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The highly transmissible Omicron (B.1.1.529) variant of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) was first detected in late 2021. Initial

Omicron waves were primarily made up of sub-lineages BA.1 and/or BA.2, BA.4,

and BA.5 subsequently became dominant in mid-2022, and several descendants

of these sub-lineages have since emerged. Omicron infections have generally

caused less severe disease on average than those caused by earlier variants of

concern in healthy adult populations, at least, in part, due to increased

population immunity. Nevertheless, healthcare systems in many countries,

particularly those with low population immunity, have been overwhelmed by

unprecedented surges in disease prevalence during Omicron waves. Pediatric

admissions were also higher during Omicron waves compared with waves of

previous variants of concern. All Omicron sub-lineages exhibit partial escape

from wild-type (Wuhan-Hu 1) spike-based vaccine-elicited neutralizing

antibodies, with sub-lineages with more enhanced immuno-evasive properties

emerging over time. Evaluating vaccine effectiveness (VE) against Omicron sub-

lineages has become challenging against a complex background of varying

vaccine coverage, vaccine platforms, prior infection rates, and hybrid

immunity. Original messenger RNA vaccine booster doses substantially

improved VE against BA.1 or BA.2 symptomatic disease. However, protection

against symptomatic disease waned, with reductions detected from 2 months

after booster administration. While original vaccine-elicited CD8+ and CD4+ T-

cell responses cross-recognize Omicron sub-lineages, thereby retaining

protection against severe outcomes, variant-adapted vaccines are required to

expand the breadth of B-cell responses and improve durability of protection.

Variant-adapted vaccines were rolled out in late 2022 to increase overall

protection against symptomatic and severe infections caused by Omicron

sub-lineages and antigenically aligned variants with enhanced immune

escape mechanisms.
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Introduction

The Omicron variant (Pango lineage B.1.1.529, GISAID clade

GR/484A) of severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) was first detected in November 2021 (1, 2). This

first Omicron sub-lineage, now known as BA.1, contains numerous

mutations, particularly in the spike protein, resulting in enhanced

transmissibility, partial escape from previously established

neutralizing antibodies to wild-type (Wuhan-Hu-1) SARS-CoV-2,

and risk of re-infection (3–5). A sister lineage, BA.2, emerged soon

after. Omicron was not the first variant of concern (VOC) to exhibit

neutralizing antibody evasion; the Beta variant in particular

exhibited partial resistance to neutralization by antibodies elicited

by initial pandemic waves and first-generation vaccines (6). Unlike

the Beta variant, which circulated for only a short time in a limited

number of countries, the high reproductive rate of BA.1 and BA.2

allowed these variants to rapidly disseminate around the world.

Although primary infection caused by BA.1 or BA.2 appeared to be

generally less severe than previous VOCs, with case numbers

doubling far quicker than previous waves, the emergence of these

variants has been considered a turning point in the pandemic.

Owing to the large number of individuals infected with BA.1 or

BA.2 and the high transmissibility of these variants, several sub-

lineages of Omicron have since emerged (2, 7). This led to further

waves of infection with sub-lineages BA.4 and BA.5 in many

countries; BA.5 descendent lineages are now dominant globally

(8). In this review, we describe the characteristics of Omicron

B.1.1.529 and its sub-lineages, the associated burden of disease,

and the impact of this group of variants on vaccine effectiveness

(VE) in the context of evolving infection- and vaccine-induced

population immunity. This review was written at a time when the

BA.4, BA.5, and BA.2.75 sub-lineages were dominant in most

regions and bivalent variant-adapted vaccines were being rolled

out. Newer sub-lineages have since emerged and key data on these

sub-lineages were added during peer review. The initial literature

search was performed on June 20, 2022, with additional searches

conducted on a case-by-case basis, owing to the rapidly evolving

nature of this topic.
Characteristics of Omicron B.1.1.529
and sub-lineages

Phylogenetics and impact of
genetic alterations

There has been significant intra-variant evolution since BA.1

was first detected in November 2021. BA.1 was supplanted by other

Omicron sub-lineages, as was BA.3. Most initial BA.2 sub-lineages

were supplanted by descendant sub-lineages such as BA.2.75, BA.4,

and BA.5. Omicron sub-lineages currently being monitored by the

World Health Organization are BA.5 sub-lineages BQ.1 (including

descendent lineage BQ.1.1) and BF.7, BA.2 descendent lineages

BA.2.75 and CH.1.1, and XBB (including descendent lineage

XBB.1.5) (2). XBB is a recombinant of BA.2.10.1 and BA.2.75 (2).
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The term ‘Omicron’ encompasses BA.1, BA.2, BA.3, and all

subsequent B.1.1.529 sub-lineages (2). The Omicron group of

variants forms a new phylogenetically distinct clade that is not

directly descended from other SARS-CoV-2 VOCs (9) (Figure 1).

