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to clinical strategies
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The high primary resistance incidence and unavoidable secondary resistance are

the major clinical obstacle to lasting long-term benefits in Non-small-cell lung

cancer (NSCLC) patients treated with immunotherapy. The mechanisms of

immunotherapy resistance in NSCLC are complex, mainly involving tumor cells

and tumor microenvironment (TME) infiltrating immune cells, including TAMs, B

cells, NK cells, and T cells. The selection of clinical strategies for NSCLC

progression after immunotherapy resistance should depend on the progressive

mode. The progression pattern of NSCLC patients after immunotherapy

resistance can be divided into oligo-progression and systemic/multiple

progression, which should be considered for further treatment selection. In

the future, it needs to explore how to optimize the combined therapy and

explore strategies to reprogram infiltrating immune cells under various

genetic backgrounds of tumor cells and timely reshape TME during

antitumor treatments.
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Abbreviations: NSCLC, non-small-cell lung cancer; TME, tumor microenvironment; LUSC, lung squamous

cell carcinoma; LUAD, lung adenocarcinoma; PD-1, programmed death protein 1; PD-L1, programmed

death protein ligand 1; CTLA-4, cytotoxic T lymphocyte antigen 4; ICIs, immune checkpoint inhibitors; PD,

progress disease; SD, stable disease; CR, complete response; PR, partial response; CIC, cancer-immunity cycle;

ICD, immunogenic cell death; MSKCC, Memorial Sloan Kettering Cancer Center; PFS, progression-free

survival; ORR, objective response rate; TILs, tumor-infiltrating lymphocytes; HLA-I/MHC-I, Class I human

leukocyte antigen; FN-g, Interferon-gamma; NK, natural killer; DCs, dendritic cells; TAMs, tumor-

associated macrophages.
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1 Introduction

Lung cancer is one of the malignant tumors with the high

incidence rate and mortality in the world (1). Non-small-cell lung

cancer (NSCLC) accounts for 80% of lung cancer, which mainly

includes squamous cell carcinoma (LUSC) and adenocarcinoma

(LUAD) (2). The development of immunotherapy profoundly

initiates a new era of antitumor treatment, and single or

combination immunotherapy has been applicated as the first- and

second-line treatment strategies for NSCLC. Inhibitors against

programmed death protein 1 (PD-1)/its ligand (PD-L1) or

cytotoxic T lymphocyte antigen 4 (CTLA-4) are the most classical

and widely applicated immune checkpoint inhibitors (ICIs).

Although ICIs profoundly improve overall survival in NSCLC

patients with I-IV stages (3–7), there is a non-all-patient response

to immunotherapy. Oncologists and NSCLC patients inevitably face

the challenge of immunotherapy primary-, secondary-resistance,

and progression after treatment discontinuation. As recommended

by the first meeting of the SITC Immunotherapy Resistance

Taskforce, patients with primary resistance showed that the

tumor evaluation after <6 weeks of immunotherapy was progress

disease (PD) or stable disease (SD), while secondary resistance was

defined as that tumor response to immunotherapy reached

complete response (CR), partial response(PR), or SD ≥6 months,

and then PD confirmed by imaging scan (8). Explore resolution

strategies for improving tumor response to immunotherapy will

bring a new leap in NSCLC prognosis. The mechanism of

immunotherapy resistance is complex, dynamic, and

interdependent. A prerequisite for a clinical response to

immunotherapy is a normal cancer-immunity cycle(CIC), which

comprises the release of cancer cell antigen, cancer antigen

presentation by dendritic cells/APCs, priming and activation of

APCs and T cells, trafficking of T cells to tumors, infiltration of T

cells into tumors, recognition of cancer cells by T cells, and

immune-mediated cancer cells killing (9). ICIs application can

block the inhibitory signal of T cell activation, which is only one

step of completed CIC. One or more steps of the CIC are

interrupted to enable tumors to evade immunosurveillance, and

immunotherapy fails to activate effective antitumor immunity (10).

During the CIC process, the regulation in the recruitment and

infiltration of T cells and cancer cell antigen releasement contribute

to the remodeling tumor microenvironment (TME). It also plays a

pivotal role in antitumor therapeutic efficacy, except in affecting

tumor progression (11). TME is a complex and dynamic changed

microenvironment comprising endothelial cells, fibroblasts,

immune cells, etc., infiltrating with cytokines, growth factors,

hormones, extracellular matrix, etc., and nourishing by the

surrounding tumor vascular (11). The TME may dynamically

converse between the immunosuppressive TME and the immune-

active TME. In addition, the inflammatory status, gut microbiome,

diet, etc. of tumor hosts have been demonstrated to be associated

with primary and secondary resistance to ICIs (12). The

immunological condition of hosts also can affect cells within

TME through systemic or local ways (12). Therefore, focusing on

the mechanism and drug of TME modulation may be the

breakthrough point for reversing immunotherapy resistance. In
Frontiers in Immunology 02
this review, we focus on the current clinical predicament of

immunotherapy resistance in NSCLC, the role of CIC, especially

TME, in immunomodulation, and potential strategies to reverse

immunotherapy resistance.
2 The characteristics of
immunotherapy resistance for NSCLC

