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Dissecting order amidst chaos of
programmed cell deaths:
construction of a diagnostic
model for KIRC using
transcriptomic information in
blood-derived exosomes and
single-cell multi-omics data in
tumor microenvironment

Chengbang Wang1,2†, Yuan He3*†, Jie Zheng1,2†, Xiang Wang4*

and Shaohua Chen1,2*

1Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China,
2Guangxi Key Laboratory for Genomic and Personalized Medicine, Center for Genomic and
Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized
Medicine, Guangxi Medical University, Nanning, China, 3Department of Urology, The Second Nanning
People’s Hospital, Nanning, China, 4Department of Urology, Shanghai General Hospital, Shanghai Jiao
Tong University School of Medicine, Shanghai, China
Background: Kidney renal clear cell carcinoma (KIRC) is the most frequently

diagnosed subtype of renal cell carcinoma (RCC); however, the pathogenesis

and diagnostic approaches for KIRC remain elusive. Using single-cell

transcriptomic information of KIRC, we constructed a diagnostic model

depicting the landscape of programmed cell death (PCD)-associated genes,

namely cell death-related genes (CDRGs).

Methods: In this study, six CDRG categories, including apoptosis, necroptosis,

autophagy, pyroptosis, ferroptosis, and cuproptosis, were collected. RNA

sequencing (RNA-seq) data of blood-derived exosomes from the exoRBase

database, RNA-seq data of tissues from The Cancer Genome Atlas (TCGA)

combined with control samples from the GTEx databases, and single-cell RNA

sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO)

database were downloaded. Next, we intersected the differentially expressed

genes (DEGs) of the KIRC cohort from exoRBase and the TCGA databases with

CDRGs and DEGs obtained from single-cell datasets, further screening out the

candidate biomarker genes using clinical indicators and machine learning

methods and thus constructing a diagnostic model for KIRC. Finally, we

investigated the underlying mechanisms of key genes and their roles in the

tumor microenvironment using scRNA-seq, single-cell assays for transposase-

accessible chromatin sequencing (scATAC-seq), and the spatial transcriptomics

sequencing (stRNA-seq) data of KIRC provided by the GEO database.
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Result: We obtained 1,428 samples and 216,155 single cells. After the rational

screening, we constructed a 13-gene diagnostic model for KIRC, which had high

diagnostic efficacy in the exoRBase KIRC cohort (training set: AUC = 1; testing

set: AUC = 0.965) and TCGA KIRC cohort (training set: AUC = 1; testing set:

AUC = 0.982), with an additional validation cohort from GEO databases

presenting an AUC value of 0.914. The results of a subsequent analysis

revealed a specific tumor epithelial cell of TRIB3high subset. Moreover, the

results of a mechanical analysis showed the relatively elevated chromatin

accessibility of TRIB3 in tumor epithelial cells in the scATAC data, while stRNA-

seq verified that TRIB3 was predominantly expressed in cancer tissues.

Conclusions: The 13-gene diagnostic model yielded high accuracy in KIRC

screening, and TRIB3high tumor epithelial cells could be a promising

therapeutic target for KIRC.
KEYWORDS

kidney renal clear cell carcinoma, programmed cell death, exosomes, single-cell RNA
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Introduction

Renal cell carcinoma (RCC) is the most prevalent solid kidney

lesion, accounting for 90% of renal malignancies (1) and 3% of all

cancers (2). Kidney renal clear cell carcinoma (KIRC) is the most

frequently diagnosed pathological classification, occupying about

80% of RCC (3). Despite the relatively favorable KIRC prognosis,

with a 5-year survival rate of 75%, almost 30% of locally advanced

cases will relapse with a locoregional recurrence or distant

metastases (4, 5). The past decade has certainly witnessed

remarkable advances in the characterization of KIRC

management and research; nonetheless, much remains to be

elucidated regarding the disease’s pathogenesis and underlying

mechanism, and research into the identification of diagnostic

approaches for KIRC is in its infancy. In this scenario,

constructing a novel clinical model spanning screening, diagnosis,

and prognosis predictions is of tremendous significance to clinical

settings and provides novel insights into precision medicine

therapeutic decisions.

In recent years, programmed cell deaths (PCDs) have generated

holistic attention for researchers due to their inestimable potential

in diagnostic biomarkers and therapeutic targets in cancer. Several

PCD types have been identified, including apoptosis, necroptosis,

autophagy, pyroptosis, ferroptosis, and cuproptosis, all considered

cell-dependent and orderly cell death regulated by certain genes,

with the purpose of homeostasis preservation and clearance of

abnormal cells (6). PCDs are dynamically plastic, exert a dual role in

distinct contexts and stages of cancer development (7), and are

tightly regulated by spatiotemporal gene expression modulation.

Unambiguous evidence suggests that KLF2 deficiency contributes to

the suppression of ferroptosis and promotes the progression and

metastasis of RCC cells (8). Similarly, Peng et al. demonstrated that
02
silencing key autophagy-related genes could promote anoikis

resistance and lung colonization of hepatocellular carcinoma

(HCC) cells (9). Recent research advances and efforts in PCDs

have predisposed to a significant growth in our understanding of

the pathomechanisms of various cancer types, including KIRC.

However, such studies have been hampered by a single PCD type or

limitations in experimental approaches, which obscure the subtle

yet essential regulatory mechanisms underlying the surface.

