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Formation of long-lasting memory lymphocytes is one of the foundational

characteristics of adaptive immunity and the basis of many vaccination

strategies. Following the rapid expansion and contraction of effector CD8 T

cells, the surviving antigen (Ag)-specific cells give rise to the memory CD8 T

cells that persist for a long time and are phenotypically and functionally distinct

from their naïve counterparts. Significant heterogeneity exists within the memory

CD8 T cell pool, as different subsets display distinct tissue localization preferences,

cytotoxic ability, and proliferative capacity, but all memory CD8 T cells are

equipped to mount an enhanced immune response upon Ag re-encounter.

Memory CD8 T cells demonstrate numerical stability under homeostatic

conditions, but sepsis causes a significant decline in the number of memory

CD8 T cells and diminishes their Ag-dependent and -independent functions.

Sepsis also rewires the transcriptional profile of memory CD8 T cells, which

profoundly impacts memory CD8 T cell differentiation and, ultimately, the

protective capacity of memory CD8 T cells upon subsequent stimulation. This

review delves into different aspects of memory CD8 T cell subsets as well as the

immediate and long-term impact of sepsis on memory CD8 T cell biology.
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Introduction

Populations of memory CD8 T cells can be maintained for their entire lifetime of the host

once formed, and these cells confer protection against intracellular infections and mediate

antitumor immunity (1–5). Generation of these cells is an important objective for many

vaccination strategies (6–9). Compared to their naïve counterparts, memory CD8 T cells

typically exist at a much higher frequency, are localized to different lymphoid and non-
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lymphoid tissues throughout the body and have a less stringent

activation mechanism (10–13). These characteristics allow memory

CD8 T cells to quantitively and qualitatively mount a more robust

immune response than naïve CD8 T cells, collectively resulting in

more effective control of intracellular pathogens (14–16). Significant

heterogeneity exists within the memory CD8 T cell pool at epigenetic,

transcriptional, and protein expression levels prompting further

classification based on their phenotype, localization, and function

(17–21). Thanks to their durability and diverse subsets, memory CD8

T cells provide protective responses against reinfections even years

after the initial challenge; however, the quantitative and qualitative

changes experienced by memory CD8 T cells responses after the onset

of a lymphopenic event such as sepsis remain to be fully understood.

Sepsis is defined as an exaggerated immune response to a systemic

infection that leads to organ dysfunction (22). The disseminated

infection initially triggers the exacerbated generation of an array of

pro- and anti-inflammatory cytokines, collectively regarded as

“cytokine storm” (23, 24). Most sepsis patients can now survive the

acute phase of sepsis as recent advancements in critical care have

alleviated the tissue/organ damage inflicted by the cytokine storm

(25). However, transient lymphopenia and long-lasting immune

dysfunction (termed ‘immunoparalysis’) follows the cytokine storm,

rendering surviving patients more susceptible to secondary infections,

viral reactivation, and decreased 5-year survival compared to non-

septic patients (26–29).

Sepsis is a challenging health crisis affecting nearly 50 million

people annually, with a mortality rate of approximately 20%. It

disproportionally affects the elderly; 75% of sepsis-related mortality

occurs in individuals above 65 (30–32). On the other hand, as

individuals age, they accumulate more memory T cells due to

vaccinations and (re)infections which is associated with decreased

susceptibility to infections. In fact, memory CD8 T cells constitute

more than two-thirds of the CD8 T cell population in adult humans

(33–35). Tissue-wide presence of memory T cells and their crucial

role in protecting against pathogens call for a detailed analysis of the

impact of sepsis on memory T cells. Hence, investigating the short-

and long-term effects of sepsis on memory T cells is imperative. In

this review, we will first provide an overview of different subsets of

memory CD8 T cells and how time and multiple antigen encounters

influence their characteristics. We will then discuss the acute and

sustained impairments of sepsis on memory CD8 T cells.
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Origin of memory CD8 T cells

Different models have been proposed to explain the origin and

formation of antigen (Ag)-specific memory CD8 T (TMEM) cells

following the rapid expansion/contraction of effector CD8 T cells

(36, 37). One model argues for the linear differentiation of naïve CD8

T cells to effector CD8 T cells and then to memory CD8 T cells (38–

43). An alternative model proposes memory CD8 T cells are directly

derived from naïve CD8 T cells without undergoing the effector phase

differentiation (44–46). Elegant human and murine studies have

provided compelling evidence to support both models; however,

one common theme between the two theories is that there exist two

subsets of memory precursor (MP) or terminal effector (TE) CD8 T

cells by which the former population gives rise to the memory pool

and the latter is programmed to contraction (40, 41, 47). Presence and

appropriate number of both subsets at the right time is crucial to clear

the pathogen without causing immunopathology and generating a

diverse memory pool for recall responses. MP and TE cells have been

conventionally parsed out based on CD127 and KLRG1 expression.