2.1 Primary resistance to immunotherapy

Phase III randomized trials (CheckMate 017 and CheckMate

057) were designed to compare Nivolumab with chemotherapy in

the second-line treatment of NSCLC patients with progression after

standard first-line treatment (13). The best overall response (BOR)

analysis showed that patients with PD accounted for over 40%, and

these patients could be defined as primary resistance to ICIs (13).

OAK trial also showed that accounting for 44% of NSCLC patients

treated with atezolizumab as second-line treatment developed PD

(14). For ICI alone or combined with another ICI as first-line

treatment, 21%~27% of NSCLC patients have primary resistance to

immunotherapy (15–17). For ICI combined with chemotherapy as

first-line treatment, the incidence of primary resistance to ICIs in

NSCLC patients was around 10% (18–20). As shown in Figure 1, the

incidence of primary resistance to immunotherapy in NSCLC

patients previously treated with standard chemotherapy was

higher than that in NSCLC patients treated with ICIs as first-line

treatment. Moreover, a lower incidence of primary resistance to

ICIs appeared in NSCLC patients treated with immunotherapy plus

chemotherapy. This phenomenon may result from the fact that

various chemotherapeutic agents can induce immunogenic cell

death (ICD) (21). As we know, ICD can enhance the release of
FIGURE 1

The incidence of primary resistance to immunotherapy in
NSCLC patients. The highest incidence of primary resistance to
ICIs was found in patients treated with ICIs as second-line
treatment after chemotherapy failure, while the lowest
incidence was found in NSCLC patients previously treated with
immunotherapy plus chemotherapy.
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cancer cell antigens, a step of a normal cancer-immunity cycle, to

improve an anticancer immune response (21, 22).
2.2 Secondary resistance
to immunotherapy

Acquired resistance was defined as having an initial response to

ICIs over a while and ultimately happening to disease progression

(23). A pooled analysis from clinical studies in advanced NSCLC

patients treated with nivolumab showed that up to 65% of initial

responders developed the progressive disease at 4 years of follow-up

(24). As shown in Figure 2, ICIs applied as first- and second-line

treatment for NSCLC patients with rates of secondary resistance

was 52%-57% and 32%-64%, respectively (25). In addition, a

retrospective study of 1201 NSCLC patients treated with PD-1

inhibitors at Memorial Sloan Kettering Cancer Center (MSKCC)

found that 78% of 243 cases acquired an initial response to

immunotherapy and further developed secondary resistance (26).

With the prolonged response time or progression-free survival

(PFS), the occurrence rate of secondary resistance declined with

the duration of remission in NSCLC patients treated with ICIs (26).

The 1-year incidence rate was 53%, with 37% at 1-2 years and 10%

after 2 years (26). Compared to systematic progression, the most

common pattern of secondary resistance to ICIs in NSCLC patients

was oligo progression, defined as ≤ 2 progressed disease sites (26–

28). And NSCLC patients with oligo progression after treating PD-1

inhibitors occurred secondary resistance later than patients with

systematic progression and had a better survival prognosis (26). In

the second-line and above treatment for NSCLC patients, an earlier

or higher objective response rate (ORR) of a single ICI was

accompanied by a lower incidence of secondary resistance and

more significant long-term survival benefits (24, 25).

In summary, tumors in primary resistance NSCLC patients may

consist of no or only a few sensitive tumor cells and resistive tumor

cells to immunotherapy, which may present no active immune
Frontiers in Immunology 03
response(PD) or activate antitumor immune response followed by

swiftly submerging by intricated mechanism (SD<6 months). When

tumors are comprised of no or only a few resistive tumor cells and

sensitive tumor cells to immunotherapy, NSCLC patients will show

a favorable and lasting response to immunotherapy(CR, PR, SD>6

months). However, some will form secondary resistance when

tumor cells lose active response to immunotherapy by

complicated mechanisms (Figure 3).
3 Mechanisms of immunotherapy
resistance in NSCLC

A normal CIC, a prerequisite for response to immunotherapy,

can be summarized in four steps: recognizable tumor antigen

release (within tumor cells); immune cells identify, transmit

tumor antigen, and then are activated (system of the tumor-

bearing host); recruiting, trafficking, and infiltration of immune

cells into the TME (outside of tumor cells); Finally, triggering

immune-mediated cancer cell killing(TME, host). A deficit in any

one of these four steps will contribute to varying degrees of

immunotherapy resistance (Figure 4).
3.1 Mechanisms involved within
NSCLC cells

3.1.1 Deficiency in tumor immunogenicity
PD-L1 expression and tumor mutation burden (TMB) are the

most popularly applied biomarkers for predicting immunotherapy

response. NSCLC patients with a high expression of PD-L1 usually

obtain better benefits from anti-PD-1/PD-L1 therapy (29, 30).

