https://doi.org/10.4049/jimmunol.1700946
https://doi.org/10.4049/jimmunol.1700946
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.3389/fimmu.2023.1128423
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2023.1128423
24. Wang P, Qi H, Song S, Li S, Huang N, HanW, et al. ImmuCo: a database of gene
co-expression in immune cells. Nucleic Acids Res (2015) 43:D1133–9. doi: 10.1093/nar/
gku980

25. Kodama Y, Shumway M, Leinonen R. International nucleotide sequence
database c. the sequence read archive: explosive growth of sequencing data. Nucleic
Acids Res (2012) 40:D54–6. doi: 10.1093/nar/gkr854

26. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinf (Oxford England) (2013) 29:15–21.
doi: 10.1093/bioinformatics/bts635

27. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program
for assigning sequence reads to genomic features. Bioinf (Oxford England) (2014)
30:923–30. doi: 10.1093/bioinformatics/btt656

28. Wu X, Liu Y, Jin S, Wang M, Jiao Y, Yang B, et al. Single-cell sequencing of
immune cells from anticitrullinated peptide antibody positive and negative rheumatoid
arthritis. Nat Commun (2021) 12:4977. doi: 10.1038/s41467-021-25246-7

29. Zhang JY, Wang XM, Xing X, Xu Z, Zhang C, Song JW, et al. Single-cell
landscape of immunological responses in patients with COVID-19. Nat Immunol
(2020) 21:1107–18. doi: 10.1038/s41590-020-0762-x

30. Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez gene: gene-centered
information at NCBI. Nucleic Acids Res (2011) 39:D52–7. doi: 10.1093/nar/gkq1237

31. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web
server for functional enrichment analysis and functional annotation of gene lists (2021
update). Nucleic Acids Res (2022) 50(W1):W216-W221. doi: 10.1093/nar/gkac194

32. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci United States America (2005)
102:15545–50. doi: 10.1073/pnas.0506580102

33. Speir ML, Bhaduri A, Markov NS, Moreno P, Nowakowski TJ, Papatheodorou I,
et al. UCSC cell browser: Visualize your single-cell data. Bioinf (Oxford England) (2021)
37(23):4578–4580. doi: 10.1093/bioinformatics/btab503

34. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat
Biotechnol (2018) 36:411–20. doi: 10.1038/nbt.4096

35. Bailey SR, Nelson MH, Majchrzak K, Bowers JS, Wyatt MM, Smith AS, et al.
Human CD26(high) T cells elicit tumor immunity against multiple malignancies via
enhanced migration and persistence. Nat Commun (2017) 8:1961. doi: 10.1038/s41467-
017-01867-9

36. Tian Y, Babor M, Lane J, Schulten V, Patil VS, Seumois G, et al. Unique
phenotypes and clonal expansions of human CD4 effector memory T cells re-
expressing CD45RA. Nat Commun (2017) 8:1473. doi: 10.1038/s41467-017-01728-5

37. Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of
single-cell RNA-seq data. Nat Rev Genet (2019) 20:273–82. doi: 10.1038/s41576-018-
0088-9

38. Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, et al. SAVER: gene
expression recovery for single-cell RNA sequencing. Nat Methods (2018) 15:539–42.
doi: 10.1038/s41592-018-0033-z

39. Clinton M, Frangou-Lazaridis M, Panneerselvam C, Horecker BL. Prothymosin
alpha and parathymosin: mRNA and polypeptide levels in rodent tissues. Arch Biochem
Biophys (1989) 269:256–63. doi: 10.1016/0003-9861(89)90107-0

40. Roson E, Garcia-Caballero G, Heimer EP, Felix AM, Dominguez F. Cellular
distribution of prothymosin alpha and parathymosin in rat thymus and spleen. J
Histochem Cytochem (1990) 38:1889–94. doi: 10.1177/38.12.2254650

41. Hao Y, Hao S, Andersen-Nissen E, Mauck WM3rd, Zheng S, Butler A, et al.
Integrated analysis of multimodal single-cell data. Cell (2021) 184:3573–87 e29.
doi: 10.1016/j.cell.2021.04.048

42. Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, et al. Single-
cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and
progenitors. Science (2017) 356(6335):eaah4573. doi: 10.1126/science.aah4573

