
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Alan Landay,
Rush University, United States

REVIEWED BY

James Moy,
Rush University, United States
Sara Gianella Weibel,
University of California, San Diego,
United States

*CORRESPONDENCE

Hector Bonilla

Hbonilla@Stanford.edu

SPECIALTY SECTION

This article was submitted to
Viral Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 22 December 2022
ACCEPTED 06 February 2023

PUBLISHED 09 March 2023

CITATION

Bonilla H, Peluso MJ, Rodgers K, Aberg JA,
Patterson TF, Tamburro R, Baizer L,
Goldman JD, Rouphael N, Deitchman A,
Fine J, Fontelo P, Kim AY, Shaw G,
Stratford J, Ceger P, Costantine MM,
Fisher L, O’Brien L, Maughan C,
Quigley JG, Gabbay V, Mohandas S,
Williams D and McComsey GA (2023)
Therapeutic trials for long COVID-19: A call
to action from the interventions taskforce
of the RECOVER initiative.
Front. Immunol. 14:1129459.
doi: 10.3389/fimmu.2023.1129459

COPYRIGHT

© 2023 Bonilla, Peluso, Rodgers, Aberg,
Patterson, Tamburro, Baizer, Goldman,
Rouphael, Deitchman, Fine, Fontelo, Kim,
Shaw, Stratford, Ceger, Costantine, Fisher,
O’Brien, Maughan, Quigley, Gabbay,
Mohandas, Williams and McComsey. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Review

PUBLISHED 09 March 2023

DOI 10.3389/fimmu.2023.1129459
Therapeutic trials for long
COVID-19: A call to action from
the interventions taskforce of
the RECOVER initiative

Hector Bonilla1*, Michael J. Peluso2, Kathleen Rodgers3,
Judith A. Aberg4, Thomas F. Patterson5, Robert Tamburro6,
Lawrence Baizer7, Jason D. Goldman8,9, Nadine Rouphael10,
Amelia Deitchman11, Jeffrey Fine12, Paul Fontelo13,
Arthur Y. Kim14, Gwendolyn Shaw15, Jeran Stratford15,
Patricia Ceger15, Maged M. Costantine16, Liza Fisher17,
Lisa O’Brien18, Christine Maughan18, John G. Quigley19,
Vilma Gabbay20, Sindhu Mohandas21, David Williams22

and Grace A. McComsey23 on behalf of the
RECOVER Consortium
1Department of Medicine and Infectious Diseases, Stanford University, Palo Alto, CA, United States,
2Department of Medicine and Infectious Diseases, University of California, San Francisco, San
Francisco, CA, United States, 3Center for Innovations in Brain Science, University of Arizona, Tucson,
AZ, United States, 4Department of Medicine, Infectious Diseases, Icahn School of Medicine at Mount
Sinai, Chief, Division of Infectious Disease, New York, NY, United States, 5Department of Medicine,
Infectious Diseases, The University of Texas Health Science Center at San Antonio, San Antonio,
TX, United States, 6Division of Intramural Research, National Institute of Health, Bethesda,
MD, United States, 7National Heart Lung and Blood Institute, Division of Lung Diseases, National
Institutes of Health, Bethesda, MD, United States, 8Department of Medicine, Organ Transplant and
Liver Center, Swedish Medical Center, Seattle, WA, United States, 9Division of Allergy and Infectious
Diseases, University of Washington, Seattle, WA, United States, 10Department of Medicine, Division of
Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States, 11Department of
Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, United States,
12Department of Rehabilitation Medicine at New York University (NYU) Grossman School of Medicine,
Physical Medicine and Rehabilitation Service, New York University (NYU), New York University
Medical Center, New York, NY, United States, 13Applied Clinical Informatics Branch, National Library
of Medicine, National Institutes of Health, Bethesda, MD, United States, 14Department of Medicine at
Harvard Medical School, Division of Infectious Disease, Boston, MA, United States, 15Research
Triangle Institute (RTI), International, Durham, NC, United States, 16Department of Obstetrics and
Gynecology, The Ohio State University, Columbus, OH, United States, 17Long COVID Families,
Houston, TX, United States, 18Utah Covid-19 Long Haulers, Salt Lake City, UT, United States,
19Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States, 20Department
of Medicine, Albert Einstein College of Medicine, New York, NY, United States, 21Department of
Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States,
22Department of Medicine, University of Michigan, Ann Arbor, MI, United States, 23Department of
Pediatrics and Medicine, Case Western Reserve University, Cleveland, OH, United States
Although most individuals recover from acute SARS-CoV-2 infection, a significant

number continue to suffer from Post-Acute Sequelae of SARS-CoV-2 (PASC),

including the unexplained symptoms that are frequently referred to as long COVID,

which could last for weeks, months, or even years after the acute phase of illness. The

National Institutes of Health is currently funding large multi-center research programs

as part of its Researching COVID to Enhance Recover (RECOVER) initiative to

understand why some individuals do not recover fully from COVID-19. Several

ongoing pathobiology studies have provided clues to potential mechanisms
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contributing to this condition. These include persistence of SARS-CoV-2 antigen and/

or genetic material, immune dysregulation, reactivation of other latent viral infections,

microvascular dysfunction, and gut dysbiosis, among others. Although our

understanding of the causes of long COVID remains incomplete, these early

pathophysiologic studies suggest biological pathways that could be targeted in

therapeutic trials that aim to ameliorate symptoms. Repurposed medicines and

novel therapeutics deserve formal testing in clinical trial settings prior to adoption.

While we endorse clinical trials, especially those that prioritize inclusion of the diverse

populations most affected by COVID-19 and long COVID, we discourage off-label

experimentation in uncontrolled and/or unsupervised settings. Here, we review

ongoing, planned, and potential future therapeutic interventions for long COVID

based on the current understanding of the pathobiological processes underlying

this condition. We focus on clinical, pharmacological, and feasibility data, with the goal

of informing future interventional research studies.
KEYWORDS

post-acute sequela of SARS-CoV-2 (PASC), long COVID, SARS- CoV-2, long haulers,
treatment, clinical trials, recover
Background

While most people fully recover within weeks of SARS-CoV-2

infection, a subset of individuals experience symptoms that persist

well beyond the acute period (1). These symptoms can be debilitating,

interfering with return to usual activities and impacting quality of

life. While efforts to quantify the scale of the problem are ongoing,

there is a growing consensus that post-COVID conditions,

collectively known as Post-Acute Sequelae of SARS-CoV-2 infection

(PASC), including the unexplained symptoms of long COVID,

represent a substantial public health concern. However, there is

currently no standard of care for long COVID and no agreed upon

treatment. In this article, we review the current state of long COVID

management with a view toward therapies with promising early data.