NSCLC patients with a higher tumor tissue TMB (tTMB) are

correlated with a more effective response to PD-1/PD-L1

inhibitors by leading to tumor-specific neoantigen formation to

elevate tumor immunogenicity (31–34). Therefore, any intrinsic

and extrinsic factors affecting the expression of PD-L1 or/and TMB

in tumor cells may be the mechanism for resistance to

immunotherapy. Next-generation sequencing (NGS) applications

found that innate drive gene mutations affect PD-L1 expression and

TMB, which may contribute to primary or adaptive resistance to

immunotherapy in NSCLC. EGFR is a well-studied drive gene in

NSCLC patients, the mutation status of which can induce PD-L1

expression (35, 36). In EGFR-mutated NSCLC cells, activated EGFR

was found to elevate PD-L1 expression via the IL-6/JAK/STAT3

signaling or p-ERK1/2/p-c-Jun pathway (35, 36). Moreover, NSCLC

patients with uncommon EGFR mutation, including G719X,

L861Q, S768I, and Ex20 ins, had more abundant PD-L1

expression accompanied by CD8+ tumor-infiltrating lymphocytes

(TILs) infiltration (37). In addition, mutations of RET and HER2

attenuated PD-L1 expression, while mutations of ALK, ROS, and

MET enhanced PD-L1 expression but downregulated TMB and TIL

infiltration leading to resistance to ICIs (38–41). TP53 or NFE2L2/

KEAP1 mutations could increase TMB and PD-L1 expression to

enhance the sensibility to immunotherapy (42, 43). However,

NSCLC subsets with co-occurrence of EGFR, HER2, ALK, ROS1,
FIGURE 2

The incidence of secondary resistance to immunotherapy in NSCLC
patients. ICIs applied as first- and second-line treatment in treating
NSCLC patients resulted in 52%-57% and 32%-64% rates of
secondary resistance, respectively. MSKCC found that 78% of
patients who acquired an initial response to PD-1 inhibitors further
developed secondary resistance.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1129465
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou and Yang 10.3389/fimmu.2023.1129465
RET, and MET mutations get minimal benefit from ICIs despite

high PD-L1 expression. These findings confirmed a TMB/PD-L1-

independent effect on response sensitivity to ICIs for specific drive

genes mutations (44). KRAS mutation, another frequently mutated

type in NSCLC, usually co-occurs with different gene mutations.

Various KRAS mutation subtypes have distinct TMB and PD-L1

expressions, and KRAS G12C is the most common subtype with a

high rate of PD-L1 positive (45). Mutated-TP53 was more prevalent

in KRAS wild-type NSCLC, while mutated-STK11 was more

frequently found in KRAS-mutated NSCLC (45). In KRAS-

mutant lung adenocarcinoma, STK11 mutation was identified as

the most common genomic background for primary resistance to

PD-1/PD-L1 inhibitors (46). Interestingly, the acquired resistance

after initial response to ICIs in NSCLC patients showed the

landscape of genomic changes characterized by loss of putative
Frontiers in Immunology 04
mutation-associated neoantigens through eliminating tumor

subclones or deleting specific chromosomal regions (47).

Moreover, High TMB and neoantigen burden(APOBEC, IFNGR1,

or VTCN1 mutation) were associated with enhanced efficacy

response in NSCLC immunotherapy, but PTEN mutation was

associated with non-response to immunotherapy (34).