Of all the previous VOCs, BA.1 is most closely related to the Alpha

and Gamma variants, underscoring those ancestors of the Omicron

variant sub-lineages that remained in circulation during the Delta

variant wave (9).

Key substitutions and deletions in the genomes of Omicron

sub-lineages with known functions are shown in Table 1. A large

number of these are linked to evasion of receptor-binding domain

(RBD)- or N-terminal domain (NTD)-directed neutralizing

antibodies (10, 12, 15, 16, 28), or enhanced binding to the

angiotensin-converting enzyme 2 receptor (14, 17–19, 22).

However, results from at least two studies in mice suggest that

mutations affecting viral genes outside of S play critical roles in the

reduced pathogenicity of Omicron lineages relative to earlier VOCs

such as Delta or the ‘ancestral’ 2019 Wuhan lineage (29, 30).

Alterations in non-S genes have been linked to changes in protein

stability (24), increased host immune suppression (25), and

enhanced sub-genomic RNA expression leading to increased viral

load (26, 27, 31).

Importantly, alterations to the S gene of the BA.1 and BA.2 sub-

lineages have led to a fundamental change in the entry route of

Omicron into host cells. While previous VOCs, such as Delta, were

able to enter host cells via surface fusion following transmembrane

protease serine 2-mediated proteolysis, BA.1 and BA.2 exhibit

reduced fusogenicity, proteolysis, and syncytia formation, and

have therefore switched entry pathway preference towards

cathepsin-dependent fusion within the endosome (Figure 2) (20,

23, 28, 33). Enhanced endosomal entry and reduced fusogenicity

have occurred as a result of alterations at the S1/S2 cleavage site and

in the S2 domain, leading to reduced furin pre-processing, and

retaining stabilization of the spike protein in the ‘closed’

conformation (20, 21, 28), which makes the RBD less accessible

to neutralizing antibodies. As such, BA.1 and BA.2 have altered cell

tropism compared with previous VOCs, favoring the upper

respiratory tract (33).
FIGURE 1

Phylogenetic relationship of Omicron B.1.1.529 and sub-lineages to
other SARS-CoV-2 variants. Adapted from Nextstrain (7).
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Later Omicron sub-lineages, BA.4 and BA.5, have been shown

to exhibit increased fusogenicity compared with BA.2, which has

been attributed to the L452R and N440K substitutions (13, 34). Sub-

lineages BA.4.6, BQ.1, and BQ.1.1 exhibit enhanced fusogenicity

compared with BA.4 and BA.5 (13). The loss, and subsequent

reattainment, of fusogenicity by Omicron sub-lineages is

consistent with the Canyon Hypothesis (35), in which sustained

viral transmission in seropositive populations leads to the

emergence of variants with closed RBD configurations (such as

BA.1/BA.2), reducing susceptibility to neutralizing antibodies.

Circulation in populations with decreasing neutralizing antibody

levels then leads to the emergence of variants with viral entry

proteins favoring open configurations for more efficient cell entry

(36). The F486V mutation of BA.4 and BA.5 has been shown to

provide resistance to class 1 and class 2 RBD antibodies (15) and
Frontiers in Immunology 03
may have facilitated the move back towards the open configuration.

In line with this, infection experiments in a guinea pig model have

linked increased fusogenicity of BA.4 and BA.5 versus BA.2 with

increased pathogenicity (37).

Antigenic drift has occurred rapidly with SARS-CoV-2 since the

pandemic began and has led to a quick succession of changes in

viral fitness. The emergence of recombinant variants, such as XBB

and its descendants, demonstrates that antigenic shift may also

occur, resulting in viruses that are antigenically distant from

previously circulating variants and that have more evolved

immuno-evasive mechanisms (38). The high frequency of changes

in the genome of SARS-CoV-2 and the possibility of antigenic shift

suggest that regular updates to coronavirus disease 2019 (COVID-

19) vaccines may be required in the future, in order to provide

protection against emerging antigenically distinct variants.
TABLE 1 Key genetic substitutions and deletions of Omicron BA.1 and sub-lineages BA.2, BA.4, BA.5, and BA.2.12.1.