Selected studies of pharmaceutical interventions are currently listed in

ClinicalTrials.gov* is presented in Table 1. We focus on the biological

mechanisms that have been identified as potential drivers of

this condition.
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Case definitions, epidemiology, and
clinical features

Long COVID is increasingly recognized even in people who

experience asymptomatic or mild SARS-CoV-2 infection (2). The U.S.

Centers for Disease Control and Prevention (CDC) defines long COVID

(which they refer to as “post-COVID conditions”) as symptoms

persisting more than 28 days after the initial SARS-CoV-2 infection

(3), while the U.K. National Institute for Health and Care Excellence

(NICE) (4) and the World Health Organization (WHO) require

symptoms to have persisted greater than 12 weeks after the initial

infection (5). The American Academy of Physical Medicine and

Rehabilitation (AAPM&R) estimates that there are more than 29

million people suffering from long COVID in the US as of December

2022 (6). The overall global prevalence of long COVID is estimated at

43% of the acute cases (hospitalized 54% and non-hospitalized 36%) (7).

Recent data from the CDC estimate that 7.5% (over 24 million people) of

the adult population has long COVID symptoms. In a meta-analysis

which found that fatigue/weakness, myalgia/arthralgia, depression,

anxiety, memory loss, concentration difficulties, dyspnea, and

insomnia, were the most prevalent symptoms (8, 9) (Figure 1), and

that the prevalence of long COVID is three times higher among 50-59

year-olds than over-80-year-olds (10). Even if the prevalence of

debilitating symptoms is low, the overall health burden is large given

the scale of the pandemic.

While the clinical features of long COVID and epidemiologic

risk factors have been described over the last two years, the

underlying biological mechanisms remain elusive. Several

hypotheses have been proposed. These include persistence of

SARS-CoV-2 reservoirs, presence of microthrombi, induction of

autoantibodies, hyperreactive immune activation, reactivation of
frontiersin.org
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other latent viral coinfections such as Epstein-Barr Virus (EBV),

mitochondrial dysfunction, and gut dysfunction/dysbiosis (11).

Several of these processes may lead to sustained chronic

inflammation driving end-organ disease. Importantly, different

clinical phenotypes of long COVID may be driven by different

mechanisms, and more than one mechanism may contribute to a

particular patient’s condition.
Current state of long COVID
management and potential
therapeutic approaches

Currently management of long COVID is focused exclusively on

symptomatic treatment, and there is no single acceptable approach.

While symptomatic management may benefit patients in the short-

term, we believe there is an urgent need to identify treatments that

target one or more of the aforementioned pathologic mechanisms

(12) in order to better understand the biology, alleviate symptoms,

reduce morbidity, and return individuals toward their pre-COVID

health. In addition, it is important to identify to Identify biomarkers

that can help facilitate development and implementation of

therapeutic interventions and monitor the effects of an intervention.
Frontiers in Immunology 03
The current state of evidence for various interventions is outlined

below. We acknowledge that much of this evidence is derived from

small and uncontrolled investigations, thus limiting the ability to

evaluate changes that might have occurred over time in the absence of

an intervention. While we do not endorse any specific strategy, our

goal is to summarize the current state of the science as a call for urgent

and efficient research to help the millions who continue to suffer from

long COVID around the world.
Prevention of long COVID

As of October 2022, two COVID-19 vaccines using novel mRNA

technology have been approved by the U.S. Food and Drug

Administration (FDA): BNT162b2 (Pfizer/BioNTech), and mRNA-

1273 (Moderna) and two have been authorized for emergency use

including an adenovirus vector vaccine (Janssen), and a protein

subunit vaccine (Novavax) (13). These vaccines are safe and

effective at protecting people from severe disease, including

hospitalizations and deaths (14–16).

There is mounting evidence suggesting a protective effect of

vaccination on the incidence of long COVID. Using the TriNetX

Research Network platform including 1,578,719 individuals in the
TABLE 1 Selected pharmaceutical interventions currently listed in ClinicalTrials.gov*.

Drug Drug Class Proposed Mechanism for PASC NCT
Number

Antiviral

Favipiravir SARS-CoV-2 RNA-dependent RNA polymerase inhibitor Viral clearance or reduction in
inflammation

NCT04448119

Nirmatrelvir/ritonavir (Paxlovid) Protease inhibitor Viral clearance or reduction in
inflammation

NCT05595369
NCT05576662

Remdesivir SARS-CoV-2 RNA-dependent RNA polymerase inhibitor Viral clearance NCT04978259

Cardiac Agents

Ivabradine hyperpolarization-activated cyclic nucleotide-gated (HCN) channel
blocker

Treat postural orthostatic tachycardia
syndrome

NCT05481177

Metoprolol succinate Beta-1 antagonist Improve cardiac function NCT05096884

Antiinflammatory agents

Cannabinoid containing
formulations

Cannabinoids Antiinflammatory NCT04997395
NCT05467904

Fluvoxamine selective serotonin reuptake inhibitor (SSRI) Improve parosmia NCT05216614

Ibudilast Phosphodiesterase Inhibitor Block Inflammatory pathways NCT05513560

Imatinib Kinase inhibitor Antiinflammatory NCT05220280

Infliximab TNF-alpha inhibitor Antiinflammatory NCT05220280

Low Dose Naltrexone Opioid antagonist Antiinflammatory NCT04604704
NCT05430152

Pentoxifylline Xanthine derivative
Hemorrheologic Agent

Antiinflammatory/immunomodulator
Vasodilator

NCT05513560

Vitamin D Dietary Supplement Treat post-COVID Vitamin D deficiency NCT05633472

Respiratory Agents

(Continued)
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USA with confirmed COVID-19, researchers showed that COVID-19

vaccination prevented the occurrence of PASC (17). At 90 days

following COVID-19 diagnosis, the incidence of long COVID was

lower in the vaccinated cohort than in a propensity score-matched

unvaccinated cohort with relative risks of hypertension 0.33 (95%

confidence interval [CI], 0.26-0.42), diabetes 0.28 (95% CI, 0.20-0.38),

heart disease 0.35 (95% CI, 0.29-0.44), and death 0.21 (95% CI, 0.16-

0.27). However, it is clear that SARS-CoV-2 vaccination does not

completely eliminate the incidence of long COVID, as a significant
Frontiers in Immunology 04
proportion of breakthrough infections remain associated with this

condition (18).