3.1.2 Impaired antigen presentation
Impaired antigen processing and presentation have been

confirmed as a mechanism for lung cancer with acquired

resistance to ICIs (48, 49). Class I human leukocyte antigen

(HLA-I/MHC-I) plays a leading role in neoantigen presentation

to improve tumor recognition by T cell receptors. HLA gene loss

damages the process of neoantigen presentation resulting in

immune evasion for tumors (50). The germline HLA-I
FIGURE 3

The definition and explanation of primary resistance and secondary resistance. Primary resistance: tumors in primary resistance NSCLC patients may
contain no or only a few sensitive tumor cells to immunotherapy, which may present no active immune response (PD) or activate antitumor immune
response followed by swiftly submerging by intricated mechanism (SD<6 months). Secondary resistance: When tumors contain no or only a few
resistive tumor cells to immunotherapy, NSCLC patients will show a favorable and lasting response (CR, PR, SD) to immunotherapy (>6 months).
However, some will form secondary resistance when tumor cells lose active response to immunotherapy by complicated mechanisms.
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evolutionary divergence was strongly associated with the survival

benefit of metastatic melanoma or NSCLC patients treated with

anti-CTLA-4 or anti-PD-1/-PD-L1 (51). 40% of NSCLC carry

allele-Specific HLA Loss(HLA-I LOH), which is related to a

raised neoantigen burden, PD-L1 positivity, and poor response to

ICIs treatment (52, 53). Loss of the B2M gene, an essential

chaperone for HLA-I-mediated antigen presentation, formed an

immunosuppressive TME characterized by reduced TIL infiltration

and conferred resistance to ICIs in NSCLC (49, 54, 55). Interferon-

gamma (IFN-g) has also been identified to stimulate the expression

of HLA on NSCLC cells (56, 57). Except for the role of IFN-g in

HLA regulation, IFN-g signaling is also critical for the initiation of

PD-L1 expression in cancer and host cells (58, 59). An analysis of

gene expression profiles for pembrolizumab-treated patients found

that IFN-g-related mRNA profile could predict clinical response to

PD-1 inhibitor (60). A prospective study about cytokine profiles in

NSCLC patients receiving ICI treatment in the second line revealed

that patients with elevated expression of IFN-g significantly benefit
from PD-1 blockers (61). Moreover, attenuated antigen

presentation was also found in NSCLC with compromised LKB1

and AMPK activity (62). Low expression of KAT2B concurrent with

a higher frequency of somatic genes mutation was associated with

lower response efficacy to ICIs in NSCLC patients, while KAT2B

was linked to IFN-g regulation, antigen processing, and

presentation (63).

3.1.3 Abnormal signaling pathway
It has been reported that the aberrations of MAPK, PI3K, WNT,

and IFN signaling pathways may be implicated in the resistance

mechanisms of lung cancer immunotherapy (12). As discussed
Frontiers in Immunology 05
above, genetic mutation EGFR influences tumor immunogenicity

by regulating PD-L1 expression and TMB. MAPK and PI3K

pathways were involved in the immunotherapy resistance

mechanism mediated by EGFR mutation-induced PD-L1

increasing (64). MAPK and PI3K pathways were downstream of

the RAS signaling, the activation of which supported intrinsic PD-

L1 expression (65, 66). BRAF mutation is a rare form of NSCLC and

is part of the MAPK pathway. And BRAF mutation seems to

be more associated with high expression of PD-L1(PD-L1

expression ≥50%) than other subtypes (67). In addition, the

activity of the MAPK pathway was significant for EGF- and

IFNg-induced PD-L1 expression, contributing to improving

response to ICIs in NSCLC (68). The PI3K/AKT/mTOR pathway

plays critical roles in multiple biological functions or processes of

cancers, and it can be activated by the genetic mutation of EGFR or

KRAS in NSCLC (69–71). Significantly, uncontrolled activation of

the PI3K/AKT/mTOR pathway can modulate the response to ICIs

by driving PD-L1 expression and remodeling the infiltration and

function of TIL (71, 72). WNT signaling alterations in NSCLC were

also associated with PD-L1 negativity but this altered PD-L1

expression without predictive value for ICIs (73). However, a

recent study identified that SCD1-related fatty acids in serum

were correlated with the response efficiency of NSCLC patients

treated with a PD-1 inhibitor, while WNT signaling was

significantly involved in the immunomodulatory function of

SCD1 (74). The loss of IFN signaling in tumor cells has been

highlighted as a mechanism of the primary and acquired resistance

to ICIs in cancer patients (75–77). The production of IFN in TME

could induce PD-L1 expression on the surface of tumor cell lines,

including NSCLC (78–80). There is still a lack of evidence about the
FIGURE 4

The mechanisms involved in immunotherapy resistance of NSCLC. Deficiency in tumor immunogenicity: various drive gene mutations affect PD-L1
expression, TMB, and tumor-specific neoantigen formation; Impaired antigen presentation: HLA loss, B2M mutation, IFN-g signaling dysregulation,
and some genes disorder; Abnormal signaling pathway: abnormal MAPK, PI3K, WNT, and IFN signaling pathways may influence tumor
immunogenicity and antigen presentation; Abnormal activity and infiltration of immune cells in NSCLC TME: NSCLC TME enriched with increased
M2 macrophages, decreased B cells, and NK cells form an immunosuppressive TME to resist the initiation of antitumor immunity. Some gene
expression disorders or mutations in NSCLC cells can impair the activity, tumor-cell-killing function, proliferation, and infiltration of CD8+ T-cells in
TME, which contribute to exhausted CD8+ T-cells for immunotherapy resistance.
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relation between the genomic alterations in IFN signaling and

response to ICIs treatment in NSCLC patients.
3.2 Mechanisms involved in NSCLC TME