Mutation Omicron sub-lineage (7) Possible importance

S gene/spike protein

del69–70 BA.1, BA.4, BA.5 Resistance to neutralizing antibodies/infectivity (10, 11)

G142D BA.2, BA.4, BA.5, BA.2.1.12 Resistance to NTD neutralizing antibodies (12)

del143–145 BA.1 Resistance to NTD neutralizing antibodies (12)

R346K Only found in a subset of sequences (2) Resistance to neutralizing antibodies (12)

S371L BA.1 Resistance to RBD neutralizing antibodies (all classes) (12)

N440K BA.1, BA.2, BA.4, BA.5, BA.2.1.12 Resistance to neutralizing antibodies (12), increased fusogenicity (13)

G446S BA.1 Resistance to neutralizing antibodies (12)

L452R BA.4, BA.5
Increased binding to ACE2 (14)

L452Q BA.2.12.1

F486V BA.4, BA.5 Broadly neutralizing antibody evasion (15)

E484A BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Neutralizing antibody evasion (16)

Q493R
BA.1, BA.2, BA.2.12.1
(Reverted to R493Q in BA.4 and BA.5)

Increased binding to ACE2 (17), neutralizing antibody evasion (12)

N501Y BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Increased binding to ACE2 (18)

H655Y BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Increased binding to ACE2/transmissibility (19); enhancement of endosomal entry (20, 21)

P681H BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Transmissibility (22); enhancement of endosomal entry (21)

N969K BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Reduced fusogenicity to S2 domain (23)

ORF1a/NSP6

del3674–3676 BA.1
Protein stability (24)

del3675–3677 BA.2, BA.4, BA.5, BA.2.12.1

ORF9b

del27–29 BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Suppression of immune response (25)

N gene/nucleocapsid

R203K
G204R

BA.1, BA.2, BA.4, BA.5, BA.2.12.1 Subgenomic RNA expression, increased viral load (26, 27)
ACE2, angiotensin-converting enzyme 2; del, deletion; NSP, non-structural protein; NTD, N-terminal domain; ORF, open reading frame; RBD, receptor-binding domain; RNA, ribonucleic acid.
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Immune evasion

When compared with previous VOCs, neutralizing antibodies

induced by original COVID-19 vaccines to BA.1 are reduced, as is

memory B-cell recognition (39). BA.2 evades infection- and original

vaccine-induced neutralizing antibodies with a comparable level of

efficiency to BA.1 (40). Both BA.1 and BA.2 have been shown to

evade neutralizing antibodies elicited by a primary series of

messenger RNA (mRNA; mRNA-1273 or BNT162b2), vector-

based (Ad26.COV2, Sputnik V, or ChAdOx1 nCoV-19), subunit

(NVX-CoV2373), and inactivated (BBIBP-CorV) vaccines (41),

although some activity is retained from mRNA or ChAdOx1

nCoV-19 vaccination. Original vaccine booster doses can restore

neutralizing antibody activity against these Omicron sub-lineages to

an extent, depending on the vaccine platforms used. Homologous

vaccination with three doses of original mRNA vaccine (mRNA-

1273 or BNT162b2), or heterologous vaccination with a vector-

based vaccine (Ad26.COV2.S, ChAdOx1 nCoV-19, or Sputnik V)

followed by an original mRNA booster, improves neutralization

potency against BA.1 and BA.2 (41–43). In individuals vaccinated

with a primary series of inactivated vaccine, a homologous booster

enhances neutralizing antibody responses to BA.1, but to a lesser
Frontiers in Immunology 04
extent than heterologous mRNA vaccine boosters (44–47).

Neutralizing antibody responses to BA.1 and BA.2 after original

mRNA vaccine booster dosing have been shown to decline over

time, reaching low levels at 4–6 months post-booster (48, 49). The

rate of neutralizing antibody decay seems to be similar to that of

wild-type SARS-CoV-2 (48). T-cell responses elicited by original

mRNA vaccines against BA.1 are generally maintained for longer

than humoral responses, suggesting that protection against severe

disease may be preserved despite neutralizing antibody decay (50);

however, T-cell responses may begin to wane from 6 months after

infection (51).

Evidence suggests that hybrid immunity (vaccine-induced

immunity in individuals who have also been infected) after a

primary series of inactivated vaccine plus single original mRNA

vaccine booster may generate higher neutralizing antibody

responses to BA.2 than a second booster of either original mRNA

or inactivated vaccine in individuals without previous

infection (49).

Later Omicron sub-lineages, such as BA.4 and BA.5, seem to

evade cross-protection from BA.1 infection. In individuals

vaccinated with original vaccines, breakthrough BA.1 disease

results in strong neutralizing antibody activity against BA.1 (52),
A B

FIGURE 2

Favored cell entry pathways of (A) BA.1 and (B) Delta variant. Delta favors cell surface fusion, whereas BA.1 favors endosomal entry. Evidence
suggests that BA.4 and BA.5 sub-lineages may be partially reverting back towards cell surface fusion, due to increased fusogenicity compared with
BA.1. Adapted from Tang et al. Antiviral Res (2020);178:104792 (32).
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reactivating memory B cells (53), and a less substantial increase in

neutralizing antibody titers against BA.4 and BA.5 (52).