Encouragingly, the emergence of blood-derived exosomes

provides a new perspective on the mechanisms of cellular

interactions in the tumor microenvironment (TME) and the

search for tumor diagnostic biomarkers. Exosomes are cell-

derived nano-vesicles, ranging from 30 to 150 nm in diameter,

that transfer RNA, proteins, lipids, and metabolites to recipient cells

in the body (10). Initially, exosomes were thought to be the inert

debris produced by cells to dispose of wastes. As the study of

exosomes deepened, it was gradually discovered that they are

involved not only in antigen presentation, cell differentiation, and

immune response but also in tissue inflammation, virus

transmission, migration, and tumor cell invasion (11–13). A study

by Zhang et al. found that the exosomal miR-522 secreted by

cancer-associated fibroblasts inhibited ferroptosis in cancer cells

by targeting ALOX15 and compromising lipid peroxide

accumulation (14). Moreover, a study by Shen et al. reported that

exosomes secreted by pancreatic cancer cells were taken up by T

lymphocytes, which activated p38 MAPK and then induced

endoplasmic reticulum stress-mediated apoptosis, ultimately

causing immunosuppression (15). The abovementioned studies

demonstrate the intimate association between PCDs and

exosomes in TME. Existing studies, however, were conducted in

biological assays devoid of a cellular microenvironmental context,

which may result in unduly artificial outcomes. The link between
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PCDs and exosomes in the TME of KIRC is poorly understood as

are the regulating processes.

The emergence of single-cell RNA sequencing (scRNA-seq)

technology can partially solve the abovementioned problems. As a

high-resolution tool, it overcomes the limitations of traditional bulk

sequencing. It enables a breakthrough in the problem of exosomal

mRNA traceability at the single-cell level by combining single-cell

assays for transposase-accessible chromatin sequencing (scATAC-

seq) and spatial transcriptomics sequencing (stRNA-seq) to study

epigenetic regulation and observe the spatial distribution of key

genes at single-cell resolution, synergistically uncovering molecular

mechanisms at higher levels.

In the present study, we collected PCD-related genes,

specifically (CDRGs), along with scRNA data and the KIRC

cohort from The Cancer Genome Atlas (TCGA) database, to

investigate the relationship between KIRC and PCD development.

Meanwhile, we deciphered the blood-derived exosome

transcriptome data to construct a gene model for clinical

diagnosis and validated the diagnostic efficacy in KIRC cohorts by

machine learning methods. Finally, we explored the mechanisms of

these genes in the KIRC progression by scATAC data and cellular

interaction network analysis. The abovementioned results support

the clinical diagnosis and treatment decisions in KIRC. The dataset

information and workflow of the presented study are shown

in Figure 1.
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Materials and methods

Acquisition of gene lists and
multi-omics datasets

Six PCD categories were included, and their respective related

genes, namely CDRGs, were collected. Among these, apoptosis- and

necroptosis-related genes were collected from Deathbase (http://

deathbase.org/), comprising proteins and corresponding coding

genes of typical PCDs. Autophagy-related genes were collected

f rom Human Autophagy Da taba s e (HADb ; h t tp : / /

www.autophagy.lu). Ferroptosis- and pyroptosis-related genes

were collected from Ferroptosis Database (FerrDb; http://

www.zhounan.org/ferrdb) and published literature (16).

Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genome (KEGG) databases were also used to extract

the associated genes in the PCDs mentioned above. The pyroptosis-

related genes were derived from the GO database and published

literature (17), while the cuproptosis-related genes were only

obtained from published literature (18). Details of the CDRGs are

listed in Supplementary Table S1.

A total of 11 independent datasets were included in this study,

containing eight single-cell datasets, two bulk RNA-seq datasets of

tissues, and bulk RNA-seq datasets of blood-derived exosomes.

Data from eight single-cell datasets, included five scRNA-seq data
FIGURE 1

The dataset information and workflow of the presented study.
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of KIRC, para-carcinoma, and healthy tissues from nephrectomy or

biopsies, are shown below: GSE131685 (n = 3), GSE140989 (n = 24),

GSE139555 (n = 6), GSE156632 (n = 12), and GSE152938 (n = 3);

one spatial transcriptome dataset of KIRC was derived from the

GEO database with accession number GSE175540; two datasets

contained five scATAC healthy kidney data and three scATAC

KIRC data, which were downloaded from GSE151302 and the

National Center for Biotechnology Information Sequence Read

Archive under accession number PRJNA768891, respectively.

Meanwhile, two bulk RNA-seq data of tissues of the TCGA-KIRC

cohort with associated clinical information (n = 613) were

downloaded from the TCGA (https://portal.gdc.cancer.gov/)