MP cells are CD127hi and KLRG1lo, whereas TE cells are CD127lo and

KLRG1hi (40), although recent work suggests a fraction of KLRG1+

effector cells can contribute to the memory pool (48–50).

Nevertheless, the combination of Ag stimulation strength,

inflammatory milieu, and tissue microenvironment alters Ag-

specific CD8 T cell transcriptional programs, so that either subset is

formed shortly after Ag encounter (15, 51–58). MP CD8 T cells

express high levels of EOMES (59), FOXO1 (60), BCL-6 (61), ID3

(62), and TCF-1 (63, 64), whereas TE CD8 T cells express high levels

of T-bet (40, 65), BLIMP-1 (66), ID2 (62), and Zeb2 (67). Each of

these transcription factors (TF) plays a vital role in the formation,

differentiation, and fate of effector cells. For example, Ag-specific CD8

T cells lacking EOMES or TCF-1 display diminished ability in

differentiating to long-lasting memory CD8 T cells. In contrast, T-

bet deficient CD8 T cells do not give rise to TE CD8 T cells (59, 63).
Subsets of CD8 memory T cells

The first category of TMEM cells (Table 1) is circulating memory

(TCIRCM) CD8 T cells, which have been classically subdivided into two

subsets of CD62Llo CCR7lo effector (TEM) and CD62Lhi CCR7hi
TABLE 1 Subsets of memory CD8 T cell pool and their characteristics.

Subset Phenotype Location Function Transcription Factors
(TFs)

TCM CD62Lhi, CCR7hi, CD127hi CD27hi, CX3CR1lo,
KLRG1lo

Circulation, Primarily in LN and SLO ++ Ag-dependent
expansion
+/- Cytotoxicity

Eomes, FOXO1, Bcl6, Id3,
TCF1

TEM CD62Llo, CCR7lo, CD127hi/lo CD27hi/lo, CX3CR1hi/lo

KLRG1hi/lo
Circulation, primarily in blood and
occasionally NLT

+/- Ag-dependent
expansion
++ Cytotoxicity

T-bet, Blimp1, Zeb2, Id2

TRM CD69hi depending on NLT: CD103hi CD49ahi,
CXCR3hi, CXCR6hi

Primarily NLTs, also found in draining LN + Proliferation
++ Sense and alarm
function

Hobit, Blimp1, Runx3
+/- means a great fraction of the cells in the subset is endowed with the function while a noticeable population within the subset is not.
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central memory (TCM) CD8 T cells (Table 1) (68). TCIRCM CD8 cells

can circulate between blood, secondary lymphoid organs, and non-

lymphoid organs. However, the expression of lymph node homing

receptors CCR7 and CD62L enhance the localization of TCM cells in

lymph nodes (LN) and white pulp of spleen, whereas TEM cells are

more prevalent in blood, red pulp of spleen, and non-lymphoid

tissues (10, 68, 69). Functional studies have indicated both subsets

are robust producers of IFN-g and TNF-a in response to cognate Ag

stimulation, but CD62L+ TCM cells have enhanced proliferative

potential and IL-2 production. In contrast, TEM cells exhibit more

efficient cytotoxicity and effector-like functions. The differential

localization and functional abilities of TCM and TEM cells render

each subset more effective against different pathogens, determined by

the nature of infection elicited by each pathogen. For example, TCM

cells are more protective against LCMV-clone 13 and malignancies,

while TEM cells clear intracellular bacterium Listeria monocytogenes

(LM) infections more efficiently (21, 70–73). Nevertheless, the

distinct localization and functional abilities of TEM and TCM cells

confer protection against a wide range of pathogens.