Neutralizing antibody levels against BA.4 and BA.5 in non-

vaccinated individuals with prior BA.1 infection are lower than

those in individuals vaccinated with original vaccines and with BA.1

breakthrough infection (54). Neutralizing antibody titers are lower

against BA.4, BA.5, and BA.2.12.1 than against BA.1 in individuals

with prior BA.1 infection (17, 34, 54, 55). Exposure to BA.2 results

in greater neutralizing activity against BA.4 and BA.5 than exposure

to BA.1, driven by antibodies targeting the NTD of the spike protein

(56). This is likely due to the fact that BA.2 is more closely

phylogenetically related to BA.4 and BA.5 than BA.1 is (56, 57).

BA.4 and BA.5 are antigenically distinct and are as distant from

BA.1 as BA.1 is from the wild-type virus (38).

BA.4, BA.5, and BA.2.12.1 also escape original vaccine-elicited

neutralizing antibodies to a greater extent than BA.1 or BA.2 (17,

34, 54, 58). BA.4 and BA.5 escape sera from individuals who

received a primary series and booster of original mRNA vaccine

to a greater extent than BA.2.12.1 (4.2-fold vs. 1.8-fold greater than

BA.2 in one study (15) and by a factor of 3.3 vs. 2.2 compared with

BA.1 in another (58)). However, individuals vaccinated with three

doses of original mRNA vaccine with BA.4/BA.5 breakthrough

infections have been shown to exhibit broad and robust

neutralizing activity against BA.1, BA.2, BA.2.12.1, BA.4, and

BA.5 (57). Nonetheless, BA.2.75.2, BQ.1, BQ.1.1, XBB, XBB.1,

and CH.1.1 have been shown to exhibit lower neutralization

sensitivity than BA.4/BA.5, indicating further neutralization

escape with newly emerging sub-lineages (13, 38, 59–62). This is

due to the phylogenetic distance between the XBB and BQ sub-

lineages and BA.4/5 (38).

Owing to an extensive number of substitutions in the S gene

relative to the ‘ancestral’ 2019 virus, Omicron variants are

epistatically poised for escape from a variety of different

antibodies (63). Notably, the efficacy of several monoclonal

antibody therapies against Omicron sub-lineages BA.2.12.1, BA.4,

and BA.5, as well as BQ and XBB sub-lineages, has been shown to be

limited, although small-molecule antivirals retain activity (38, 64).

There is also evidence that Omicron sub-lineages, as well as other

VOCs, have developed relative resistance to interferons, affecting

the host innate immune response (65).

Overall, neutralizing activity conferred by original COVID-19

vaccines is limited against newly emerging, antigenically distant sub-

lineages; a pattern similar to that observed with influenza. The

current trajectory suggests that SARS-CoV-2 will continue to

evolve towards more immune-evasive variants, further affecting the

effectiveness of vaccines and therapeutics. This further supports the

need for regular updates to COVID-19 vaccine composition and

booster vaccination to restore protection against circulating variants.
Transmissibility and re-infection

The transmissibility of BA.1 is clearly greater than that of

previous VOCs, as demonstrated by its rapid global spread. BA.2

has been shown to be more transmissible than BA.1 (66), possibly

attributable to an increased viral load in the upper pharynx (67).
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BA.4, BA.5, and BA.2.12.1 may be more transmissible than BA.2

(17, 68); however, owing to their increased fusogenicity, they also

spread more efficiently in human lung cells, which suggests that

they may be more likely to manifest as a lower respiratory tract

infection (37). XBB.1.5 has an additional growth advantage over

other Omicron sub-lineages, with a doubling time of 9 days (69).

This is due to a higher angiotensin-converting enzyme 2 binding

affinity compared with earlier variants, such as XBB.1 and BQ.1.1,

which is conferred by the S486P mutation (70).

The risk of re-infection is increased with Omicron sub-lineages

versus other VOCs (71). In Qatar, prior infection with pre-Omicron

variants has been shown to provide less protection against

symptomatic BA.1 infection than against symptomatic disease

caused by other VOCs (56% vs. 85–92%, respectively) (72). In a

study in Scotland, the proportion of BA.1 cases that were possible

re-infections was >10 times greater than the proportion of Delta

cases that were re-infections (7.6% vs. 0.7%, respectively) (73). This

may be due to the fact that Omicron variants have become

dominant, with prolonged circulation and resurgences compared

with Delta and other previous VOCs. Nevertheless, prior infection

with pre-Omicron variants does seem to provide a similar level of

protection against severe, critical, or fatal disease due to re-infection

with BA.1 versus other VOCs (72). This may also be partially due to

the greater propensity of BA.1 for upper respiratory tract infection

compared with other VOCs.