databases, combined with the normal kidney tissue data

downloaded from the GTEx portal (www.gtexportal.org). The

other bulk transcriptomic data of KIRC cohort provided by the

GEO database was used as an additional validation cohort with

accession number GSE167093 (n = 656); one bulk transcriptomic

data of blood-derived exosome was downloaded from the exoRbase

database (http://www.exorbase.org/, n = 133).
scRNA-seq data analysis

Fastq files were processed using Cell Ranger (version 6.1.2, 10x

Genomics) with default parameters and mapped to 10x human

transcriptome GRCh38-2020 (https://support.10xgenomics.com/

single-cell-gene-expression/software/downloads/latest). Seurat

(version 4.2.0) was used to process single-cell data for the

following analyses. We filtered out low-quality cells with less than

400 or more than 5,000 total genes expressed or with more than

30% mitochondrial RNA contents. SCTransform, RunPCA, and

RunUMAP functions were used for normalization and

dimensionality reduction, respectively (19). In addition, harmony

(version 0.1.1) was used to correct batch effects between different

arrays (20). FindNeighbors and FindClusters functions were then

used to differentiate the cell clusters with the dimensions and

resolution parameters of 1:25 and 0.8, respectively. scHCL

(version 0.1.1), SingleR (version 1.10.0), and ScType (https://

github.com/IanevskiAleksandr/sc-type) packages were used to aid

in the identification of cell subpopulations, and cluster-specific

marker genes were identified by the FindAllMarkers function of

Seurat package (logfc.threshold = 0.25, min.pct = 0.1).
scATAC-seq data analysis

scATAC-seq was processed by Cell Ranger -atac-2.1.0 using

default parameters and mapped to 10x human transcriptome

GRCh38-2020 (https://support.10xgenomics.com/single-cell-gene-

expression/software/downloads/latest). Signac (version 4.2.0, 10x

Genomics) was used to analyze the output of the Cell Ranger ATAC

pipeline. Low-quality cells were removed based on the following

criteria: nucleosome signal score of less than 4 and transcriptional

start site enrichment score of more than 3. RunTFIDF function was

used for normalization, while RunSVD and RunUMAP were used

for linear and nonlinear dimensional reductions, respectively (21).
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harmony (version 0.1.1) was likewise used to correct batch effects

between arrays (20). Gene activity was quantified via the

GeneActivity function in Signac, including the 2 kb upstream of

the transcriptional start site and gene body.
stRNA-seq data analysis

stRNA data was analyzed through Seurat (version 4.2.0). Spatial

spots featuring less than 300 genes or more than 30% of

mitochondrial genes were filtered out. Raw counts were

normalized with the SCTransform function of Seurat with the

assay of the spatial parameter. RunPCA and RunUMAP functions

were used for dimensionality reduction.
Bulk RNA-seq data processing

We used stringr (version 1.4.1) and stats (version 4.2.1) in R

language to integrate the data of KIRC dataset from the TCGA

database and the control samples from the GTEx database as well as

the raw data matrix of KIRC downloaded from the GEO database.

The data were collated and filtered under the following conditions:

(1) genes detected in all samples were retained, (2) genes with sum of

counts across all samples less than 2.5 were excluded from further

analyses, (3) genes with an average expression higher than 0 in at least

80% of the tumor or control samples were retained, (4) the expression

levels of duplicated genes in the data matrix were averaged, and (5)

batch effects between the TCGA and GTEx databases were corrected

using the ComBat function from sva (version 3.44.0) package.
Identification of differentially
expressed genes

Differential gene expression analysis in single-cell datasets was

performed using the FindMarkers function in the Seurat package

with P-value <0.05 and |log2FC| >0.25 as cutoff criteria. DESeq2

(version 1.36.0), limma (version 3.52.4), and edgeR (version 3.38.4)

packages were used for the identification of DEGs in the TCGA

KIRC cohort, with P-value <0.05 and |log2FC| >1 as the thresholds.

In the bulk RNA-seq data of blood-derived exosomes, differentially

expressed genes (DEGs) were recruited using |log2FC| >0.5 and P-

value <0.05. The intersection analysis of DEGs between different

datasets was visualized using the UpSetR (version 1.4.0) package.

We then used ggplot2 (version 3.3.6) to visualize the expression

differences and expression of key genes by means of bubble plots

and heat maps.
Gene Ontology analysis and
Kyoto Encyclopedia of Genes
and Genomes analysis

GO function enrichment analysis and KEGG pathway

enrichment analysis of the target genes in RNA-seq were
frontiersin.org
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performed using R package clusterProfiler (version 4.4.4). The

results were filtered with a P-value of 0.05.
Correlation analysis between the target
genes and clinical parameter

ggpubr (version 0.4.0) package was loaded to perform the

correlation analysis of target genes with clinical parameters using

the stat_compare_means function, thereby visualizing data with

boxplots using ggplot2 package. GEPIA2.0 (http://gepia2.cancer-

pku.cn/#index, accessed on December10, 2022), a platform for

TCGA data visualization, was also utilized to evaluate the effect of

candidate biomarker genes on overall survival in KIRC and to create

Kaplan–Meier survival curves. It was also used to analyze the

correlat ions between candidate biomarker genes and

clinical indicators.
Machine learning analysis

We used stratified random sampling to divide exoRBase KIRC

into a training set and a testing set in a ratio of 3:2. The training set

was used to construct the random forest classification model, and

the testing set was used to validate the model further. The

constructed model’s performance was assessed by calculating the

area under the curve (AUC) value. The same approach was used for

the TCGA KIRC cohort merged with GTEx samples to observe the

diagnostic efficacy of key genes in the tissue. The abovementioned

process was performed using the tidymodels (version 1.0.0) and

pROC (version 1.18.0) R packages.
Cell–cell interaction network analysis

Intercellular interaction analysis was conducted using CellChat

(version 1.5.0) (22), based on which we could identify the potential

ligand–receptor interactions according to the expression pattern of

ligands in one cell subtype and their corresponding receptors in the

other cell subtypes.
Reconstructing TRIB3high tumor cell
differentiation trajectories by Monocle2

Fate decisions and pseudotime trajectories of TRIB3high tumor

cells were reconstructed using the Monocle2 R package (version

2.24.1). First, tumor epithelial cells were selected by Seurat, and

16,747 tumor cells were imported into Monocle2 with a lower

detection limit parameter of 0.5. Subsequently, we performed

differential gene expression analysis using the differentialGeneTest

function and retained DEGs with q-value <0.01 as sorted gene sets

and performed descending dimensionality and trajectory analysis.