Another major question is whether treatment during the acute

phase of infection with COVID-19 reduces the risk of PASC. Data not

yet peer-reviewed from the Veterans Affairs database shows that

nirmatrelvir-ritonavir use during the acute phase is associated with a

26% reduction in the risk of developing PASC (19), suggesting that

early antiviral treatment might be of benefit. Notably, the data on

remdesivir have been less consistent (20, 21). While the focus of this
FIGURE 1

Most common symptoms reported in long COVID population.
TABLE 1 Continued

Drug Drug Class Proposed Mechanism for PASC NCT
Number

LYT-100 (deupirfenidone) Antifibrotic Antifibrotic/antiinflammatory NCT04652518

Montelukast leukotriene receptor antagonists Improve respiratory PASC symptoms NCT04695704

S-1226 bronchodilator Improve respiratory PASC symptoms NCT04949386

Other

AXA1125 Endogenous metabolic modulator Improve muscle function NCT05152849

Lithium Antimanic agent Improve fatigue and brain fog NCT05618587

Pimozide Dopamine receptor antagonist Treat tinnitus NCT05507372

RSLV-132 RNase-Fc fusion protein Lessen fatigue NCT04944121

Somatropin Growth hormone Resolve associated hormone secretion
disorder

NCT03554265

Temelimab Monoclonal Antibody Improve cognitive functioning NCT05497089

TNX-102 (cyclobenzaprine) Muscle relaxant Pain NCT05472090

Vortioxetine selective serotonin reuptake inhibitor (SSRI) Improve cognitive functioning NCT05047952
*Search done on 12/02/2022. This list is not all inclusive and excludes non pharmacological interventions (e.g., physical or cognitive therapy, supplements).
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article is on the management of established long COVID, determining

whether treatment during the acute phase of infection impacts the

risk of developing long COVID will be important in ongoing efforts
Persistence of viral genetic material
and/or antigen

The rationale for the use of antivirals for long COVID treatment is

based on evidence suggesting that SARS-CoV-2 may reside in select

anatomical reservoirs beyond the initial acute phase, and as such

contribute to ongoing inflammation and organ injury. Several studies

identified persistence of SARS-CoV-2 genetic material during the post-

acute phase. One study described the persistence of SARS-CoV-2 viral

RNA shedding for up to 150 days in the upper respiratory tract despite

antiviral therapies, with amino acid changes predominantly in the spike

gene and the receptor-binding domain leading to viral evolution (22).

Another study of 29 patients with long COVID who reported fatigue,

muscle pain, dyspnea, inappropriate tachycardia, and low-grade fever

found that 13 (45%) had positive plasma RT-PCR results and 51% were

positive in at least one RT-PCR sample (plasma, urine, or stool) (23).

Another showed that SARS-CoV-2 can be detected in the gut and in the

stool for 126 days (24, 25). Other cohorts have identified SARS-CoV-2

proteins during the post-acute phase. For example, a study of individuals

with long COVID neuropsychiatric symptoms found both the S1

component of spike and nucleocapsid in neuronal- and astrocytic-

derived exosomes (26). In two different cohorts of long COVID

patients, SARS-CoV-2 antigenemia was detected in approximately 65%

up to 12 months after diagnosis (27, 28). SARS-CoV-2 persistence has

also been demonstrated by the presence of genomic RNA, subgenomic

RNA, and viral proteins in specific anatomical sites (29, 30) supporting

the presence of viral reservoirs in extrapulmonary compartments (24, 30,

31). For example, in one study of autopsy specimens, investigators

detected SARS-CoV-2 RNA in multiple anatomical sites including the

brain, muscle, gut, and lungs in persons initially diagnosed up to 230 days

prior to death (30, 32). These sites were associated with increased

inflammatory changes and cytopathological effects. Prolonged

gastrointestinal viral shedding for up to seven months, in

immunocompetent hosts, and the persistence of SARS-CoV-2 proteins

in small and large intestinal mucosal cells correlated with long COVID

(24, 25). Although ongoing active viral replication has yet to be

confirmed, the growing evidence of persistent antigen and genetic

material for months after infection identified in multiple cohorts using

multiple mechanisms (27, 28), suggests that the framework that SARS-

CoV-2 is a time-limited infection might not be entirely correct.

Although the biological importance of these observations is not

yet clear, it remains possible that viral persistence may be an

important factor in at least a subset of long COVID cases. An

important related question is whether lingering virus directly drives

the illness in people experiencing long COVID, or if it induces a

dysregulated immune system characterized by heightened release of

proinflammatory cytokines that lead to chronic low-grade

inflammation and multiorgan symptomatology. This latter

mechanism resembles our current understanding of the chronic

heightened inflammation seen with chronic HIV infection, which

drives several HIV-associated comorbidities (33). For example, people

with HIV, even those on suppressive antiretroviral medications,
Frontiers in Immunology 05
experience ongoing immune activation driven in part by viral

persistence in immune privileged sites such as the lymph node (34–

36). Over years to decades, this chronic state of immune activation is

associated with the acceleration of atherosclerosis, a higher incidence

of cardiovascular and pulmonary events, and mild neurocognitive

impairment (37, 38). These immunologic complications remain a

challenge even in the era of widely available antiretroviral therapy.