Recruiting, trafficking and infiltration of immune cells into the

TME are essential to a normal CIC. The TME comprised TILs and

stromal cells, cytokines, and vasculature, which influence response

to immunotherapy by dynamically reshaping the immunogenicity

of TME. Immunosuppressive TME formation is a leading

mechanism of immunotherapy resistance and is a vital breach to

enhance the effective response to immunotherapy. We will focus on

the TILs in NSCLC TME to give insights into the immunotherapy

resistance mechanisms. A landscape of the TILs in NSCLC TME

identified that CD4+ T cells were the maximum T cell population,

followed by CD8+ T cells, and then B cells, macrophages, natural

killer (NK) cells, and dendritic cells (DCs) in order (81).

3.2.1 M2-TAMs
Macrophages within the TME are designated as tumor-

associated macrophages (TAMs). TAMs are the fundamental

components within the TME, which perform a crucial function in

the immunity remodeling of TME and affect response to

immunotherapy (82, 83). A recent single-cell RNA sequencing

revealed that the temporal and spatial distribution of

macrophages was diverse in the TME of NSCLC and assisted

tumor immune escape by initiating regulatory T-cell response

(84). There are two classically polarized phenotypes of

macrophages, including M1 (immune-activated type) and M2

(immunosuppressive type), and the latter is the main type of

TAMs (72). TME enriched with more M2 macrophages is

significantly associated with a worse response rate and prognosis

for NSCLC patients receiving immunotherapy (85). However,

TAMs can be re-engineered into M1-type to increase the

response to ICIs treatment (86). In NSCLC, TAMs could promote

tumor cell glycolysis by TNFa secretion and facilitate tumor

hypoxia by increasing AMPK and PGC-1a, leading to decreased

PD-L1 of tumor cells and T-cell infiltration in TME to cause

immunotherapy resistance (87). Surprisingly, NSCLC patients

enriched with PD-L1+ TAM in TME represented better survival

for receiving PD-1/PD-L1 blockers (88). Additionally, another

study suggested that PD-L1 mainly plays an effect in forming an

immunosuppressive M2-type TAM (89). However, M2-type TAM

could be reprogrammed into an immune-activated type by anti-PD-

L1 treatment but not anti-PD-1 (89). Many genes or signaling

pathways are involved in targeting TAM recruitment, activation,

and survival, which can be applied as a targeting strategy to improve

tumor immunotherapy (90, 91).

3.2.2 NK cells
NK cells are powerful innate immune cells. NK cells perform a

direct tumor-killing effect and indirectly enhance antitumor

immunity mediated by T cells. Additionally, NK cells regulate

DCs, macrophages, and neutrophils through cytotoxicity and
Frontiers in Immunology 06
cytokine release (92). Moreover, tumor-infiltrating NK cells could

trigger T-cell-mediated immunity by stimulating the recruitment of

DCs into TME, conferring improved tumor immune control (93).

The infiltration of NK and plasma cells has been defined as a

distinct immune subset in NSCLC, contributing to the most

favorable prognosis (94). The high infiltration of NK cells in

tumor tissue has been confirmed as a biomarker for predicting

durable response to ICIs immunotherapy in NSCLC patients (95,

96). It is worth noting that there is a negative relationship between

the density of TAMs and NK- and T-cell antitumor activities in

NSCLC (97, 98).

3.2.3 B cells
Tumor-infiltrating B cells have been identified as the most

differential gene between immunotherapy responders and non-

responders in patients with melanoma (99). Tertiary lymphoid

structures (TLS) were also used as a marker of efficient

immunotherapies due to initiating and/or maintaining local and

systemic T- and B-cell mediated antitumor activity (100). B cells

and plasma cells were found to co-present in TLS, and the

abundance of intra-tumoral B cells was also linked to the

prediction in the response efficacy of anti-PD-L1 in NSCLC (101,

102). B cells have also been found to exert antigen-presenting

function to CD4+ TILs in TME to influence prognosis in NSCLC

immunotherapy (102).