We finally determined the direction of the cell differentiation

trajectory by the cell stemness-related gene CD44 and visualized

the trajectory results using the plot_cell_trajectory function.
Frontiers in Immunology 05
Statistical analysis

The categorized variables between groups were compared using

Wilcoxon test, and a correlation analysis between different cell

subtypes was performed using Spearman correlation test. A P-value

less than 0.05 was considered to indicate statistical significance. R

language (version 4.2.1; http://www.r-project.org/) was used for

data analyses and figure generation unless indicated otherwise.
Results

Transcriptome information of KIRC in
multiple tissue sources

We started our investigations with the KIRC expression profiles

at single-cell resolutions. We assembled 48 KIRC cases from five

independent datasets provided by the GEO database. These were

containing cancer, para-carcinoma, and healthy tissues from

nephrectomy or biopsies. After the implementation of stringent

quality control, 216,155 single cells from five independent datasets

were retained for the following analyses. The sample information

and quality control data are shown in Supplementary Table S2 and

Supplementary Figures S1A, B. Having processed with the Seurat

package and removed the batch effect, 54 cell clusters

(Supplementary Figures S2A–C) and 10 main cell types were

identified, including tumor epithelial cell, normal epithelial cell,

endothelial cell (Endo), fibroblast (Fib), T cell, B cell, macrophage

(Mac), monocyte (Mono), natural killer cell (NK), and basophil

(Baso), thus visualized through uniform manifold approximation

and projection (UMAP) (Figure 2A). The marker genes of each cell

cluster are shown in Supplementary Table S3. The specific markers

and relative abundance for the main cell types are shown in

Figure 2B. Specifically, epithelial cells dominated all major cell

compartments, with tumor epithelial cells expressing the

canonical markers of CA9 coming exclusively from tumor tissues

and normal epithelial cells having multiple origins. The

distributions for each main cell type and their origins were

visualized using UMAP (Figure 2C). Subsequently, we explored

the DEGs between the cancer and control samples of various major

cell types based on their expression profiles (Supplementary Table

S4), with the bar plots indicating the exact counts of upregulated

and downregulated DEGs and the pie plots manifesting their

corresponding categories in the KEGG pathways (Figure 2D),

most of which belong to “human disease”. Intriguingly, the

highest DEG number was presented between tumor and normal

epithelial cells, followed by DEGs between Endo and Fib between

cancer and control samples (Figure 2D), demonstrating the

dramatic alterations of structural cells in transcriptome and their

essential stages in tumorigenesis.

Next, we further dissected the transcriptome landscape of KIRC

based upon the TCGA cohort merged with healthy samples in

GTEx (Figure 2E), revealing 4,604 upregulated and 2,073

downregulated DEGs in cancer tissues (Figure 2F; Supplementary

Table S5). An increasing body of unambiguous evidence denotes
frontiersin.org
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the role of cancer cell-derived exosomes of patients on the course of

epithelial–mesenchymal transition and metastasis in KIRC (23, 24),

thus making it a promising diagnostic and prognostic KIRC

biomarker. As such, we then analyzed the RNA-seq data of

human blood-derived exosomes of healthy controls and KIRC

patients using the exoRBase database, with UMAP showing

complete separations between cancer and control samples

(Figure 2E), and the differential gene expression analysis yielded a

total of 1,723 DEGs (Figure 2F; Supplementary Table S6). Notably,

the KEGG functional enrichment analyses between groups

elucidated that such DEGs were mainly enriched in cell cycle,

apoptosis, cancer, and immune-related signaling pathway

(Supplementary Figures S3A, B). In a nutshell, we investigated the

transcriptome data of tissue- and blood-derived exosomes of KIRC

patients and corresponding controls exhaustively, combining them

with DEGs of various cell types based on scRNA data, thereby

laying the groundwork for a subsequent analysis to identify

disease biomarkers.
The expressed pattern of CDRGs in KIRC

As planned, six kinds of PCDs, including apoptosis, necroptosis,

autophagy, pyroptosis, ferroptosis, and cuproptosis, and their

related genes, namely CDRGs, showing commonalities and

specificities were included (Figure 3A). However, we were unable

to uncover any genes that were shared by all PCD categories, but the

number of genes shared by ferroptosis and autophagy was very

high. As depicted in Figure 3B, most CDRGs were upregulated

DEGs in single-cell and RNA-seq datasets. However, the
Frontiers in Immunology 06
proportions of downregulated DEGs were very low in such

datasets, with most of them belonging to the autophagy,

apoptosis, and ferroptosis pathways. Such a phenomenon raised

an illustrative assertion: the expression levels of CDRGs were

enhanced in varying degrees. Notwithstanding, this explicit

demonstration of the eye-catching alterations of such genes

implicitly proposed the question of what specialized roles they

played in TME.

Next, we intersected the upregulated (Figure 4A) and

downregulated (Figure 4B) DEGs in exoRBase KIRC with CDRGs

and DEGs obtained from single-cell and TCGA datasets to screen

for the candidate biomarker genes. Herein we retained the

differentially expressed CDRGs between the exoRBase and TCGA

databases or differentially expressed CDRGs between the exoRBase

and single-cell datasets, thereby acquiring 53 candidate biomarker

genes. Notably, 20 genes were upregulated (Figure 4C), and 33

genes were downregulated in the blood-derived exosomes of KIRC

patients (Supplementary Figure S4A). Concomitantly, such

differentially expressed trends of candidate biomarker genes were

largely consistent in the TCGA datasets and single-cell datasets of

epithelial cells, Endo, and Fib, namely structural cells. Such

discoveries denoted the pivotal role of exosomes in orchestrating

the dialog with neoplastic cells and profoundly influencing the

TME alteration.