Similarly, cytomegalovirus infection has broad immunologic effects,

including the promotion of immunosenescence and induction of a

chronic proinflammatory state (39), and has been associated with

cardiovascular disease (40). Other viruses previously thought to be

limited to acute illness, including Ebola virus, have been shown to

persist in immune privileged sites and cause chronic infection and

inflammation (41), providing a framework for persistence that could

be evaluated in SARS-CoV-2 infection

While data on the use of antivirals in established long COVID are

limited, they support the observation that viral persistence may

contribute to some cases of long COVID. For example, there are

anecdotal reports of patients whose long COVID symptoms

improved following nirmatrelvir-ritonavir administration (42, 43),

highlighting the need to study this antiviral agent in controlled and

well-designed clinical trials. Two such studies are now underway,

evaluating a 15-day course of nirmatrelvir-ritonavir versus placebo in

reducing symptom severity in participants with long COVID (44, 45).

We believe that studies of antivirals are warranted, and that the sum

of the biomarker data, data from treatment during the acute period,

and case reports warrant further study of this drug class. This might

include currently available antivirals, such as molnupiravir or

remdesivir (46, 47), but other agents that have recently been

approved in other settings such as ensitrelvir (48) or are under

development, e.g. GS441525 (49), could also be considered.

Ultimately, the route of administration, side effect profile, and

drug-drug interactions will decide which antiviral, if efficacious, is

optimal. Monoclonal antibodies may also be worthy of study;

however no such agents are currently authorized for treatment of

COVID-19 in the United States, due to decreased efficacy in vitro

against emerging circulating variants (50).
Therapeutic vaccination for established
long COVID

In addition to preventing long COVID, evidence suggests some

individuals with established long COVID may benefit from SARS-

CoV-2 vaccination. In a meta-analysis of 12 studies evaluating the

effects of vaccination on pre-existing long COVID symptoms in

32,726 individuals of whom 8,667 had preexisting signs and

symptoms of long COVID. Most of the studies reported

improvement in symptoms after one dose, although some reported

no benefit or even worsening symptoms (51). Similar observations

were noted in other cohorts (52, 53).

In a UK cohort survey of 28,356 participants who previously

tested positive for SARS-CoV-2 infection and then received at least

one dose of a COVID-19 vaccine, 6629 (23.4%) participants reported

long COVID symptoms (presence of symptoms at least 12 weeks after

infection) of any severity during follow-up; the first vaccine dose was

associated with an initial 12.8% decrease (95% CI −18.6% to −6.6%,
frontiersin.org
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P<0.001) in the odds of long COVID, with subsequent data

compatible with both increases and decreases in the trajectory

(0.3% per week, 95% CI −0.6% to 1.2% per week, P=0.51). A

second dose was associated with an initial 8.8% decrease (95% CI

−14.1% to −3.1%, P=0.003) in the odds of long COVID, with a

subsequent decrease by 0.8% per week (−1.2% to −0.4% per week,

P<0.001). While this evidence suggests sustained improvement, the

median duration was only 67 days following the second dose

suggesting longer follow-up (54).

Postulated hypotheses of the efficacy of the COVID vaccine in

established long COVID include the potential correction of

dysregulated immune or inflammatory responses or the possible

elimination of persisting viruses or viral remnants of SARS-CoV-2,

as outlined above (55). Prospective and adequately powered

randomized trials are necessary to clarify whether therapeutic

immunization will benefit patients with long COVID, and if so,

through what mechanism.
Dysregulation of immune system

Acute SARS-CoV-2 infection is characterized by substantial

immune dysregulation, particularly among severe cases, and anti-

inflammatory therapy is of benefit in individuals who meet criteria for

severe disease (56, 57). Multiple studies have demonstrated that

SARS-CoV-2 can result in immunologic perturbations that extend

beyond the acute phase of infection (58). Early studies of convalescent

plasma donors showed persistence of immune activation in people

with prior COVID-19 compared with historical donors (59), and

early studies of long COVID showed that elevations in certain

biomarkers (e.g., IL-6, TNF-a) during early COVID-19 recovery (1-

2 months) were associated with the presence of long COVID

symptoms at 4 months (60, 61). Additional studies have shown that

individuals with long COVID had highly activated innate immune

cells, lack naive T and B cells, and showed elevated expression of type-

I IFN (IFN-b) and type-III IFN (IFN-l1) that remained persistently

high at 8 months after infection. A classifier based on cytokine profile

that measures IFN-b, PTX3, IFN-g, IFN-l2/3 and IL-6 predicted long
COVID with 78.5–81.6% accuracy (62). Elevations in levels of IL-6,

TNF-alpha, and IL-1B have been consistently reported across

multiple studies (63–65), suggesting that these might serve as

biomarkers for ongoing disease activity in people with long COVID

and that the study of agents that could reduce the levels of these

cytokines is warranted.

Da ta in mur ine mode l s demons t ra t ed tha t mic e ,

given coronavirus nasally to mimic a mild infection, develop

inflammation in the brain, as well as loss of myelin (66). This

model could represent a model of immune dysregulation due to

SARS-CoV-2 infection and may allow testing of behavioral and

pharmacologic interventions. Studies evaluating anti-inflammatory

and immunomodulatory drugs to treat acute SARS-Cov-2 infection

have shown benefit, however data is limited for in long COVID (67).

The glucocorticoid receptor acts as a transcription regulatory

factor and represses the expression of inflammatory cytokines,

chemokines, and prostaglandins, suppresses the antigen-stimulated

inflammation mediated by macrophages, dendritic cells, and
Frontiers in Immunology 06
epithelial cells, and impairs cytotoxic immune responses by

downregulating interferon-g production and inhibiting the

development of type-1 helper T cells, CD8+ T cells, and natural

killer cells. Thus, glucocorticoids regulate the immune balance

between antigen response and inflammation in steady-state and

stress conditions (68). The RECOVERY Collaborative Group

demonstrated that in patients hospitalized with COVID-19, the use

of dexamethasone resulted in lower 28-day mortality among those

who were receiving either invasive mechanical ventilation or oxygen

alone (69). In a case-control observational study, patients who

received oral dexamethasone for hospitalized COVID-19 were also

less likely to experience persistent symptoms at 8-month follow-up

(70). In a small subset of patients with persistent interstitial lung

disease post SARS-CoV-2 infection, treatment with prednisolone was

associated with improvement of symptoms, radiological

abnormalities, and measures on lung spirometry (71). In a study of

24 patients with abnormal chest CT scans as well as resting hypoxia or

exertional desaturation, treatment with deflazacort was associated

with decline in breathlessness, tachypnea and hypoxia at rest in

patients treated in this uncontrolled case-series (72). Decreased

levels of cortisol and cortisone have been observed to be associated

with PASC (73). Further data also suggest decreased levels of cortisol

among individuals with long COVID (74), but this finding remains to

be replicated in other cohorts. Long term use of glucocorticoids

results in adverse effects on muscle and bone, increase the risk of

osteoporosis and sarcopenia, two severe complications of long

COVID (75). These therapies should be investigated in randomized

controlled studies, especially given the complicated risk-benefit

calculation with long-term use.