Immunity from prior infection can have a large role in

protection against Omicron sub-lineages in countries with low

vaccination rates. For example, in South Africa, high

seroprevalence of SARS-CoV-2 immunoglobulin G after the Delta

wave led to an apparent decoupling of infection from

hospitalizations during the first Omicron wave (74). However, as

new antigenically distinct sub-lineages with greater capacity for

immune evasion emerge, the benefits of prior infection may be

reduced, especially with waning of immunity over time. For

example, in Qatar, effectiveness of pre-Omicron infection against

BA.2.75 was 6%, and effectiveness of BA.1 or BA.2 infection against

BA.2.75 was 50% (75). Protection conferred by prior infection

against more antigenically distant and immune-evasive BQ sub-

lineages is further reduced, as demonstrated by the increased re-

infection risk with XBB sub-lineages (76).
Prevalence, severity, and burden of disease

The high transmissibility of Omicron sub-lineages and relative

neutralizing antibody evasiveness have led to a rapid and substantial

increase in disease prevalence, in terms of number of infections,

compared with the pre-Omicron period, which has been sustained

through continued replacement by emerging sub-lineages. Globally,

the BA.1 wave began in November/December 2021 and peaked in

January/February 2022 (77). BA.1 was then largely replaced by

BA.2, and BA.2 was subsequently displaced by BA.4 and BA.5

around August 2022; the BA.2 descendent sub-lineage BA.2.75 also

began to circulate at this time (77). Newer sub-lineages with

enhanced immuno-evasive properties, including BQ.1.1, CH.1.1,

and XBB.1.5, are now circulating in multiple countries (8). As
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Omicron sub-lineages are now dominant, it is reasonably likely that

future VOCs will evolve from recent Omicron sub-lineages. It is

also still possible that new VOCs will arise from non-dominant

circulating viruses or earlier branches of the SARS-CoV-2

phylogenetic tree, as was observed with Omicron (9).

In many countries, the severity of infections in Omicron BA.1

waves has been milder than that of previous VOCs in terms of risk

of hospitalization (73, 78–80), need for mechanical ventilation, and

death (81, 82). These data must be interpreted in the context of

continually evolving population immunity derived from infection

and/or vaccination. Similarly, it is difficult to compare the clinical

severity of each Omicron sub-lineage on this background of

increasing and geographically variable population immunity. The

current evidence does not indicate any significant change in disease

severity associated with BA.2.12.1, BA.4, or BA.5 compared with

BA.2, indeed, the reduced severity of BA.1 and BA.2 versus previous

VOCs has persisted with BA.4 and BA.5 (83, 84), although BA.4 and

BA.5 did not circulate at a time of significant circulation of other

respiratory viruses in the Northern Hemisphere. There are no data

to suggest an increase in disease severity with currently circulating

sub-lineages, such as BQ.1.1 or XBB.1.5 (76, 85). There have been

considerable regional differences in the severity of Omicron

infections, likely linked to differences in population immunity. In

South Africa, where infection-induced immunity was high and

vaccine coverage was low, the BA.4/BA.5 wave has resulted in less

severe infections than the BA.1 wave (86), with limited impact on

healthcare services (74). In the United Kingdom, where vaccination

coverage was high, the rise in prevalence during the BA.1 and BA.2

waves was associated with increases in hospitalizations and deaths,

but at lower levels than previous waves (87). The impact has been

greater in countries where vaccination rates or prior infection rates

are low. The BA.2.2 wave in Hong Kong, where both vaccination

coverage in older adults and prior infection rates were low, resulted

in more than 1 million cases and close to 10,000 deaths (88, 89), and

the BA.5 wave in New Zealand, where infection-induced immunity

was low, led to a peak 7-day rolling average of 25 deaths per day,

placing additional strain on the capacity of hospitals already

overburdened with high caseloads (90). Estimates suggest that in

China, which previously had very low rates of prior infection, up to

248 million people (18% of the population) may have been infected

during the first 20 days of December 2022 (91).

Elderly, immunocompromised, comorbid, and unvaccinated

populations remain at high risk of severe disease resulting from

Omicron infection (78, 92). In addition, pediatric infections seem to

be more frequent with Omicron sub-lineages versus earlier variants.

Pediatric admissions were higher during the BA.1 wave than with

previous waves (93–95), and SARS-CoV-2 seroprevalence in

pediatric populations substantially increased, reaching 68–77%

across age groups in the United States by February 2022 (96). In

some countries, this has translated to increased severity in children,

whereas in others, severity in children has been similar to, or lower

than, previous waves. In Hong Kong, 2% of unvaccinated children

hospitalized with BA.2 required admission to pediatric intensive

care and two deaths were recorded (97). In the United Kingdom, the

risk of hospital admission with Omicron BA.1 infection in children

<10 years of age was comparable to that of Delta (98). In South
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Africa, although SARS-CoV-2 seropositivity in children <12 years

of age reached 84% after the BA.1 wave (86), and the incidence of

pediatric hospitalizations was similar to previous waves, mortality

was lower (74). These differences are likely due to geographical

variations in vaccination coverage and prior infection in pediatric

populations. Pediatric admissions have also increased during

circulation of the BQ.1.1 sub-lineage in the United States, with

many States reporting that 90% of pediatric beds are occupied.