Following are the correlations between 53 candidate biomarker

genes and clinical markers. The results indicated that 32 out of 53

genes were closely associated with patients’ clinical stages or

survival outcomes, functioning doubly as a risk or protective

factor in KIRC (Figure 4D). Moreover, ferroptosis- and

autophagy-related genes account for 32 genes, with a small
B

C

D

E

F

A

FIGURE 2

Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (RNA-seq) profiling of kidney renal clear cell carcinoma (KIRC). (A) Uniform
manifold approximation and projection showing the 10 major cell clusters in the scRNA-seq datasets. (B) Marker genes and proportions of sample
origins for the 10 major cell clusters of the scRNA-seq datasets. (C) Distribution characteristics of the 10 major cell clusters in the scRNA-seq
datasets. (D) Barplots showing the counts of differentially expressed genes (DEGs) between the cancer and control samples of each cell cluster in
the scRNA-seq datasets. (E) Distribution characteristics of The Cancer Genome Atlas (TCGA) KIRC cohort merged with control cases from the GTEx
database (left) and exoRBase KIRC cohort (right) containing the RNA-seq data of blood-derived exosomes of patients. (F) Barplots showing the
counts of DEGs between the KIRC and healthy cases of TCGA KIRC and exoRBase KIRC cohorts. The pie plots at the top of the bar show the Kyoto
Encyclopedia of Genes and Genomes pathway enriched by each group of DEGs.
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proportion of genes belonging to apoptosis and necroptosis.

Thereinto, 13 out of 32 genes were simultaneously related to the

clinical stages and survival outcomes of KIRC (Supplementary

Figure S4B and Supplementary Figure S5), including PIP4K2C,

FIS1, PSAT1, ERBB2, TRIB3, CLU, GABARAPL2, LRBA, PCK2,

CDKN1A, FKBP1A, MAP1LC3B, and ITGA6, which are subject to

the following analysis.

PSAT1, a risk factor in KIRC, had contradictory expression

patterns in blood-derived exosomes and tissues, with the former

displaying an elevated expression level and the latter displaying a

downregulated expression level. Such phenomena are reminiscent

of the connections between exosome releasing and signaling

reception of neoplastic cells, possibly contributing to the

alteration of expression profiles in TME and the emergence of

mal ignant cancer phenotypes (25) . In summary, we

comprehensively explored the CDRG expression pattern in KIRC,

based on which we carried out the correlation analyses of candidate
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marker genes with clinical indicators, identifying 13 key genes

linked with survival outcomes and clinical stages of KIRC cases.
Validation of the 13-gene diagnostic model
and mechanism explorations

Next, we used 13 key genes to construct a diagnostic model for

KIRC, as previously described in the “Materials and methods”.

Specifically, we randomly stratified all samples from the exoRbase

database into two groups (training set and the testing set) with a

ratio of 3:2 for cross-validation. Encouragingly, the 13-gene

diagnostic model presented outstanding discriminatory ability in

the KIRC datasets of the exoRbase database (Figure 5A), with AUC

values of 1 and 0.965 in the training and testing sets, respectively.

Similarly, the model constructed with 13 genes in the TCGA KIRC

cohort showed promising diagnostic results, with AUC values of 1
B

C DA

FIGURE 4

Screen for candidate biomarker genes. (A) UpSet plots showing the intersection analysis among cell death-related genes (CDRGs), differentially
expressed genes (DEGs) in exoRBase kidney renal clear cell carcinoma (KIRC) cohort, upregulated DEGs in The Cancer Genome Atlas (TCGA) KIRC
cohort, and scRNA datasets. (B) UpSet plots showing the intersection analysis among CDRGs, DEGs in the exoRBase KIRC cohort, downregulated
DEGs in the TCGA KIRC cohort, and scRNA datasets. (C) The bubble plots show 20 candidate biomarker genes upregulated in the exoRBase KIRC
cohort and their expression pattern in other datasets. Red circles represent positive logFC values or upregulated DEGs in corresponding datasets,
while blue circles represent negative logFC values or downregulated DEGs in corresponding datasets; the bubble size indicates negative log10(P-
value). (D) Heat map showing the expression levels of 53 candidate biomarker genes in the exoRBase KIRC cohort, with red color indicating relatively
high expression and blue color indicating relatively low expression levels. The column annotations on the left side represent the programmed cell
death classification of the candidate biomarker genes. The two annotated columns on the right side show the correlation of candidate biomarker
gene expression with the survival outcome and clinical stage of the TCGA KIRC cohort, respectively. Red color represents the gene as a risk factor,
and blue color represents a protective factor in the prognosis of KIRC cases.
BA

FIGURE 3

Distribution characteristics of programmed cell deaths in kidney renal clear cell carcinoma (KIRC). (A) UpSet plot showing the intersection analysis of
the six types of cell death-related genes (CDRGs). (B) Distribution characteristics of the differentially expressed genes (DEGs) in single-cell RNA
sequencing, The Cancer Genome Atlas KIRC, and exoRBase KIRC cohorts and their shared genes with six classes of CDRGs. The top bar plot
represents the counts of DEGs shared CDRGs, and the bottom bar plot shows the relative abundance of CDRGs in DEGs of all the groups.
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and 0.982 in the training and testing sets, respectively (Figure 5B).

Furthermore, GSE167093, provided by the GEO database

containing 656 KIRC cases, was used as an additional validation

cohort, exhibiting a tremendously high diagnostic accuracy with an

AUC value of 0.914. The findings unequivocally demonstrated that

the 13-gene diagnostic model was very stable and trustworthy in

detecting KIRC, regardless of whether the sample was taken from

blood-derived exosomes or solid tissue, and ensured high sensitivity

and specificity. Moreover, the differentially expressed trend in

blood-derived exosomes may provide an instant advantage in

liquid biopsy analyses for biomarker evaluations, reducing the

sampling inconveniences and hazards.