In addition to TCIRCM, tissue-resident memory (TRM) CD8 T cells

are non-lymphoid tissue-restricted TMEM cells that patrol tissues for

pathogen invasion (Table 1) (74–76). These cells are typically situated

in barrier sites and act as first responders upon Ag re-encounter with

their sensing and alarm function; they mediate protection through

cytotoxicity and/or secreting cytokines to recruit other immune cells

to the site of pathogen invasion (75, 77–80). Although Hobit+ MP

cells in non-lymphoid tissues (NLTs) are thought to be the major

population contributing to the TRM pool (76, 81, 82), it is not yet clear

whether the potentiation of the effector cells to TRM fate is induced

either in the circulation prior to NLT recruitment or once located into

NLT (83). TRM cell fate requires downregulation of T-bet, EOMES,

and TCF-1 to enable responsiveness to TGF-b, which signals for

expression CD103, a critical tissue retention factor important in the

generation of TRM in epithelial tissue (58, 84, 85). Additionally,

HOBIT/Blimp1 and Runx3 play a critical role in TRM formation

and differentiation (82, 86–88). ‘IV exclusion’ (89) and expression of

tissue residence markers such as CD69 and CD103 are the most

widely-used markers to distinguish TRM cells from other TMEM cells

(76, 90). However, technically-challenging parabiosis experiments

remain the gold-standard method to determine tissue residency (74,

91). Due to their strategic localization, which allows for early defense

against pathogens, many studies have explored vaccination strategies

that generate long-lasting TRM cells to improve the efficacy of

immunizations (92–98).
Heterogeneity of TCIRCM and TRM cells

With the advent of multi-spectral flow cytometry and single-cell

transcriptomics, the heterogeneity of both TEM and TCM populations

has become more evident. CD62L- TCIRCM can further be subdivided

into two populations of CD127- CD27- or CD127+ CD27+ subsets.

The former subset is a descendant of KLRG1+ TE cells and termed

long-lived effector cells (LLEC) (49) and/or terminally-differentiated

effector memory cells (t-TEM) (50), as they express TE signature genes

such as KLRG1 and CX3CR1 as well as some memory-signature genes

such as Bcl2 and TCF-1. Compared to TCM and CD127+ TEM cells, t-
Frontiers in Immunology 03
TEM cells demonstrate the highest expression of granzymes and

provide robust protection in LM rechallenge models on a per-cell

basis indicating superior cytolytic function, but t-TEM cells show

impaired IL-2 production and poor tumor control. Interestingly, once

t-TEM cells are parsed out of CD62L- TCIRCM and TEM cells are

redefined as CD127+ CD62L- memory CD8 T cells, the functional

differences between the redefined TEM and CD62L+ TCM cells are

minimized. This suggests the t-TEM cells that make up a significant

population of CD62L- TCIRCM cells may drive the differences that

have previously been reported with respect to proliferative and

cytotoxic abilities of CD62L+ and CD62L- TCIRCM cells.

Recent studies have shed light on the heterogeneity within the

TCM population. A small subset of CD62L+ TCF1+ MP cells with

restrained effector-phase proliferation and expression of inhibitory

receptors have been identified to give rise to a multipotent subset of

TCM cells with superior recall responses (99), matching another

finding where CD62L+ TCF1hi MP cells form TCM cells with

stemness features (100). Additionally, a study by Bresser et al.

suggests the replicative history of the TCM pool dictates the

transcriptional program and functionality of TCM cells (101).

Specifically, TCM that have undergone fewer prior cell divisions

demonstrate quiescence and stemness features with more efficient

recall responses than the TCM with more cell divisions which exhibit

effector-like characteristics. The quiescent cells within the TCM pool

share features of self-renewal and multipotency with stem cell-like

memory cells (TSCM) that remain poorly defined in murine models

(42, 45).