There are many other anti-inflammatory interventions that will

likely be pursued in future monotherapy and combinatory studies,

and these anti-inflammatory agents could target general

inflammatory pathways or more specific pathways thought to be

important in acute SARS-CoV-2 infection, such as JAK inhibitors, IL-

6- or TNF- blockers (57, 76). It is important to note that while

targeting the IL-6 pathway has shown clinical benefit in acute

COVID-19, and this pathway remains aberrant in long COVID,

evidence in favor of biological immunomodulatory therapies such

as tocilizumab is limited to a case report (77). As for all

immunomodulatory agents, the ease of administration and toxicity

profile should be carefully considered in the design of future clinical

trials. A full review of the scope of immune system dysregulation and

all possible targeting immunomodulatory therapies is beyond the

scope of this review.

We believe that such studies testing anti-inflammatory and

immunomodulatory therapies are justified based on the current

understanding of long COVID pathogenesis. In the meantime,

already-available agents with potential anti-inflammatory properties

are being repurposed for long COVID. In open-label single-site

studies, cohorts treated with low dose naltrexone and low dose

aripiprazole have demonstrated clinical benefit among patients with

myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) (77–

79); these medications have subsequently been used off-label for the

treatment of long COVID. These agents may represent potential

therapies for long COVID due to their anti-inflammatory and

immunomodulatory effects, along with a possible impact on
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amyloid deposition and thrombosis. They are relatively safe, orally

active, and of low cost, and therefore, good candidates to be tested as

part of therapeutic trials for long COVID.

Low-dose Naltrexone (LDN) is commonly used off-label for

people with ME/CFS, a condition characterized by debilitating

fatigue and exertional intolerance that has significant clinical

overlap with long COVID (78). From a mechanistic perspective,

one model of LDN’s efficacy is through suppressive effects on

microglia cells of the central nervous system and attenuation of

proinflammatory cytokines (80). Microglia are resident

macrophages in the brain and spinal cord and normally exist in a

resting state but once activated produce proinflammatory factors that

interact with neurons to cause hyperalgesia and “sickness response

symptoms” such as fatigue, malaise, hypoactivity, sleep changes, etc.,

which have been demonstrated in animal models (80, 81); there is

intense interest in the role that these and other macrophage-derived

cells might play in long COVID, particularly in neurocognitive

symptoms (82). Additionally, data suggest that the benefits of LDN

treatment in ME/CFS are mediated by its regulatory role involving the

Transient Receptor Potential Channel Melastatin 3 (83). Other

known effects of naltrexone are on Toll-like receptor 4 with

downstream effects of re-establishing natural killer cell activation

and reducing IL-6, TNF-a and interferon-b levels, pathways that have
also been implicated in long COVID (84, 85). Another related

mechanistic pathway hypothesized is the possibility of LDN to

potentially prevent and treat the immunothrombosis of SARS-CoV-

2 and studies are underway to address this question in acute COVID-

19 (86). A recently published report evaluated the use of LDN in 38

patients with long COVID, with no control group. In the 36 patients

that completed two months of treatment, six of seven evaluated

parameters improved over time, with the largest improvements in

reduction in pain (79). However, since long COVID symptoms often

improve over time, this single-arm study design is insufficient to

recommend LDN without further data. A larger study of LDN in 160

participants in a randomized parallel group double-blinded placebo-

controlled trial is underway (87).

Aripiprazole is a second-generation antipsychotic agent that was

FDA approved in 2002 for use in adult patients with schizophrenia. It

has a high affinity for dopamine D2 and D3 receptors as well as for

serotonin receptors (88, 89). Besides antipsychotic and antidepressant

activities, other pleiotropic properties have been attributed to

aripiprazole such as anti-inflammatory actions by decreasing

inflammatory and promoting anti-inflammatory cytokines,

immunomodulatory effects by a reduction in microglial cell

activation and modulation of genes that regulate the immune system,

and possible effects on genes implicated in Alzheimer’s disease (90–95).

In a retrospective study of 101 patients withME/CFS, 75 (74%) patients

taking low-dose aripiprazole experienced an improvement in one or

more symptom categories: fatigue, brain fog, unrefreshing sleep, and

frequency of post-exertional malaise (PEM) episodes, or “crashes” (77).

These symptoms are frequently reported in patients with long COVID

(8, 96, 97), and so further study to assess safety, tolerability, and efficacy

in individuals experiencing long COVID are warranted.

Non-pharmacologic approaches are also being pursued for long

COVID-associated inflammation. Acupuncture is known to reduce

inflammation related to disease and pain, reducing both

inflammation and pro-inflammatory cytokines in severe human
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illnesses such as cancer, multiple sclerosis, and dementia, as well as

in allergic respiratory conditions like allergic rhinitis (98). In a

preclinical study on the acute phase of burns in rats, acupuncture

modulated pain and the inflammatory/proinflammatory cytokine

response via the downregulation TLR4 signaling pathway (99, 100).

Acupuncture may reduce inflammation and provide immune

protection via heme catabolism and upregulation of heme

oxygenase-1 (HO-1) gene expression (101, 102). The HO-1-

mediated heme breakdown products (biliverdin, bilirubin and

carbon monoxide) exhibit both anti-oxidative and anti-

inflammatory effects (103). Acupuncture has been recommended as

part of a multidisciplinary team approach for long COVID clinics in

some countries, such as the UK, but not in the US (98, 99). RCTs

should be conducted prior to routinely recommending

this intervention.
Microthrombi and hypercoagulability

Some investigators have reported the formation of microthrombi,

with an increase in a (2)-antiplasmin (a2AP), various fibrinogen

chains, as well as Serum Amyloid A, that were trapped in the

microcirculation (104), among people experiencing long COVID.