However, other seasonal respiratory viruses such as respiratory

syncytial virus and influenza have also been circulating in children

during this period (99, 100).

Some evidence suggests a change in the rate of COVID-19

complications in pediatric populations with Omicron sub-lineages

compared with previous VOCs. BA.1 has been associated with a

significant increase in upper airway infection in children (4.1%

during an Omicron-dominant period vs. 1.5% in the pre-Omicron

period in the United States; p < 0.001) (101), although this may be

partially attributable to increased testing rates. Of patients with

croup at a US hospital, 48% were infected with SARS-CoV-2 during

the BA.1 wave compared with only 3% during the Delta wave (102).

Conversely, the relative risk of multisystem inflammatory syndrome

after BA.1 infection in unvaccinated children in Denmark was

significantly reduced compared with the Delta wave (0.12; 95%

confidence interval [CI]: 0.06–0.23; p < 0.001) (103).

An increase in infections in pregnant women has also been

observed during the BA.1 wave compared with Delta and pre-Delta

periods (median 138 vs. 14 and 17 cases per week, respectively, in a

study in the United States), with the majority occurring in

unvaccinated individuals (104). The majority of these cases were

non-severe, with an odds ratio for severe or critical illness versus the

pre-Delta period of 0.20 (95% CI: 0.05–0.83). Severity of BA.1 may

have been mitigated by evolving population immunity.

Omicron has also resulted in numerous healthcare worker

(HCW) absences, further exacerbating pressure on healthcare

systems. In England, approximately 40% of HCW absences in the

last week of January 2022 (a BA.1-dominant period) were due to

COVID-19 (105). Persistent symptoms are common in people

recovering from COVID-19 and can hinder their ability to work

(106). Thus, the presence of persistent symptoms may result in

increased and/or prolonged HCW absences. Omicron outbreaks

also increased stress among HCWs, potentially leading to further

absences. In a survey of HCWs in Saudi Arabia, uncertainties

around Omicron during the BA.1 wave were significantly

correlated with stress, leading to reduced resilience and ability to

cope (107).

Measures that countries have taken to support healthcare

systems during Omicron waves include postponing elective

surgeries to free up staff and beds, deploying military personnel

to support hospitals, and recalling retired HCWs (108).

In summary, the emergence of the highly transmissible

Omicron variant and its subsequent sub-lineages resulted in an

increase in hospitalizations and HCW absenteeism, placing

additional burden on already overstretched healthcare systems.

The current evidence demonstrates that populations such as the

elderly, people with co-morbidities, and pregnant women, remain at

high risk of severe outcomes of Omicron infection, including
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hospitalization and death. This supports the need for continued

booster vaccinations in these populations as SARS-CoV-2 continues

to evolve.
Vaccine effectiveness and
development needs

Immunogenicity and effectiveness of
original vaccines

As described earlier, Omicron sub-lineages exhibit partial

escape from humoral immunity induced by current vaccines. In

vaccinated individuals, the acute B-cell response to BA.1

breakthrough is mediated by vaccine-induced B-cell clones with a

bias toward recognition of ancestral SARS-CoV-2 (52, 53). BA.1

breakthrough infection induces a shift towards the formation of

memory B cells against epitopes that are broadly conserved across

variants, with a robust recall response (52, 53). When compared

with BA.1 convalescent patients, vaccinated individuals have been

reported to have lower levels of BA.1-reactive B cells, as well as

lower levels of neutralizing antibodies in bronchoalveolar lavage

fluid (109). This may suggest that infection induces a greater

mucosal immune response than vaccination. In line with these

data, hybrid immunity has been shown to provide greater

protection against symptomatic BA.1 or BA.2 disease than

vaccination alone (110). In Qatar, effectiveness of three doses of

BNT162b2 against symptomatic BA.2 infection in individuals with

no prior infection at a median of 43 days post-booster was 52%,

while effectiveness in individuals with a prior infection was 77%

(110). Hybrid immunity from infection and booster vaccination

seems to confer the greatest neutralization capacity (111), with

broader activity and cross-reactive antibody affinity maturation

against BA.1 and BA.2 versus infection-naïve booster-vaccinated

individuals (112). Individuals vaccinated with three doses of mRNA

vaccine with BA.4/BA.5 breakthrough infections exhibit broad and

robust neutralizing activity against BA.1, BA.2, BA.2.12.1, BA.4, and

BA.5 (57).

Although Omicron sub-lineages evade vaccine-elicited humoral

responses to varying degrees (41, 54, 58), cell-mediated immunity to

Omicron sub-lineages remains robust in vaccinated individuals. T-

cell responses induced by different vaccine platforms, including

mRNA (mRNA-1273 and BNT162b2) , vec to r -based

(Ad26.COV2.S), and subunit vaccines (NVX-CoV2373), cross-

recognize variants from Alpha to BA.1 (39, 113–115). In

vaccinees from the United States and South Africa, CD8+ T-cell

responses to the spike protein of BA.1 induced by BNT162b2 or

Ad26.COV2.S were >76% and CD4+ T-cell responses were >70%

that of T-cell responses to the wild-type spike protein (114, 115).