3.2.4 CD4+ and CD8+ T cells
The presence of CD4+ T cells and CD8+ T cells in TME was

associated with the objective clinical responses to anti-PD-1/PD-L1

blockade in NSCLC (103–107). And the predictive potency of CD4+

T cells and CD8+ T cells was more prominent in the PD-L1 positive

sub-population. PD-1+ CD4+ T-cell was a negative predictor for

immunotherapy availability in advanced NSCLC patients, while

PD-1+CD8+ T-cell was a positive predictor (85, 103–105, 108). To

complicate matters, multiple subsets or activity states of CD4+ T

cells and CD8+ T cells have diverse effects on the response to

immunotherapy. A single-cell sequencing analyzing T cell

composition in NSCLC suggested that patients enriched with

“pre-exhausted” CD8+ T cells (CD8-C4-GZMK), non-activated

Tregs, and activated CD4+ cells had a much better prognosis than

that in patients enriched with exhausted T cells (CD8-C6-LAYN

and CD4-C7-CXCL13) and activated Tregs (109). Epigenetic

changes-mediated high exhaustion of T cells is an important

resistant mechanism to ICIs treatment (91, 110, 111), and

therefore the “pre-exhausted” T cells might be alternative target

for improving immunotherapy (109). Another study explored that

NSCLC cells-derived exosomal circUSP7 could induce CD8+ T cell

dysfunction to confer anti-PD-1 resistance (112). Recently, a phase I

clinical trial confirmed the safety and feasibility of PD-1-edited T

cells in NSCLC (113). Chimeric antigen receptor (CAR)-T cells, as

another modified-T cell therapy, has attracted more and more

interest in clinical applications as antitumor therapy for various

solid tumors, including NSCLC, in recent years (114, 115). In

summary, accumulated evidence validated various gene

expression disorders or mutations in NSCLC cells impair the
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activity, tumor-cell-killing function, proliferation, and infiltration of

CD8+ T-cells in TME, which contribute to exhausted CD8+ T-cells

for immunotherapy resistance (91, 97, 111, 116–118).
4 Current clinical strategies for
NSCLC after immunotherapy
resistance

The progressive mode in NSCLC patients with immunotherapy

resistance can be summarized into oligo-progression and systemic/

multiple progression. The failure pattern of oligo-progression

occurrence in 20% of NSCLC patients under treatment with PD-

1/PD-L1 inhibitors (119). The oligo-progressive lesions are

primarily involved in the brain, lung, and lymph nodes for

immunotherapy-treated NSCLC patients (119). Clinical treatment

selection for NSCLC progression after immunotherapy resistance

should depend on the progressive mode (Figure 5).
4.1 Oligo-progression

The general cognition of the term “oligo-progression” is that the

progressive metastases are up to 3–5 lesions and limited to 1–3

organs in the premise of a well-controlled metastatic disease (120,

121). Retrospective studies suggested that radiotherapy and/or

surgery treating oligo-progressive sites combined with continuing

immunotherapy could improve regional control rates and overall

survival benefits (122–126). Many NSCLC patients receiving

immunotherapy show primary resistance. Local radiation therapy
Frontiers in Immunology 07
on oligo-metastases improves immunotherapy response for NSCLC

patients without multiple progression after primary systemic

therapy. Radiotherapy might improve the response to

immunotherapy in patients treated with ICI through its

immunostimulatory effects and eradicating metastatic deposits

(127). Radiation-killing tumor cells promote releasing and

presenting tumor antigens, up-regulating PD-L1 expression on

tumor cells, increasing TME infiltration of CD8+ T cells, and

enhancing T cell-mediated immune response, contributing to

improved antitumor immune response (128–130). The PEMBRO-

RT trial(a multicenter, randomized phase 2) and MDACC (phase 1/

2) trial found that NSCLC with PD-L1-negative tumors could

obtain more survival benefits from the addition of radiotherapy

than that in patients receiving ICI without radiotherapy (131, 132).

For advanced NSCLC patients with oligo-progression or oligo-

metastases, continuing immunotherapy combined with local

treatment can eliminate primary and acquired resistance to ICIs,

improving local control rate(LCR) and overall survival. Except for

LCR, the improved overall survival from this combination is due to

the distant antitumor effect on metastatic sites out of the radiation

field by the radiotherapy-mediated immunoregulator effect.

However, there are still many issues to be explored, such as the

optimum patient selection, the radiotherapy scheme or fractionated

dose selection, the number and location selection of radiation

treating metastases, the selection of specific checkpoint inhibitors,

and the sequence of radiotherapy combined with immunotherapy.