Blockage of the microcirculation leads to decreased blood flow,

oxygenation, and impairs nutrition delivery and removal of cellular

waste (104). In a study of 845 South African people with long COVID,

70 were identified as having laboratory markers consistent with

microthrombi (105). A subset of patients (n=24) were treated with

one month of dual antiplatelet therapy (clopidogrel 75mg/aspirin

75mg) once a day, as well as a direct oral anticoagulant (apixiban 5

mg) twice a day. The participants in this small case series (not yet

peer-reviewed) reported relief of symptoms, primarily fatigue, and

biomarker measurements improved including fibrin amyloid

microclots and platelet pathology scores (106). These biomarkers

need further clinical validation, and given significant potential for

harm, anticoagulation or antiplatelet therapies need to be studied in a

RCT. The MICHELLE trial (an open-label, multicenter, randomized,

controlled trial) showed the use of rivaroxaban versus no

anticoagulation for post-discharge thromboprophylaxis after

hospitalization for COVID-19, the thromboprophylaxis with

rivaroxaban for 35 days an improvement in clinical outcomes

(107). If pursued, an ideal clinical trial would restrict this therapy

to individuals who have biomarkers consistent with platelet and/or

clotting dysregulation and strict medical oversight would be necessary

during treatment to mitigate adverse effects, particularly bleeding and

gastric inflammation (108).
Dysbiosis

Changes in the bacterial, fungal, and viral gut microbiome have

been reported as a consequence of SARS-CoV-19 infection (109).

Patients with prolonged symptoms have demonstrated alterations in

the composition of the microbiome with higher levels of

Ruminococcus and Bacteroides and lower levels of Faecalibacterium

(110). The abundance of genera such as Prevotella and Veillonella are

associated with increased inflammation (111). Recently, in a
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prospective study comparing plant-based fiber or fermented foods in

healthy adults, participants consuming a high fermented foods diet

had enhanced microbial diversity and a decrease in selected cytokines,

chemokines, and other inflammatory serum proteins including IL-6,

IL-10, and IL-12b and other inflammatory factors (112). IL-10 is

usually considered to be an anti-inflammatory cytokine. However, in

some circumstances, IL-10 might be a pro-inflammatory cytokine

(113). These results suggest that fermented foods may be powerful

modulators of the human microbiome and immune system axis and

may provide an alternative to treating post-SARS-CoV-19 associated

symptoms. If rigorously studied and demonstrated to be of benefit,

dietary interventions could potential be an innovative management

approach given the relative ease of implementation. In contrast to the

pharmaceutical trial, the dietary clinical trial’s design objective is to

measure the impact on health and disease. Some designs include

feeding studies, randomized clinical trials, and observational studies.

However, nutrition research presents multiple challenges due to the

complexity of food environments and the multiple approaches to data

collection and analysis, which can influence by the self-reported data,

the human nature of the participants, lifestyle, and habits (114, 115).
Reactivation of other latent viral infections

The vast majority of adults (>90%) harbor infection with latent

EBV, a ubiquitous human herpesvirus associated with several post-

viral conditions (116). EBV is associated with autoimmune conditions

(116), and recent studies have demonstrated links to multiple sclerosis

(MS), with a close relationship between EBV seroconversion and

development of multiple sclerosis (117), and molecular mimicry

between anti-EBNA1 antibodies and anti-GlialCAM antibodies

prevalent in MS (118). EBV reactivations may also contribute to

immune dysregulation.

One early study of long COVID made the observation that two-

thirds of individuals experiencing long COVID symptoms

demonstrated EBV early antigen-diffuse (EA-D) IgG positivity,

suggesting reactivation around the time of SARS-CoV-2 infection

(119). More recent efforts demonstrated that the presence of EBV

DNA during the acute phase of COVID-19 predicted the presence of

symptoms 30-60 days later (73). Another recent larger study of

primarily outpatients found that a higher proportion of participants

who experienced long COVID had evidence of high-level EBNA IgG

levels (47% versus 28%; P<0.05); participants with detectable EBV

EA-D IgG responses had a 2.12-fold higher likelihood of post-COVID

fatigue, and participants with high levels of EBV nuclear antigen

(EBNA) IgG levels (>600 U/mL) had a 2.5-fold higher likelihood of

long COVID neurocognitive symptoms (120). These findings are

consistent with other post-COVID cohorts (119), and suggest that

further investigation of the relationship between EBV-related

pathology and long COVID is warranted.

EBV reactivation has also been proposed as a driver of ME/CFS

(121–124). One single-arm, uncontrolled case series showed that 9/12

(75%) persons with ME/CFS after treatment with valganciclovir

experienced symptomatic improvement allowing return to usual

activities; this was sustained off treatment (125). Another

retrospective study showed that 52% of patients receiving daily

valganciclovir experienced >30% improvement in physical and/or
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cognitive function (126). In uncontrolled studies such as these, we

cannot determine what percent would have improved without

treatment. A follow-up randomized study showed improvement in

fatigue and cognitive function; those in the intervention group were

7.4 times more likely to respond in this small study (126).

As a result of these observations, there is now growing interest in

anti-EBV therapies to modulate disease morbidity and improve

symptoms in long COVID. Therapies currently being considered

include antivirals like valganciclovir, a guanosine analog with potent

anti-human herpesvirus activity, including in vitro and in vivo activity

against the lytic phase of EBV that can reduce mucosal shedding of

EBV during treatment (127). Other therapies under consideration are

considerably more complex, including anti-B cell therapeutics (e.g.,

rituxmimab) or CAR-T cells. While few clinical trials addressing these

potential targets are active as of the time of this writing (128, 129),

Bateman Horne Center is running a Phase 2a, open-label trial of

Virios Therapeutics’ IMC-2, a combination of valacyclovir and the

nonsteroidal anti-inflammatory drug celecoxib, for long COVID

symptoms potentially driven by herpesvirus reactivation (130).

Interestingly, despite the associations between latent CMV infection

and chronic immune activation, one recent study found that CMV-

seropositive individuals had a lower odds of certain types of PASC

symptoms, particularly neurocognitive symptoms (131). This pattern was

the opposite of what was seen with evidence of recent EBV reactivation.