Some variation has been observed by vaccine platform; for example,

in vaccinated individuals fromHong Kong, T-cell responses to BA.1

were higher in those who received two doses of BNT162b2 than in

those who received two doses of the inactivated vaccine CoronaVac

(CD8+: 81.8% vs. 71.4%; CD4+: 96.7% vs. 82.1%, respectively) (116).

Conservation of the cell-mediated immune response in the lung

may be associated with prevention of severe disease (109). This may
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partially explain why, despite the greater neutralization capacity of

hybrid immunity versus vaccine-induced immunity, limited

differences in VE against severe outcomes were observed between

individuals with three mRNA vaccine doses with or without prior

infection (110).

In VE studies across different settings, a booster dose of mRNA

vaccine resulted in transient improved VE versus symptomatic

disease during BA.1- or BA.2-dominant periods (117–122), but

VE waned quickly over time. In England, VE against symptomatic

BA.1 disease after a primary series of BNT162b2, mRNA-1273, or

ChAdOx1 nCoV-19 followed by an mRNA booster had decreased

at 5–9 weeks post-booster and further declined at >10 weeks (117).

VE against symptomatic BA.2 disease decreased from 74% at 7 days

post-booster to 44% at ≥15 weeks (119). In Qatar, effectiveness of a

booster dose of BNT162b2 against symptomatic Omicron infection

(any sub-lineage during a period of BA.1 and BA.2 dominance)

decreased from 56% at 2–3 weeks post-booster to 22% at ≥14 weeks.

Similarly, effectiveness of an mRNA-1273 booster decreased from

54% at 2–3 weeks post-booster to 35% at ≥6 weeks (121). In the

United States, VE of mRNA-1273 against BA.1 infection decreased

from 71.6% after 14–60 days post-booster to 47.4% after >60 days

(118), and VE of BNT162b2 against BA.1 infection in HCWs

decreased from 75% within 8 weeks to 55% at >16 weeks (120).

However, VE against severe outcomes of BA.1, BA.2, or BA.4/5

infection has been very high following an mRNA booster dose (119,

122–127). In the United States, VE of three doses of mRNA vaccine

against invasive mechanical ventilation or in-hospital death during

the BA.1 wave was 94% (124). In Canada, VE against severe

outcomes of BA.1 infection was 95% ≥7 days post-mRNA booster

(122). In England, VE against BA.2 hospitalization post-mRNA

booster peaked at 89% (119). A booster dose was also associated

with a reduction in the risk of hospitalization and death due to BA.5

infection in Portugal (128). In children 5–11 years of age,

effectiveness of a third dose of BNT162b2 against Omicron-

related emergency department or urgent care encounters (any

sub-lineage) was 77% after a median of 43 days post-booster

(129). In the United States, effectiveness of three doses of

BNT162b2 against BA.4/BA.5-related emergency department

visits was 71% <3 months post-booster (127), and, in South

Africa, effectiveness of three doses of BNT162b2 against

hospitalization during the BA.4/BA.5 wave was 69% at 1−2

months post-booster (126).

VE against severe outcomes of BA.1, BA.2, and BA.4/BA.5

infection also wanes from 3–4 months after administration of the

booster dose, albeit to a lesser extent than VE against symptomatic

disease (94, 119, 126, 127, 130, 131). In some countries, a fourth

vaccine dose has been administered to the elderly and/or HCWs, in

order to provide additional protection against Omicron sub-

lineages for these high-risk populations. In Israel, during a BA.1-

dominant period, the rate of confirmed infection was reduced 2-fold

and the rate of severe illness by 3.5-fold at 4 weeks after a fourth

dose of BNT162b2 in adults >60 years of age compared with those

who had only received three doses (132). Breakthrough COVID-19

infection rates in HCWs in Israel who received a fourth dose were

lower than in those who received three doses during the BA.1 wave

(7% vs. 20%, respectively) (133). In Ontario, Canada, VE of mRNA
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vaccines against symptomatic infection and severe outcomes in

long-term care residents ≥60 years of age during a BA.1-dominant

period was 69% and 86%, respectively, ≥7 days after the fourth dose

(134). Given that booster doses provide additional protection

against severe outcomes of Omicron infection, including

hospitalization and death, continued vaccination of high-risk

populations is likely.

Duration of neutralizing antibody protection against infection is

a function both of sustained activity over time and variant

sensitivity to neutralizing antibody activity. Based on the observed

waning of VE against infection after booster administration (119,

130), and the fact that neutralizing antibody titers against Omicron

sub-lineages are lower than those against prior VOCs after a booster

dose (5, 43, 135), boosters against prior circulating VOCs may not

address the complex needs posed by waning immune responses and

new variants with enhanced transmissibility or pathogenicity.