Nevertheless, the molecular basis for the 13-gene diagnostic

model has not been addressed. Such combinations of genes derived

from the transcriptomic data of exosomes and various cell subtypes

are not as simple as they may seem. The crosstalk behind the

cellular identities and their exosomes confers intriguing

information about the KIRC pathogenesis. Thus, we then focused

on studying the epigenetic profile of KIRC in scRNA and scATAC

data to uncover the role of such genes in transcriptome and

epigenetic regulation at single-cell resolutions. We discovered the

abnormal expression pattern of such genes in distinct cell types

based on scRNA data, especially for CLU, CDKN1A, PSAT1, and

MAP1LC3B, which are differentially expressed in virtually all cell

types (Supplementary Figure S6). Then, we analyzed 63,489 cells in

the scATAC datasets of KIRC cases, identifying 15 main cell types

based on the average promoter activity of representative marker

genes (Figures 5C, D). Of particular interest is the fact that we found

that TRIB3 expression was higher in tumor epithelial cells referred

to normal epithelial cells. At the same time, its chromatin

accessibility was significantly increased compared with the normal
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PT cell cluster (Figure 5E), a common type of epithelial cell in

the kidney.
Comprehensive descriptions of TRIB3high

tumor epithelial cells

Next, we investigated the TRIB3 influence in TME and its

corresponding cell subset. The subsequent analysis of TRIB3

demonstrated that this gene was positively associated with TNM

staging of KIRC (Figures 6A–C), implying its adverse role in the

survival outcome of KIRC, which could be the leading contributor

to the metastasis of cancer cells. Therefore, our analysis focused on

understanding the TRIB3 role in specific phenotypes of tumor

epithelial cells, the latter of which was exacted from scRNA datasets

and further visualized after dimensionality reduction. Notably, the

TRIB3high subset was presented in scattered tumor epithelial cells

(Figure 6D) and shared a much higher resemblance to PT (R =

0.864) (Figure 6E). In addition, the pseudotime analysis indicated

that such a cell subset could be a primitive cancer stem cell

(Figure 6F) as evidenced by the relatively high expression of the

cancer stem cell biomarker CD44 (Supplementary Figure S7) (26).

The cell–cell communication analysis suggests that TRIB3high

tumor cells interact more extensively and strongly than other cell

types, particularly for interactions with Mac and T cells (Figure 6G,

Supplementary Figure S8). At the same time, the high expression of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) may predict

a strong exosome assembly and aggregation capacity for this cell

type (Supplementary Figure S7) (27). The results of the cell–cell

interaction network analysis disclosed the higher interactions of

TRIB3high tumor epithelial cells with other cell types in certain
frontiersin
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FIGURE 5

Construction of 13-gene diagnostic models and single-cell assays for transposase-accessible chromatin (scATAC-seq) analysis. (A) Receiver-
operating characteristic (ROC) curve analysis of a 13-gene diagnostic model based on exoRBase kidney renal clear cell carcinoma (KIRC) cohort,
with the red curve representing the training set and the blue curve representing the testing set. (B) ROC curve analysis of a 13-gene diagnostic
model based on The Cancer Genome Atlas KIRC combined with GTEx cohort and KIRC cohort from the GEO database with accession number
GSE167093, with the former treated as the training set (red) and the testing set (blue). In contrast, the latter was an additional validation cohort
(purple). (C) Uniform manifold approximation and projection plot showing the 14 cell clusters in the scATAC-seq analysis (D) Bubble plots showing
the marker genes for each cell cluster in scATAC-seq. (E) CoveragePlot showing the peak–gene links for TIRB3.
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ligand–receptor pairs, spanning CD70-CD27, CLEC2B-KLRB1,

CD99-CD99, COL6A2-CD44, COL6A2-SDC4, PGD-VEGFR1,

and PROS1-AXL, suggesting that the TRIB3high subset showed

stronger local interactions with other major cell types

(Supplementary Figure S9), which could predispose to an

increased ability of induction and reprogramming of extrinsic

phenotypic features, thereby reshaping the overall TME.

TRIB3high tumor epithelial cells were mainly enriched in

apoptosis, ferroptosis, ribosome, and lysosome signaling pathways

compared with other cell clusters (Figures 7A, B). Lastly, the spatial

transcriptomic analysis confirmed that the TRIB3high subset is

highly enriched in tumor tissues (Figure 7C).
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Discussion

PCDs are fundamental and intricate biological processes in

various physiological and pathological events. Evidence

persuasively denotes that PCDs are critical regulators in cancer

development and progression (28, 29), and key factors in various

PCDs have been progressively appreciated, thus applying them in

the identification of tumor diagnosis and treatment (30–33). Many

association studies between KIRC and PCD have emerged in recent

years. However, the different types of PCDs are compartmentalized

studies, and there is a dearth of pertinent, comprehensive

investigations, particularly in KIRC. In this study, we discovered
B CA

FIGURE 7

Functional analysis and spatial localization of TRIB3high tumor cells. (A) Gene Ontology enrichment analysis for upregulated differentially expressed
genes (DEGs) in TRIB3high tumor cells. (B) Kyoto Encyclopedia of Genes and Genomes pathway analysis for upregulated DEGs in TRIB3high tumor
cells. (C) Visualization of TRIB3high tumor cells in kidney renal clear cell carcinoma spatial transcriptome tissue sections.
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FIGURE 6