The reason for this observation is unclear, but the authors proposed that

it could be related to different immunologic compartmentalization of

each of the latent viruses. For example, they suggested that CMV-

associated immunoregulatory pathways could decrease inflammation

and modulate other potential pathophysiologic mechanisms (e.g.,

autoantibody formation) (132). In addition, they speculated that CMV

seropositivity could be associated with heightened adaptive immune

responses as it is with regard to influenza vaccination (133). More work

will be needed to determine what role, if any, CMV serostatus plays in the

pathogenesis of PASC.
Fibrosis

Residual pulmonary disease is a well described complication of

viral pneumonitis which can lead to fibrosis. Myall and colleagues

reported that 39% of 837 patients still had respiratory symptoms 4

weeks post discharge following SARS-CoV-2 infection (71). Dyspnea

can be secondary to multiple etiologies including alveolar damage

with resultant airway fibrosis, pulmonary thrombosis and

bronchiolitis (134). Nintendanib and pirfenidone are approved for

the treatment of idiopathic pulmonary fibrosis and have both been

proposed as treatment for fibrotic lung disease secondary to COVID-

19 pneumonia (135). A phase 2 placebo-controlled trial of

pirfenidone for post COVID-19 pulmonary fibrosis is ongoing

(136). The PINCER trial compares nintendanib with pirfenindone

in persons with post COVID-19 pulmonary fibrosis (137). Given that

bronchiolitis with air trapping is commonly seen in long COVID

(134, 138), clinical trials of an anti-fibrotic targeted to treat

constrictive bronchiolitis to prevent fibrosis development should be

considered in persons with persistent dyspnea and cough without

radiographic evidence of fibrosis. Enrollment of 168 participants in a

placebo-controlled trial evaluating deupirfenidone (LYT-100) for
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treatment of post acute COVID-19 respiratory complications was

completed July 2022 with results expected early 2023 (139).
Sleep disturbances and post exertional
malaise/fatigue

Long COVID symptoms may include anxiety, depression, brain

fog, and sleep disturbances (140, 141). While sleep disturbances are

common and more recently have been attributed to societal

restrictions during the COVID-19 pandemic, a systematic review

and meta-analysis revealed that over 50% of people who had been

infected with SARS-CoV-2 suffered with sleep disturbances (142).

One small study demonstrated significant sleep impairment four

months after having COVID-19 with an increased prevalence

among those with obstructive sleep apnea (143). Chronotherapy is

an emerging therapeutic in pulmonary and sleep medicine as we

understand how the disruption of circadian rhythm affects cells of

virally infected organs such as the lung and the immune system (144).

Therapies directed at improving sleep and recalibrating circadian

rhythm by light therapy, cognitive behavioral therapy for insomnia

and melatonin are currently being studied for the sleep disturbances

due to the pandemic but have not been initiated yet for long

COVID (145).

Post exertional malaise (PEM), also called “crash,” has been

clinically defined as an increase in fatigue, pain, cognitive

dysfunction, and flu-like illness after physical exertion, mental

activities, or stressful events (146, 147). A recent meta-analysis

found that PEM is 10.4 times more likely to be associated with ME/

CFS (148). Therefore, PEM has been considered the hallmark for

diagnosing ME/CFS (146–148). Some patients with long COVID

experience similar clinical PEM symptoms. In a pre-print manuscript,

investigators described a cohort of 105 patients from the Stanford

long COVID clinic with symptoms greater than six months; they

found that fatigue, PEM, and brain fog were the predominant and

severe symptoms of which 43% were diagnosed with ME/CFS (149).

PEM can be mitigated by energy conservation activities known as

‘pacing’ (resting, decreasing stress or overstimulation) (150). A

supervised activity program may involve brief walking (~5

minutes), stretching/limb and spine active range of motion,

participation in personal or instrumental activities of living, or

reading for 5-10 minutes. The duration of these activities is then

slowly increased. This method may allow careful introduction of

aerobic exercise to prevent deconditioning (cycling, tai chi, yoga or

aquatic exercises). For all patients, the goal of this individualized

activity program is to regain functional independence, resume

participation in life roles, and restore of quality of life (151).
Mitochondrial health

At least one study has identified changes in mitochondrial health

to be associated with long COVID (26). AXA1125 is a mixture of six

amino acids that can increase fatty acid oxidation, ATP production,

ketogenesis, and mitochondrial bioenergetics leading to improved

muscle function. Promising Phase 2a results were announced by the

company Axcella Health in the third quarter of 2022 for its trial of
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AXA1125 which targeted fatigue predominant long COVID (152).

This small randomized, double-blind, placebo-controlled trial showed

significant improvements in fatigue, as measured by the Chalder

Fatigue Questionnaire eleven-item scale and in the six-minute walk

test endpoint (153). However, the study did not show a significant

improvement of mitochondrial function by magnetic resonance

spectroscopy. A phase III study is planned and under development.

A recently conducted RCT of co-enzyme Q for long COVID did not

show an effect (154).
Discussion

Long COVID is now recognized as a major clinical challenge limiting

the return to baseline health of a substantial number of people following

SARS-CoV-2 infection. While clinical trials were rapidly implemented

and conducted to determine the optimal management of acute COVID-

19, therapeutic studies for Long COVID have lagged behind. This has

occurred for a variety of reasons, including delays in the medical

community’s recognition of the clinical significance of the condition as

well as the complex and likely multifactorial nature of its

pathophysiology, which is still being elucidated. We are grateful that

the NIH has made a substantial investment in long COVID and are

hopeful that other funders, including industry and philanthropic

organizations, will follow suit. It is likely that multiple concurrent and

coordinated efforts will be needed to accelerate progress in further

defining and understanding this condition.

Although major efforts are now underway to understand the

biology of long COVID, the current evidence is limited. At the same

time, patients, their clinicians, and their advocates are eager to

identify treatments that can provide symptomatic relief and

perhaps even reverse the underlying pathophysiology of this

condition. The desire to treat and alleviate suffering versus the need

to rigorously test such interventions represents a fundamental tension

for the field. While we can learn from treatment anecdotes, the case

reports, series, and small, uncontrolled studies conducted and

reported to date must be interpreted with great caution, as their

design makes it impossible to discern whether an intervention was

responsible for the clinical changes observed in patients or

participants. This is further complicated by the fact that the natural

history of long COVID is characterized by within-individual

variability in symptoms (which can wax and wane) and by the fact

that individuals experiencing long COVID may improve over time

even in the absence of an intervention.