43. Vareli K, Frangou-Lazaridis M, van der Kraan I, Tsolas O, van Driel R. Nuclear
distribution of prothymosin alpha and parathymosin: evidence that prothymosin alpha
Frontiers in Immunology 20
is associated with RNA synthesis processing and parathymosin with early DNA
replication. Exp Cell Res (2000) 257:152–61. doi: 10.1006/excr.2000.4857

44. Martic G, Karetsou Z, Kefala K, Politou AS, Clapier CR, Straub T, et al.
Parathymosin affects the binding of linker histone H1 to nucleosomes and remodels
chromatin structure. J Biol Chem (2005) 280:16143–50. doi: 10.1074/jbc.M410175200

45. Okamoto K, Hirata-Tsuchiya S, Kitamura C, Omoteyama K, Sato T, Arito M,
et al. A small nuclear acidic protein (MTI-II, Zn(2+) binding protein, parathymosin)
that inhibits transcriptional activity of NF-kappaB and its potential application to
antiinflammatory drugs. Endocrinology (2016) 157:4973–86. doi: 10.1210/en.2016-1746

46. Yu B, Tang Y, Cai D. Brain is an endocrine organ through secretion and nuclear
transfer of parathymosin. Life Sci Alliance (2020) 3(12):e202000917. doi: 10.26508/
lsa.202000917

47. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer
KB, et al. Single-cell reconstruction of the early maternal-fetal interface in humans.
Nature (2018) 563:347–53. doi: 10.1038/s41586-018-0698-6

48. Kherraf ZE, Christou-Kent M, Karaouzene T, Amiri-Yekta A, Martinez G,
Vargas AS, et al. SPINK2 deficiency causes infertility by inducing sperm defects in
heterozygotes and azoospermia in homozygotes. EMBO Mol Med (2017) 9:1132–49.
doi: 10.15252/emmm.201607461

49. Thelie A, Rehault-Godbert S, Poirier JC, Govoroun M, Fouchecourt S, Blesbois
E. The seminal acrosin-inhibitor ClTI1/SPINK2 is a fertility-associated marker in the
chicken. Mol Reprod Dev (2019) 86:762–75. doi: 10.1002/mrd.23153

50. Consortium GT. Human genomics. the genotype-tissue expression (GTEx) pilot
analysis: multitissue gene regulation in humans. Science (2015) 348:648–60.
doi: 10.1126/science.1262110

51. Yusuf IH, Garrett AM, MacLaren RE, Charbel Issa P. Retinal cadherins and the
retinal cadherinopathies: Current concepts and future directions. Prog Retin Eye Res
(2022) 90:101038. doi: 10.1016/j.preteyeres.2021.101038

52. Peng H, Jiang X, Chen Y, Sojka DK, Wei H, Gao X, et al. Liver-resident NK cells
confer adaptive immunity in skin-contact inflammation. J Clin Invest (2013) 123:1444–
56. doi: 10.1172/JCI66381

53. Fu B, Zhou Y, Ni X, Tong X, Xu X, Dong Z, et al. Natural killer cells promote
fetal development through the secretion of growth-promoting factors. Immun (2017)
47:1100–13 e6. doi: 10.1016/j.immuni.2017.11.018

54. Ravichandran R, Kodali K, Peng J, Potts PR. Regulation of MAGE-A3/6 by the
CRL4-DCAF12 ubiquitin ligase and nutrient availability. EMBO Rep (2019) 20:e47352.
doi: 10.15252/embr.201847352

55. Lidak T, Baloghova N, Korinek V, Sedlacek R, Balounova J, Kasparek P, et al. CRL4-
DCAF12 ubiquitin ligase controls MOV10 RNA helicase during spermatogenesis and T cell
activation. Int J Mol Sci (2021) 22(10):5394. doi: 10.3390/ijms22105394

56. Hwangbo DS, Biteau B, Rath S, Kim J, Jasper H. Control of apoptosis by
drosophila DCAF12. Dev Biol (2016) 413:50–9. doi: 10.1016/j.ydbio.2016.03.003

57. Bard J, Rhee SY, Ashburner M. An ontology for cell types. Genome Biol (2005) 6:
R21. doi: 10.1186/gb-2005-6-2-r21

58. Osumi-Sutherland D, Xu C, Keays M, Levine AP, Kharchenko PV, Regev A,
et al. Cell type ontologies of the human cell atlas. Nat Cell Biol (2021) 23:1129–35.
doi: 10.1038/s41556-021-00787-7