Clinical characteristics of TRIB3 expression in kidney renal clear cell carcinoma (KIRC) patients and characterization of the TRIB3high tumor cell
subset. (A–C) The box plot shows the correlation between TRIB3 expression and T classification, N classification, and M classification in KIRC
patients. (D) Uniform manifold approximation and projection plot indicating the distribution pattern of TRIB3high tumor cells. (E) Heat map showing
the correlation between various cell types using the Spearman method; the colors represent the strength of the correlation. (F) Pseudotime analysis
of TRIB3high tumor cells. The direction of the arrow indicates the differentiation trajectory. (G) Signaling role analysis showing the aggregated cell–
cell communication networks from all signaling pathways. The shades of color represent the relative strength of cellular communication.
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significant alterations in the CDRG expression levels in KIRC

tissues. Such changes are not merely present in the tumor

epithelial cell emphasized by traditional studies; similar shifts

were also observed in other structural cells and immune cells in

the TME, most of which belong to autophagy, apoptosis, and

ferroptosis. The landscape of diagnostic and therapeutic targets

for PCD, as indicated by in vitro and in vivo data, continues to

evolve, making this an unquestionably fruitful area of research. Ma

et al. substantiated that silibinin could induce apoptosis by

inhibiting the mTOR-GLI1-BCL2 pathway, thus markedly

suppressing the tumor growth of RCC (34), with an in vitro cell

line assay indicating that capsaicin pronouncedly inhibited the

migration and invasion of RCC by inducing autophagy through

the AMPK/mTOR pathway (35). Similarly, Heiker et al. clarified

that silencing the enzymes essential for the biosynthesis of

glutathione or glutathione peroxidase could initiate ferroptosis,

thus selectively compromising the KIRC cells’ viability without

any impact on the growth of non-malignant renal epithelial cells

(36). The results mentioned above noted that PCDs are highly

coordinated and regulate the cells’ survival state through various

signaling pathways, suggesting its potential as a therapeutic target

for RCC.

Currently, the preoperative diagnosis of KIRC heavily relies on

MRI/CT. Despite specific enhancement modes for KIRC,

misdiagnosis consistently happens in clinical settings (37),

imposing a socio-economic burden on healthcare systems

globally. Myriads of studies have identified novel diagnostic

biomarkers for kidney cancer, spanning long non-coding RNAs,

circulating tumor DNA, and circulating tumor cells; despite this,

there is still scope for improvement in specificity as well as

sensitivity, and the clinical applicability of such emerging

biomarkers remains to be further validated (38–41). It is inspiring

that blood platelet and blood-derived exosome-based polygenic

models manifested excellent diagnostic efficacy, offering an

accessible complement to existing screening modalities (42–44).

Exosomes are secreted extracellularly by cytosolic fusion with the

plasma membrane, which plays an imperative role in shaping the

TME (45). Due to the nature of exosomes in mediating intercellular

communication and extensive existence in body fluids (e.g., blood,

saliva, and urine), they become an optimal surrogate in cancer

diagnosis and therapeutic predictions, also presenting encouraging

results in clinical application (46–48). Wang et al. found that tumor

cells can reduce T cell activity by secreting exosomal PD-L1 and that

exosome inhibitors and ferroptosis inducers can effectively

counteract these characteristics and create tumor-specific

immunity (25). Zhang and colleagues elucidated that adenosine

activation of AKT and ERK signaling mediated by exosome secreted

by mesenchymal stem cells could contribute to the facilitation of

cartilage repair, thereby reducing apoptosis and modulating

immune responses (49). These findings demonstrate that PCDs

and exosomes are inextricably linked, indicating that further

exploration of the reciprocal activity of PCDs and exosomes in

the TME could be employed as a unique avenue for future research

into the KIRC pathogenesis.

Based on the transcriptome profiling of blood-derived

exosomes from KIRC patients, combined with transcriptomic
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information from the TCGA KIRC cohort and scRNA-seq data of

KIRC, we further screened out the candidate biomarker genes

among CRDGs by their correlation with clinical indicators, thus

uncovering 13 essential genes with diagnostic potential for KIRC.

Using machine learning and their cross-validation, the construction

of diagnostic models with 13 key genes showed high diagnostic

efficacy in both blood-derived exosome samples and tissue samples,

with AUC of 0.965 for blood-derived exosomes and AUC = 0.914

for tissue. The traceability analysis based on single-cell omics

showed that the expression and alterations of key genes presented

in multiple cellular identities in TME, especially in structural cells

and macrophages. TME is a highly heterogeneous ecosystem

constituted by cancer cells, fibroblasts, adipocytes, endothelial

cells, mesenchymal stem cells, and extracellular matrix (45, 50).

Notably, cancer cells could secrete exosomes to induce the

production of cancer-associated fibroblasts and cancer-associated

endothelial cells, thereby contributing to the remodeling of TME

(51–53). Comparably, stromal cells are competent in tumor

progression by stimulating and reprogramming cancer cells

through exosomes (54, 55). From a theoretical perspective, our

studies could accelerate the understanding of the identification of a

cancer biomarker, simultaneously facilitating the biological

interpretation of cancer biology in the multi-omic context.

Our study noted that the high TRIB3 expression, in one of the

genes in the 13-gene diagnostic model, was closely linked with

advanced clinical stage and worse prognosis in KIRC patients,

which is consistent with the findings of Hong et al., collectively

revealing its essential role in KIRC development and progression

(56). Meanwhile, the relatively elevated chromatin accessibility of

TRIB3 in tumor epithelial cells was manifested in the scATAC data.