There are many ongoing prospective trials about the effect of

radiotherapy combined with immunotherapy in NSCLC patients

with limited metastases or who oligo-progressed on ICI treatment

or and we are looking forward to awaiting the outcome (127,

133, 134).
FIGURE 5

The current clinical strategies and future perspectives in NSCLC patients after immunotherapy resistance. The selection of clinical treatment for
NSCLC progression after immunotherapy resistance should be dependent on the progressive mode. Further studies can pay attention to optimizing
the combined therapy and exploring strategies to modulate infiltrating immune cells and timely reshape TME.
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4.2 Systemic/multiple progression

4.2.1 Combined therapy
Systemic combination therapies were currently clinically

possible strategies for systemic/multiple progression in NSCLC

treated with ICIs. BTCRC-LUN15-029(phase 2) suggested that

NSCLC patients who progressed after ICIs alone or in

combinat ion with chemotherapy could benefi t f rom

pembrolizumab plus next-line chemotherapy (135). However,

further research is needed to confirm the certain population that

can benefit from continued immunotherapy after immunotherapy

resistance. Although EGFR/ALK mutation was involved in the

mechanism for ICI resistance, EGFR/ALK TKI combination with

ICI usually served as a strategy for treating NSCLC patients with

acquired EGFR-TKI resistance, not for patients with ICI resistance.

However, limited clinical efficacy and a high incidence of treatment-

related toxicities did not encourage the further application of this

combination. Many clinical trials, such as CheckMate 370 (136),

KEYNOTE-021 (137), GEFTREM (138), LUX-Lung-IO (139), have

shown that EGFR or ALK inhibitors combined with ICIs were

feasible but limited efficacy and more toxicity in treating NSCLC

patients with newly diagnosed or refractory or PD after first-line

therapy. Furthermore, the growing evidence supported the

combination of anti-angiogenic agents and ICIs (140, 141).

Ramucirumab combined with pembrolizumab showed an

encouraging antitumor activity with acceptable toxicities in

NSCLC patients, having progressed on one to three lines of

previous therapy (142). A pooled analysis from 23 prospective

studies confirmed that ICIs combined with anti-angiogenic agents

with favorable antitumor activity and manageable toxic effects

might be a new option for NSCLC patients, especially those who

received no treatment or chemotherapy intolerance (143). However,

especially for treating NSCLC patients with PD after ICI-pretreated,

the application of this combination therapy is in the exploring

phase. More and more prospective trials have been conducted to

identify the efficiency and safety of PD-1/L1 inhibitors plus anti-

angiogenesis drugs(Cabozantinib, Sitravatinib, Lenvatinib,

Nintedanib) in NSCLC patients previously treated with an ICI

(144–150). Cabozantinib is a multi-targeted tyrosine kinase

inhibitor (TKI) and reshapes an immune-active TME by the

inhibition of MET and TAM receptor kinases (TYRO3, AXL,

MER) (151, 152). Sitravatinib is another multi-targeted TKI that

inhibits VEGFR, TAM receptors (TYRO3, AXL, MERTK), and Split

fami ly receptors , which reduce the prol i fera t ion of

immunosuppressive cells, initiate T cell infiltration into TME,

decrease T cell exhaustion, promote M1 macrophage polarization

(153, 154). The anti-VEGFR drug Lenvatinib was found to perform

immunoregulation by reducing TAMs infiltration and increasing

the activity of CD8+ T cells (155, 156). Another anti-angiogenic

agent Nintedanib also plays an antitumor immunity by remodeling

TME through increased tumoral infiltration of CD8+ T cells and

granzyme B production (157). Anti-PD-1/PD-L1 and other non-

PD-1/PD-L1 blockers are alternative therapeutic strategies for

NSCLC patients with immunotherapy resistance. However,

Durvalumab plus tremelimumab(anti-CTLA-4) had minimal
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benefits in NSCLC patients with progression after anti-PD-1

therapy (158). Other trials about combining with Vibostolimab

(anti-TIGIT) (NCT02964013, NCT04725188) have not been

completed. Moreover, TME modulators, such as MDM2,

SEMA4D, and HDAC inhibitors, combined with ICIs were

explored to apply in NSCLC patients with refractory and failure

after immunotherapy, resulting in safety but limited benefits (159–

162). These preliminary results need to be validated in further

studies, including a larger sample, adjusted scheme, or changed time

point of combined treatment. There are other ongoing clinical trials

to investigate the practicability of new drugs such as AK112(dual-

targeting PD-1/VEGF) or KN046(dual-targeting PD-1/CTLA-4), or

SAR408701(anti-CEACAM5) in antagonizing immunotherapy

resistance (163–165). Increasing clinical trials are ongoing to

investigate and explore the safety and efficacy of a new

combination treatment or drug in NSCLC patients with ICIs

resistance (Table 1). We expect these trials’ results will provide

additional therapeutic options for ICI-resistant NSCLC in the

short term.