Much of the heterogeneity described to the TRM population

is attributed to the distinct tissue microenvironment that TRM cells

are exposed to from tissue to tissue (102–104). Differential

microenvironmental features lead to the phenotypic and

transcriptomic alterations during the generation, differentiation,

and maintenance of TRM cells found in different organs, even in the

same infectious model (105). This is well-reflected in the distinct TRM

markers and tissue-specific retention proteins; for example, despite

the uniform expression of CD69 by TRM cells in different tissues,

expression of CD103, adhesion molecule CD49a, and chemokine

receptors CXCR3 and CXCR6 are variable (103, 104). Notably, the

heterogeneity of TRM cells from different tissues is not limited to

surface markers. It is also observed in transcriptional makeup and

genome accessibility as tissue milieu instructs TRM cells with a

transcriptional network required for specific tissue adaptation (76,

105). Recent work also suggests TRM cells within the small intestine

could be further subdivided into stem-like Id3hi TRM and effector-like

Id3lo TRM cells with differential multipotency and effector function

capacity (106). Nevertheless, more studies are needed to fully

delineate the heterogeneity within TRM pool.
Evolution of the TMEM pool after
multiple antigen encounters

One hallmark of TMEM cells generated via infection and/or

vaccination is their ability to maintain their number and function

for the life of the individual. The durability of TMEM in an Ag-

independent fashion relies on homeostatic signals from IL-7 and IL-

15 that promote memory T cell survival (107). Despite their relative
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numerical stability, the CD8 memory pool undergoes significant

transcriptional and phenotypic changes over time. With increasing

time, the frequency of TCIRCM cells expressing TCF1, Bcl6, Id3, and

EOMES and long-term memory maintenance genes such as CD27,

CD127, and CD122 increases while the expression of T-bet, Zeb2,

Runx1, and Id2 and effector-like genes such as CX3CR1 and KLRG1

decreases. At an early memory timepoint, TEM cells with high

expression of effector-like genes are the dominant subset of TCIRCM;

however, superior hemostatic proliferative capacity of TCM cells and/

or direct conversion of CD127+ CD62L- TEM cells to TCM cells results

in gradual increase in TCM representation over time. This results in

late TCIRCM cells to possess greater capacity for IL-2 production,

secondary expansion, and higher order memory potential than early

TCIRCM cells (5, 21, 36, 108). On the other hand, TRM cells of distinct

tissues exhibit differential longevity; lung TRM cells wane over time

resulting in loss of protection (109, 110) while skin TRM cells persist

for a long time with robust protective function (111). Nevertheless,

few studies have examined the impact of time on the phenotype and

function of TRM cells.

Following pathogen re-encounter and secondary expansion of

primary (1°) TCIRCM cells, secondary (2°) TCIRCM cells are generated

which can give rise to higher order TCIRCM cells upon additional Ag

encounter. Higher order TCIRCM cells display differential tissue

localization, phenotypic, and functional characteristics than 1°

TCIRCM cells. With increasing number of Ag stimulations, higher

order TMEM cells become more cytolytic with greater ability in

trafficking to peripheral tissues, but reduced progression to a TCM

phenotype, responsiveness to homeostatic cues, and proliferative

capacity (112–116). ‘TEM -like’ features of higher order TMEM cells

render this population more protective than 1° TMEM cells against

pathogens, such as LM, that primarily infect and localize to peripheral

tissues (73, 117). Although the more Ag encounters TMEM cells

experience, the more they become phenotypically and functionally

like TEM cells, gene set enrichment analysis (GSEA) shows no

progressive enrichment in TEM-associated genes in 2°, 3°, or 4°

TMEM cells (118). Hence, repeated Ag stimulation induces major

changes in gene expression patterns of individual cells as opposed to

merely changing the TEM : TCM ratio.

Antigenic challenge induces robust cytokine response from 1°

TRM cells which recruits immune cells including TRM precursors to

the site of infection to generate more TRM population. Data suggested

that 1° TRM cells could also proliferate upon reinfection to give rise to

2° TRM cells (119, 120); however, recent findings provided evidence

that different subsets of TRM possess different proliferation capacity.

Using a fate-mapping system to track CD103-expressing CD8 T cells,

von Hoesslin et al. and Fung et al. showed that CD103+ TRM cells have

limited proliferation capacity, but CD103- TRM cells undergo robust

expansion upon Ag re-encounter, further highlighting the

heterogeneity within TRM pool (121, 122). Nonetheless, successive

Ag exposures improve the longevity and protective function of TRM

pool; for example, 4° influenza-specific TRM cells show enhanced

durability and heterosubtypic immunity than 1° TRM cells (123). This

is attributed to continuous localization of 4° TEM cells to lungs

followed by subsequent conversion to TRM cells. Several studies

have reported lymph node TRM cells in the context of skin and lung

infections (124, 125) and Ag re-encounter may lead to migration of

TRM offspring to the draining lymph node (125). Similarly, repeated
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Ag exposures result in higher lymph node TRM cells and increased

representation of CD103+ CD69+ LN TRM cells, leading to better local

protection than 1° TRM cells (126). Overall, repetitive Ag encounter

consolidates the TRM memory pool through the formation of higher

order TRM cells and/or differentiating pre-existing TCIRCM to TRM

cells upon recruiting to the tissue.
Short- and long-term impact of sepsis
on the composition of TMEM pool