At the same time, the stRNA-seq verified that TRIB3 was

predominantly expressed in cancer tissues, further justifying its

upregulated expression pattern in KIRC. The biological role of

TRIB3 is extensive. In addition to being associated with ferroptosis

(57), the upregulation of TRIB3 could suppress the process of

autophagy (58, 59). Furthermore, TRIB3 is implicated in the

carcinogenesis of a variety of cancers, with evidence indicating

that it could inhibit the degradation of FOXO1 and enhance SOX2

transcription, thus contributing to the carcinogenesis of breast

cancer (60) and induction of immune evasion by inhibiting the

STAT1–CXCL10 axis and impeding the CD8+ T cell infiltration in

colorectal cancer (61). Intriguingly, its relationship with exosomes

has also been investigated, indicating that TRIB3 could mediate the

impairment of autophagy and facilitate the secretion of INHBA/

Activin A-enriched exosomes of hepatocellular carcinoma, thus

resulting in the occurrence of liver fibrosis (59). On this basis, our

further analysis of the TRIB3high subset revealed that such cell

subtype interacts more extensively and strongly than the other cell

types, representing an optimized remodeling of the TME and

maintaining tumor progression. Functionally, the TRIB3high

tumor epithelial cell was highly enriched in ribosomes and PCD-

related pathways, representing its high metabolic demand, while its

high expression of CD44 suggests a high degree of stemness. Such

discoveries were validated in a study by Hua et al., elucidating that

TRIB3 interacts with b-catenin and TCF4 in intestinal cells, thereby

increasing the expression of cancer stem cell-related genes (62).
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Meanwhile, it was shown that a high expression of the GAPDH

plays a facilitating role in the assembly and secretion of exosomes by

cells (27), which is consistent with the TRIB3high tumor epithelial

cells, and this is probably a potential mechanism for the regulation

of TME of such subset.

To the best of our knowledge, the present study portrays the

first landscape of PCDs in KIRC and further explores the identified

biomarkers’ diagnostic role and biological functions. Nevertheless,

our study still has some unavoidable shortcomings. First, the

diagnostic model needs to be further validated by expanding the

validation cohort; second, additional experimental tools are needed

further to investigate the physiopathological mechanisms of the

relevant molecules; and finally, the therapeutic potential of such

biomarkers remains to be further elucidated. In conclusion, the

exosome is an essential mechanism to determine cell fate in

addition to cell surface ligand–receptor interaction, which could

be the game-changer in shaping the TME. In this study, we

constructed a diagnostic model based on PCD-related genes.

Furthermore, we validated the diagnostic efficacy in multiple

KIRC cohorts, subsequently exploring the mechanism through

single-cell omics, thus providing a novel perspective for the early

diagnosis of KIRC and facilitating the understanding of the

mechanisms of KIRC.
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SUPPLEMENTARY FIGURE 1

Quality control (QC) for scRNA-seq data. (A) Violin plot showing the number
of genes, unique molecular identifiers (UMIs), and the percentage of

mitochondrial genes of each sample before QC. (B) Violin plot showing the
number of genes, UMIs, and the percentage of mitochondrial genes of each

sample after QC.

SUPPLEMENTARY FIGURE 2

Single-cell RNA sequencing (scRNA-seq) profiling of kidney renal clear cell
carcinoma (KIRC). (A) Uniform manifold approximation and projection

(UMAP) plot presenting the cell clusters of scRNA-seq. (B) UMAP plots
showing the data sources of scRNA-seq. (C) UMAP plots presenting the 17

cell clusters of scRNA-seq.

SUPPLEMENTARY FIGURE 3

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis of differentially expressed genes (DEGs) between different datasets.

(A) KEGG pathway enrichment for upregulated DEGs. (B) KEGG pathway
enrichment for downregulated DEGs. The visualized results were the top 30

intersectional enriched terms of the pathways between the datasets. The red
bubble represents the enrichment terms of upregulated DEGs (left), and the

blue bubble represents the enrichment terms of downregulated DEGs (right).

Shades of color in the bubble indicate negative log10(P-value), and the
bubble sizes indicate the number of genes enriched in the pathway.

SUPPLEMENTARY FIGURE 4

Screen for the candidate biomarker genes. (A) Bubble plots showing the 33
candidate biomarker genes that were downregulated in the exoRBase kidney

renal clear cell carcinoma (KIRC) cohort and their expression pattern in other
datasets. Red circles represent positive logFC values or upregulated DEGs in

the corresponding datasets, while blue circles represent positive logFC values

or downregulated DEGs in the corresponding datasets. The bubble size
indicates negative log10(P-value). (B) The survival analysis results indicated

that 21 candidate biomarker genes were significantly associated with the
overall survival of KIRC cases based on the GEPIA database.

SUPPLEMENTARY FIGURE 5

Correlation analysis of the clinical stage of kidney renal clear cell carcinoma

patients for candidate biomarker genes. The patients were grouped
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according to stages I–IV. The differences in the expression of candidate
biomarker genes were compared between groups, and P <0.05 genes

were retained.

SUPPLEMENTARY FIGURE 6

A total of 13 genes in 10 main cell clusters. Violin plot showing the differential
analysis of key genes in various cell clusters.

SUPPLEMENTARY FIGURE 7

Violin plot showing the differential analysis of CD44 and GAPDH in tumor

cells versus TRIB3high tumor epithelial cells.
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SUPPLEMENTARY FIGURE 8

Analysis of cell–cell signal interaction pathway networks for cell clusters. Circos
plot showing putative ligand–receptor interactions between each cell cluster,

with theweight of interactions indicated by the thickness of the connecting lines.

SUPPLEMENTARY FIGURE 9

Bubble plot of tumor cell ligand–receptor interactions in the tumor
microenvironment. Summary of selected ligand–receptor interactions

between different cell clusters between TRIB3high tumor epithelial cells and
other cell types. The P-values are indicated by the size of each circle. In

contrast, the color gradient indicates the level of interaction.
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