59. Wang SR, Zhong N, Zhang XM, Zhao ZB, Balderas R, Li L, et al. OMIP 071: A
31-parameter flow cytometry panel for in-depth immunophenotyping of human T-cell
subsets using surface markers. Cytometry Part A: J Int Soc Analytical Cytol (2021)
99:273–7. doi: 10.1002/cyto.a.24272

60. Chen W, Zhao Y, Chen X, Yang Z, Xu X, Bi Y, et al. A multicenter study
benchmarking single-cell RNA sequencing technologies using reference samples. Nat
Biotechnol (2021) 39:1103–14. doi: 10.1038/s41587-020-00748-9

61. Cao Y, Kitanovski S, Kuppers R, Hoffmann D. UMI or not UMI, that is the
question for scRNA-seq zero-inflation. Nat Biotechnol (2021) 39:158–9. doi: 10.1038/
s41587-020-00810-6

62. Qi H, Song S, Wang P. ImmuMethy, a database of DNAmethylation plasticity at
a single cytosine resolution in human blood and immune cells. Database (Oxford)
(2022) 2022:baac020. doi: 10.1093/database/baac020
frontiersin.org

https://doi.org/10.1093/nar/gku980
https://doi.org/10.1093/nar/gku980
https://doi.org/10.1093/nar/gkr854
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1038/s41467-021-25246-7
https://doi.org/10.1038/s41590-020-0762-x
https://doi.org/10.1093/nar/gkq1237
https://doi.org/10.1093/nar/gkac194
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/bioinformatics/btab503
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/s41467-017-01867-9
https://doi.org/10.1038/s41467-017-01867-9
https://doi.org/10.1038/s41467-017-01728-5
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41592-018-0033-z
https://doi.org/10.1016/0003-9861(89)90107-0
https://doi.org/10.1177/38.12.2254650
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1126/science.aah4573
https://doi.org/10.1006/excr.2000.4857
https://doi.org/10.1074/jbc.M410175200
https://doi.org/10.1210/en.2016-1746
https://doi.org/10.26508/lsa.202000917
https://doi.org/10.26508/lsa.202000917
https://doi.org/10.1038/s41586-018-0698-6
https://doi.org/10.15252/emmm.201607461
https://doi.org/10.1002/mrd.23153
https://doi.org/10.1126/science.1262110
https://doi.org/10.1016/j.preteyeres.2021.101038
https://doi.org/10.1172/JCI66381
https://doi.org/10.1016/j.immuni.2017.11.018
https://doi.org/10.15252/embr.201847352
https://doi.org/10.3390/ijms22105394
https://doi.org/10.1016/j.ydbio.2016.03.003
https://doi.org/10.1186/gb-2005-6-2-r21
https://doi.org/10.1038/s41556-021-00787-7
https://doi.org/10.1002/cyto.a.24272
https://doi.org/10.1038/s41587-020-00748-9
https://doi.org/10.1038/s41587-020-00810-6
https://doi.org/10.1038/s41587-020-00810-6
https://doi.org/10.1093/database/baac020
https://doi.org/10.3389/fimmu.2023.1128423
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	A theoretical framework of immune cell phenotypic classification and discovery
	Introduction
	Materials and methods
	Datasets and bulk transcriptomic data analysis
	Calculation of absolute gene plasticity score
	Collection of known immunophenotypes and marker gene annotation
	Functional enrichment analysis of gene sets
	Virtual sorting analysis
	Coexistence and mutually exclusive rate analysis
	Single-cell RNA-Seq analysis
	Isolation of human peripheral blood mononuclear cells
	Flow cytometry

	Results
	A proposed model for phenotypic classification of immune cells based on gene plasticity
	Genes show generally high plasticity revealed by either bulk RNA sequencing or microarray data
	Highly plastic genes play an important role in defining immune cell subsets and maintaining immune cell phenotypes
	Known functional subsets are compatible with the gene plasticity model and can be further subdivided
	Loss of phenotype accompanies the gain of phenotype
	Single-cell transcriptome combined with gene plasticity analysis facilitates the discovery of novel functional subsets of immune cells

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