Sepsis significantly reduces the number of lymphocytes (127–

130), including CD8 T cells, via apoptosis (131–133). While naive

(TN) CD8 T cells are more susceptible to radiation-induced apoptosis

and are lost to a greater extent than TCIRCM cells (134), both TN and

TCIRCM cells display similar susceptibility to the sepsis-induced

numerical decline (135–137). Additionally, further investigation

into the subset composition of TCIRCM cells before and after sepsis

reveals the numerical decline of TCM is equal to that of CD62L- TEM

cells. Hence, sepsis stochastically targets CD8 T cells, and all

circulating CD8 T cells are lost in a non-discriminatory fashion

regardless of their antigen exposure history (Figures 1B, C) (135,

137). Indeed, this interpretation is validated as 1° and 4° TCIRCM cells

exhibit similar fold loss following a septic event (138).

Unlike TCIRCM cells, TRM cell numbers remain unchanged

following sepsis-induction that leads to low mortality levels (0-20% -

moderate sepsis). Using a vaccinia infection model to generate TCIRCM

and TRM with the same Ag specificity, we found the number of ‘IV

positive’ TCIRCM cells significantly declined after moderate sepsis, but

the number of ‘IV negative’ skin TRM cells were held constant

(Figure 2A, middle) (137, 139). Interestingly, TRM cells within

tumors and non-lymphoid organs are also more protected from

radiation-induced cell death than circulatory T cells (140). Two

explanations were postulated to justify the resistance of TRM cells to

sepsis-induced apoptosis. One is that TRM-specific factors may protect

this subset from sepsis-mediated apoptosis, as TRM and TCIRCM cells

are phenotypically and transcriptionally distinct. Alternatively, the

local environment in which TCIRCM and TRM cells reside may

predispose one subset to sepsis-induced apoptosis but protect the

other. Specifically, TRM cells that reside in NLTs and have limited

access to circulation may be more protected from the cytokine storm

than the TCIRCM cell typically found in blood and SLO. While the first

explanation has yet to be examined, the second one was tested

elegantly through varying the severity of sepsis. To do so, the cecal

ligation and puncture (CLP) method with one or two punctures was

implemented to recapitulate moderate or severe sepsis, respectively

(141, 142). Moderate CLP-induced sepsis did not inflict enough

damage to increase endothelial vascular permeability and leakage of

cytokine storm to NLTs; however, severe sepsis led to a disruption of

the endothelial barrier exposing the once-shielded NLT to pro- and

anti-inflammatory cytokines (and other proteins and metabolites).

Therefore, severe sepsis not only instigates a more dramatic TCIRCM

cell loss compared to moderate sepsis, but it also results in a significant

decline in the number of TRM cells (Figure 1A, right) (142). Overall,

these data demonstrate TCIRCM and TRM cells display differential

susceptibility to sepsis due to their distinct anatomical localization.
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Sepsis-induced lymphopenia is a transient event, and lymphocyte

numbers will eventually return to pre-sepsis levels. However, there is

limited information detailing the mechanisms responsible for the

numerical restoration and the long-term impact of sepsis on T cell

biology. Longitudinal studies using TCR-transgenic CD8 T cells (i.e.,

P14) adoptively transferred into C57/Bl6 recipients have shown that
Frontiers in Immunology 05
the number of both TN and TCIRCM cells quickly bounce back to the