We recognize that many individuals experiencing this condition are

eager to return to their baseline state of health. Such individuals may

choose to work with their care providers to devise a treatment plan that

makes use of unapproved or off-label therapies after careful consideration

of and counseling regarding the potential risks and benefits. However, it

is our position that it is not currently possible to endorse any particular

treatment approach aside from seeking clinical care where indicated.

Rather, it is our goal to emphasize the urgency for the implementation of

well-designed clinical trials that would serve two purposes: to further

define the pathophysiology of long COVID and to determine the efficacy

and safety of candidate treatments.

There are many important considerations for long COVID clinical

trials. Beyond the intervention to be evaluated, those designing such
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studies must consider whether the study should be focused on one or

more long COVID phenotype or enroll more broadly, what phase after

SARS-CoV-2 infection is the target for intervention (acute, early post-

acute, post-acute), the optimal design and if relevant, randomization

scheme, and the optimal outcomes, which in most cases are likely to

involve a combination of patient-reported outcomes and biological

measurements.While our group has diverse opinions on which types of

studies are optimal and which specific agents should be prioritized, we

believe that a variety of designs could have a role. For example, a small,

proof-of-concept study of an intensive therapy might focus on

biological measurements in a few dozen individuals to further define

the role of a mechanistic pathway, while a large, randomized trial might

seek to determine whether a scalable intervention has an effect on

symptom outcomes in a cohort of hundreds or thousands of volunteers.

Both approaches, and all those in between, potentially have merit. We

believe there is great urgency for these studies to be performed and are

encouraged by the recent or planned launch in the near future of several

clinical trials, including those through the RECOVER initiative.

However, given the complexity of the condition, we believe that

ultimately there will need to be ongoing, concerted efforts between

people experiencing long COVID, regulators, academic and industry

researchers, and funders (including funders outside RECOVER) to get

a greater variety of studies into the clinic in order to obtain the answers

that patients and clinicians are seeking in a reasonable timeline.

While we sought to be comprehensive, this report has several

notable limitations. First, there are numerous mechanisms of long

COVID and it is beyond the scope of this review to exhaustively

review all hypothesized mechanisms in this article. Second, it is

possible that many of the mechanisms we discussed are inter-

related and thus a single intervention may in the end address

several mechanistic pathways. Third, we do not discuss

pathophysiology or interventions in certain subpopulations of

interest, including children and pregnant people. While there may

be overlap with presentations of long COVID in adults, appropriate

management of long COVID in children, including MIS-C, requires

consideration of pathophysiology, biology, pharmacology,

neurocognitive and behavioral development unique to children

(155), which is beyond the scope of this article. Given the paucity

of studies evaluating interventions to help children and adolescents

with long COVID, clinical trials that leverage approved interventions

that pose the sufficient prospect of benefit to justify any associated

risks such as antivirals, vaccines, and monoclonal antibodies as well as

physical rehabilitation and mental health regimens should be

prioritized. Similarly, unique pathophysiology may contribute to

long COVID in pregnant people and there are unique risk and

benefit considerations during the intra- and post-partum periods.

Fourth, we do not consider the costs or complexity of the discussed

interventions, although in general we focused on treatments that we

believe to be generally practical. Fifth, we do not provide a direct

discussion of how these interventions should be prioritized in relation

to one another, as that is beyond the scope of our taskforce’s charge.

Finally, this is a fast-moving field with new observations and data

released on an almost daily basis; such data should be considered in

addition to the content of this article for those pursuing clinical trials.
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Involving patients, caregivers, and community representatives in

intervention research and decision making is crucial. In the instance of

Long COVID we are also faced with a novel condition where treatments

are still being determined. Patients and caregivers offer the unique and

important perspective of living daily with the challenges of Long COVID

and can therefore provide key insight into essential topics such as the

most common and bothersome symptoms, or which treatment outcomes

could offer the best opportunity for improved quality of life. By including

patients, caregivers, and community representatives in as many aspects of

the process as possible we are creating a collaborative environment which

increases the likelihood of better outcomes, strengthens patient trust and

acceptance, and broadens our overall understanding of the condition and

best intervention approaches.

Enrolling a diverse population of patients can ensure adequate

representation and improve access to care for those individuals who

are disproportionately impacted by COVID-19 and may be faced with

limited availability of vaccines and treatments. This ensures a broader

scope of the issue and can even help to uncover hidden disparities or

barriers to care which can further guide the most impactful and

needed interventions for patients. Engaging diverse populations in

research and interventions also expands access to education that can

inform both the patients and providers, creating mutually beneficial

learning opportunities. Inclusivity also builds trust within the patient

and caregiver community, while fostering a sense of belonging that

can deepen patient satisfaction and lead to better health outcomes.
Conclusion

As the COVID-19 pandemic continues, substantial numbers of

individuals will continue to experience long COVID. Given the vast

number of individuals infected by this virus, the magnitude of this health

crisis is easily appreciated. Consequently, it is critical that research extend

beyond the many important and informative epidemiologic studies

describing the extent of the problem to include trials of interventions

to prevent, treat or ameliorate the varied symptoms and diverse

manifestations associated with long COVID. Although the

pathophysiologic basis of long COVID remains incompletely

understood and the clinical spectrum of the condition is quite diverse,

evidenced-based theories have been proposed, providing potential

plausible targets for intervention. This paper describes the early work

assessing several potential therapies aimed at preventing and treating

long COVID and its various manifestations. It is unknown which, if any

of these potential therapies will have an impact alone or in combination

with other interventions on the course of long COVID. Moreover,

different clinical phenotypes of long COVID may be driven by

different mechanisms, and effective therapies may vary from one

patient to the next. However, it is established that such therapies are

needed and more work in this area is necessary. The current data are

limited by the fact that most studies to date are small and uncontrolled,

and therefore limited in their ability to evaluate changes over time that

might have occurred without intervention. This paper highlights the

critical need for timely and efficient research strategies to help the

millions suffering from long COVID around the world.
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