4.2.2 Immunotherapy rechallenge
Should NSCLC patients with prior anti-PD-1/PD-L1 therapy

with a durable response be given a second course of ICI if their

disease progresses? For PD-L+ NSCLC patients who had

progression after 35 cycles/2 years of pembrolizumab,

pembrolizumab retreatment showed that the disease control rate

was over 77% (166). Another real-world setting also found evidence

supporting that nivolumab retreatment could bring better responses

in NSCLC patients who had a long-term response to first-course

treatment (167). In addition, other reports also found that only

limited patients could benefit from immunotherapy retreatment

(168, 169), so it is necessary to explore effective predictive

biomarkers to screen the optimum population.
5 Conclusion and future perspectives

Although immunotherapy improves survival prognosis in

NSCLC patients, primary and acquired resistance impair long-term

clinical benefits in the partial population. There is a negative

relationship between the ORR of immunotherapy and the

occurrence of acquired resistance. 74% of NSCLC patients with an

effective initial response to immunotherapy will experience disease

progression within 5 years. The mechanism of immunotherapy

resistance is complex, dynamic, and interdependent, mainly

involving intrinsic factors(tumor cells) and extrinsic factors (TME

infiltrating immune cells). In the clinical appliance, therapeutic

strategies for NSCLC progression after immunotherapy resistance

is still in the exploratory stage. The progressive mode after

immunotherapy resistance should be taken into consideration for

further treatment. Radiotherapy, chemotherapy, anti-angiogenesis

drugs, and TME modulators can synergistically enhance

immunotherapy by regulating the process of the cancer-immunity

cycle, including tumor antigen release, presentation, and TME

infiltrating immune cells. However, these synergistic effects are
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uncontrollable and unpredictable. In further studies, we still face

many challenges, such as how to find the optimum time point, mode,

sequence of combination therapy, and the population who can obtain

more benefits from the combination therapy, how to find the

corresponding predictive biomarkers, how to confirm the optimum

treatment for NSCLC patients characterized by distinct or multiple

genetic backgrounds. A prerequisite for a clinical response to
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immunotherapy is a normal cancer-immunity cycle, of which

effective T cells are vital policymakers and executants for antitumor

immunity. Therefore, technically modified-T cell therapy attains

more and more attention. In addition, also worth considering are

the effect of the genetic background of tumor cells on native or

artificially reprogrammed immune cells and how to monitor and

precisely remodel the dynamic TME during treatment (Figure 5).
TABLE 1 Clinical trials investigating new treatments to overcome ICI resistance in NSCLC.

Intervention/
treatment

Drug ClinicalTrials.gov
Identifier

Phase Patients Recruitment
Status

Vaccines

RO7198457 NCT03289962 I ICI-naiıve and pretreated Active, not
recruiting

Viagenpumatucel-L NCT02439450 I/II Including ICI-pretreated Completed

Autologous LN-145 NCT04614103 II Documented PD after ICI-pretreated Recruiting

STEMVAC NCT05242965 II ICI-pretreated Recruiting

Adoptive cell therapy

Letetresgene
Autoleucel T-cells

NCT03709706 I/II Including ICI-pretreated Terminated

Targeting-drive gene

Cabozantinib (c-MET) NCT03600701 II ICI-naive and pretreated Recruiting

Cobimetinib(MEK) NCT03170960 I/II ICI-naive and pretreated Active, not
recruiting

SAR408701(anti-
CEACAM5)

NCT04394624 II Having PD after ICI/chemotherapy-pretreated Recruiting

Anti-angiogenic agents

Cabozantinib NCT04471428 III Documented PD after previous ICI treatment Active, not
recruiting

Sitravatinib NCT03906071 III Prior treatment with ICI and chemotherapy Active, not
recruiting

Lenvatinib NCT03976375 III Documented PD after previous ICI treatment Active, not
recruiting

Nintedanib NCT03377023 I/II ICI-naive and pretreated with chemotherapy, ICI, or
targeted therapy

Active, not
recruiting

Ramucirumab NCT03689855 II ICI-pretreated Active, not
recruiting

NCT04340882 II Having PD after ICI+chemotherapy Recruiting

TME modulators

Bintrafusp Alfa(anti-
TGF-b)

NCT04396535 II ICI+chemotherapy-pretreated Active, not
recruiting

Entinostat (anti-
HDAC)

NCT01928576 II ICI-naiıve and pretreated Active, not
recruiting

Mocetinostat(anti-
HDAC)

NCT02954991 II ICI-pretreated Completed

Vibostolimab (anti-
TIGIT)

NCT04725188 II Having PD after Chemotherapy and ICI Active, not
recruiting

Abemaciclib(anti-
CDK4/6)

NCT02779751 I ICI-naive and pretreated Active, not
recruiting
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