pre-sepsis baseline state. Lymphopenia-induced proliferation is

thought to drive the numerical recovery of TN and TCIRCM cells as

IL-7 and IL-15 mediate rapid proliferation of surviving lymphocytes

to fill the empty space. Increased frequency of Ki-67+, marker for cell

cycling and a non-G0 status, TN and TCIRCM cells in both murine and
A

B

FIGURE 2

Severe sepsis imposes more drastic numerical and functional diminishment in memory CD8 T cells than moderate sepsis. (A) Despite rapid loss of CD8
TCIRCM, undamaged endothelial barriers protect tissue-resident memory CD8 T (TRM) cells from moderate sepsis-induced apoptosis. However, severe
sepsis not only causes a more drastic decline in number of TCIRCM, but it also overcomes the endothelial barrier and TRM become vulnerable to
detrimental effects inflicted by the sepsis-induced cytokine storm resulting in rapid apoptosis of TRM cells. (B) Moderate sepsis does not change the
number and per cell function of TRM cells, but it reduces the ability of endothelial cells to upregulate chemokines and adhesion molecules in response to
TRM-derived cues which leads to reduced recruitment of effector cells and poor protection against localized rechallenges. With increasing severity of
sepsis, the protection against localized reinfections is even more compromised due to reduced number of TCIRCM and TRM. This figure was designed
using “The Inflammatory response” template available at BioRender.com.
DA B C

FIGURE 1

Compositional and phenotypical changes of circulatory CD8 T cell pool after sepsis. (A) Circulatory CD8 T cell pool consists of naïve CD8 T (TN) cells
and memory CD8 T (TCIRCM) cell subsets. (B) Increased levels of circulating pro- and anti-inflammatory cytokines mark the initial phase of a septic insult,
followed by induction of apoptosis in CD8 TN and TCIRCM in a stochastic manner. (C) Rapid loss of CD8 TN and TCIRCM and other lymphocytes result in
transient lymphopenia, accompanied with early signs of immunoparalysis. (D) Number of CD8 TN and TCIRCM return to pre-sepsis values; however, some
CD8 TN express memory-like phenotype, and the central memory CD8 T (TCM) cells are enriched over effector memory CD8 T (TEM) cells. Many patients
continue to suffer from a long-lasting state of immunoparalysis.
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human septic samples provides evidence for increased proliferation of

CD8 T cells after resolution of the acute phase of sepsis (143, 144).

Recent murine and clinical studies have exploited the pro-survival

features of IL-7 on T cells, as IL-7 treatment alleviates sepsis-indued T

cell loss via preventing apoptosis and accelerating numerical recovery

of lymphocytes (145–147). This notion has opened new lines of

investigation to explore the therapeutic effects of IL-7 and other

cytokine complex treatments in ameliorating sepsis-induced

immune dysfunction.

Despite apparent numerical recovery of TN cells, the composition

and phenotype of the post-sepsis TN pool is altered. Reduced primary

effector responses in the post-septic host indicates an incomplete

repertoire recovery and a less diverse TN pool. This is indeed the case

for naïve Ag-specific CD4 T cells (148), but it remains to be

determined if the same thing occurs for CD8 T cells. In addition,

some studies suggest post-sepsis TN cells have increased expression of

memory-associated markers, such as CD11a, for an unknown period

(Figure 1D) (143). These observations have prompted more detailed

investigation into long-term impact of sepsis on the numerically

recovered TMEM compartment.

Transcriptional analysis of TCIRCM cells from sepsis survivors

indicates that sepsis causes a long-lasting ‘transcriptional scar’ in

TCIRCM cells by inducing transcriptional changes both immediately

after onset of sepsis and during the recovery phase. Specifically,

TCIRCM cells from CLP hosts show upregulation of pathways that

work in concert to aid in cell cycling and increase the proliferation

output long after sepsis induction. Additionally, TCIRCM transcripts

from sham hosts are more effector-like whereas TCIRCM transcripts

from CLP hosts are enriched in sets of genes associated with long-

term memory, pointing to potential composition differences between

the two groups. Indeed, the post-sepsis environment greatly shapes

the phenotype and the composition of TCIRCM pool. Precisely, the

numerical recovery of TCIRCM cells is accompanied with increased

representation of TCM cells, the memory subset with highest

proliferation capacity (Figure 1D). Examining the effector and

memory-related markers shows the enrichment of CD62L+ KLRG1-

CD127+ CX3CR1- TCIRCM cells in the septic host. The enrichment of

TCM cells is ascribed to the enhanced capacity of TCM cells to sense

lymphopenia-induced homeostatic cues that trigger rapid cell cycling

and enrichment of TCM cells in the TCIRCM pool (144). Taken

together, despite equal susceptibility of TCIRCM subsets to sepsis,

surviving TCIRCM cells with greater homeostatic proliferation

potential preferentially repopulate the lymphopenic space leading to

long-lasting altered TCIRCM subset composition.

1° TCIRCM cells are not the only TMEM cells affected by sepsis. Our

lab has recently demonstrated that higher order TCIRCM cells are

equally susceptible to the sepsis-induced death as 1° TCIRCM cells. This

is particularly important as the human population, especially the

elderly with the highest susceptibility to sepsis complications, is

seeded with a diverse pool of TMEM cells and different Ag exposure

histories. Additionally, we speculated the diminished baseline

proliferative capacity of higher order TCIRCM cells vs. 1° TCIRCM

cells leads to preferential numerical recovery of 1° TCIRCM cells and

dilution of higher order TCIRCM cells post-sepsis. Examining Ki-67

expression and BrdU incorporation of 1° and 4° TCIRCM cells revealed

that unlike in 1° TCIRCM cells, sepsis did not invoke vigorous

proliferation in 4° TCIRCM cells. Subsequently, the frequency of 4°
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TCIRCM cells progressively decreased while 1° TCIRCM increased

resulting in a less diverse TCIRCM pool. Despite triggering rapid

proliferation of 1° TCIRCM cells, administration of IL-7 did not

boost the numerical restoration of 4° TCIRCM cells which further

capitalizes the accumulation of 1° TCIRCM cells after sepsis (138).

Overall, the post-sepsis environment favors the repopulation of

TCIRCM cells with high proliferative capacity, leading to altered

subset composition and reduced heterogeneity within the

TCIRCM pool.
Short- and long-term impact of sepsis
on the function of TMEM pool

Increased susceptibility of sepsis survivors to previously-

encountered pathogens and viral reactivation insinuates

compromised protection conferred by TMEM. The impact of sepsis

on the protective capacity of TMEM can be dissected at different levels

because the ‘per cell’ functional fitness (such as cytolytic capacity and

cytokine secretion) of TMEM cells is key in mediating pathogen

clearance, in addition to their number, tissue localization, and

ability to communicate with other cells being crucial for mounting

a protective immune response. Thus, we will next discuss the

immediate effect of sepsis on functional capacity of different subsets

of the TMEM pool and finish with a description of the long-term

impact of sepsis on TMEM -mediated immunity.

Lymphopenia is not the only immunological catastrophe that a

septic host experiences shortly after the onset of sepsis. Sepsis impairs

the Ag-dependent functions of TCIRCM on a per cell basis. Particularly,

sepsis diminishes the IFN-g production in response to cognate Ag

resulting in decreased Ag sensitivity and functional avidity of TCIRCM

cells. In response to the cognate antigen, the compromised cytokine

production and proliferative capacity of TCIRCM render septic hosts

more susceptible to homologous reinfections. Nevertheless, TMEM

cells do not mediate protection only in presence of their cognate Ag.

When TMEM are ‘bathed’ in a highly inflammatory environment, they

are activated to produce more cytokines and cytotoxic granules such

as granzyme B. This ‘bystander activation’ of TMEM is Ag-

independent, but inflammation-dependent (149–152). Interestingly,

sepsis also impairs the Ag-independent functions of TMEM. In

response to a heterologous infection, upregulation of activation

markers and granzyme B was compromised in TCIRCM of CLP

hosts (135). Together, these results suggest sepsis impairs the Ag-

dependent and -independent functions of TCIRCM through

influencing T-cell intrinsic and extrinsic factors.

Due to their localization to NLTs and being shielded from the

damages of moderate cytokine storm, TRM maintain their numbers, and

their ‘sensing and alarm’ function as measured by IFN-g production in

response to Ag stimulation (Figure 2B, middle). Surprisingly, despite the

intact number and function of TRM in the post-septic host, the protective

capacity of TRM is diminished after moderate sepsis. In vaccina virus

(VacV)-immunemice that underwent either CLP or sham surgeries, CLP

hosts showed sustained high viral load and inability to clear VacV after

re-challenge (139). Interestingly, this finding is contrary to other data

suggesting TRM confer better protection than TCIRCM against VacV

reinfections (74). This difference raises the question as to how sepsis

diminishes the protective capacity of TRM despite their unchanged
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numbers and function. Subsequent investigation revealed that sepsis

decreases the ability of vascular endothelium to express chemokines and

adhesion molecules in response to TRM inflammatory cues (Figure 2B,

middle), resulting in the inefficient recruitment of effector cells to the site

of pathogen invasion and ultimately poor pathogen control (139). In

severe sepsis, the numerical decline of TRM further exacerbates the

diminished protection in localized reinfections (Figure 2B, right) (142).

Collectively, these results suggest sepsis diminishes TRM recall responses

through disrupting their ability to recruit effector cells.

How tissue-specific factors contribute to the resistance of TRM

cells to moderate sepsis-induced cell death and functional impairment

remains elusive. Blockade of TGF-b has been shown to render tumor

TRM cells more susceptible to radiation-induced numerical decline

(140); hence, the potential role of TGF-b signaling in maintaining

TRM number and function after moderate sepsis should be explored.

Additionally, the impact of sepsis on TRM cells within NLTs other

than skin and SLO TRM cells in draining LN should be further

investigated. While the data from our laboratory suggest that skin

TRM cells that are anatomically separated from circulation are

numerically and functionally protected from moderate sepsis, the

crosstalk of SLO TRM cells with circulatory factors and the increased

exposure of liver TRM cells to blood may increase the sensitivity of

SLO and liver TRM cells to sepsis-mediated numerical loss and

dysfunction. On the other hand, one could also argue for presence

of shared TRM-specific factors that protect TRM cells found in different

tissues from moderate sepsis regardless of their localization.

Our discussion so far has focused on describing the functional

impairments with the CD8 T cell compartment that ensue after septic

insult. While they shed light on factors contributing to the increased

susceptibility of septic hosts early after the insult, a noticeable percentage

of sepsis survivors suffer from long-lasting immunoparalysis. Our studies

on the TCIRCM pool long after sepsis suggest the impairment in cytokine

production after restimulation is resolved. In fact, a higher frequency of

TCIRCM from CLP hosts produce IL-2 in response to Ag stimulation

when examined 30 days post-sepsis. Increased IL-2 production aligns

with the enrichment of TCM in the TCIRCM pool at a late time post sepsis,

as these cells have better IL-2 production than TEM. However, the

preferential skewing of TCIRCM pool by cells with the greatest

proliferative capacity (i.e., 1° TCM) results in the reduced prevalence of

TCIRCM cells with greatest cytotoxic function (TEM and higher order

TCIRCM cells) (138, 144). Enrichment of TCM negatively impacted the

ability of CLP hosts to clear pathogens in a LM rechallenge model (144).

Additionally, recent studies have identified TEM as the population seeding

TRM pools (109). TCM overrepresentation may affect the maintenance of

the TRM pool by decreasing the supply of TEM. Overall, a memory pool

with a diverse (but balanced) subset of cells is needed for the host to

mount the most robust immune response possible. Enrichment of a

subset of TMEM at the expense of other subsets may substantially affect

the overall fitness of TMEM pool as each subset possesses a specialized role

and function.
Conclusion

Sepsis research has shifted focus to characterizing the factors leading

to the long-lasting state of immunoparalysis that emerges following the

resolution of acute phase of sepsis. Since sepsis survivors show increased
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susceptibility to secondary and recurring infections, these studies demand

an in-depth analysis of the impact of sepsis on memory lymphocytes –

the body’s most potent weapon in fighting against reinfections.

Circulating memory CD8 T cells undergo substantial numerical

attrition and functional impairment shortly after a septic insult

deriving the host susceptible to heterologous and homologous

reinfections. Additionally, tissue-resident memory CD8 T cells also

display a diminished ability in recruiting effector cells in response to

localized re-infections. Despite the apparent numerical recovery and per

cell function, circulatory memory CD8 T cells demonstrate long-lasting

changes in their transcriptional and epigenetic programs after sepsis

resolution, with the most proliferative subset being overrepresented over

time. Therefore, sepsis ultimately leads to altered subset composition and

reduced heterogeneity in memory CD8 T cells in the circulation. Further

investigation is required to delineate the long-term sepsis-induced

changes in function and maintenance of tissue-resident memory CD8

T cells.
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