Therefore, adaptation of vaccines to include new VOCs, thus

allowing increased duration and breadth of protection against

infection, is highly desirable.
Variant-adapted vaccines to address
Omicron and future variants

Variant-adapted vaccines are vaccines that have been updated to

provide improved immune responses against a specific variant or

variants (136). As well as addressing the specific variant/variants, these

vaccines have the potential to increase the breadth of primary

neutralizing antibody responses against other Omicron sub-lineages

and prior VOCs when compared with the original vaccines (136, 137),

through the formation of memory B cells against the new variant and

robust recall of old memory B responses (52). Preservation and

expansion of the T-cell response may potentially provide more

durable protection against severe disease and deaths over time (138).

The need for variant-adapted vaccines was recognized after the

emergence of BA.1, and mRNA vaccine manufacturers

subsequently initiated the development of BA.1-adapted vaccines

(139, 140). By the time data on the BA.1-adapted vaccines had been

generated, sub-lineages BA.4 and BA.5 had increased in prevalence

and were expected to become dominant. Data from BA.1 and BA.2

convalescent serum from triple mRNA-vaccinated individuals

showed low neutralizing antibody titers against BA.4 and BA.5,

suggesting that BA.1-adapted vaccines may not provide high levels

of protection against BA.4/BA.5 infection (56). However, data from

BA.4/BA.5-infected and triple mRNA-vaccinated individuals

revealed robust neutralization of BA.4/BA.5 and all previously

circulating Omicron sub-lineages (57). Manufacturers therefore

also initiated development of BA.4/BA.5-adapted mRNA vaccines.

Based on preliminary data on a prototype BA.4/BA.5-adapted

vaccine, in July 2022, the United States Food and Drug

Administration (FDA) recommended that modified vaccines

should have a BA.4/BA.5 spike protein component in addition to

the existing composition to create a bivalent booster for use in both

adult and pediatric populations in Q3/Q4 2022 (141, 142).
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Both the FDA and European Medicines Agency (EMA) have

provided guidance on regulatory requirements for variant-adapted

vaccines, stating that effectiveness can be established on the basis of

immunogenicity bridging studies demonstrating superiority of the

neutralizing antibody response elicited by the adapted vaccine

compared with the prototype vaccine in terms of geometric mean

titer ratios (143, 144). Based on such data, the EMA has granted full

marketing authorization for a bivalent original BNT162b2/

Omicron BA.1 vaccine in individuals ≥12 years of age, and for a

bivalent original BNT162b2/Omicron BA.4-BA.5 vaccine in

individuals 5–11 years of age (pediatric formulation) and ≥12

years of age (140). Bivalent mRNA-1273/Omicron BA.1 and

mRNA-1273/Omicron BA.4-5 vaccines have received EMA

approval for use in individuals ≥12 years of age (139). The FDA

has granted Emergency Use Authorization for original BNT162b2/

Omicron BA.4-BA.5 vaccines in individuals ≥5 years of age and

mRNA-1273/Omicron BA.4-5 vaccines in individuals ≥6 years of

age (145).

Early clinical data show that the bivalent BA.4-5 BNT162b2

vaccine induces greater pan-Omicron neutralizing activity and

substantially higher neutralizing antibody titers against BA.4/BA.5

compared with the original vaccine in adults ≥55 years of age (136).

The bivalent BA.4-5 BNT162b2 vaccine elicits T-cell responses to

emerging immuno-evasive variants, such as XBB.1.5, albeit slightly

reduced when compared with responses to the wild-type virus

(146). Real-world data will further strengthen evidence for the

effectiveness of these variant-adapted vaccines. Emerging data

from the US Centers for Disease Control and Prevention (CDC)

indicate a 2.4-times-lower risk of death due to COVID-19 in

vaccinated individuals who received an Omicron BA.4-5 vaccine

booster compared with those who did not (147). Although evidence

suggests that the XBB.1.5 sub-lineage can partially escape

neutralizing antibodies elicited by bivalent BA.4-5 boosters, VE

estimates are similar to those against BA.5: CDC estimates suggest

effectiveness against symptomatic infection in adults of 37–52%

against BA.5 and 43–39% against XBB/XBB.1.5 at ≥2 weeks post-

booster (61, 148).

Although the bivalent vaccines provide protection against

currently circulating variants, given the continuing emergence of

more antigenically distant sub-lineages and the increasing

resistance of these sub-lineages to neutralizing antibodies, it is

likely that further variant-adapted vaccines will be required as

SARS-CoV-2 continues to evolve. In line with this, the Vaccines

and Related Biological Products Advisory Committee anticipate

conducting vaccine composition evaluations for COVID-19

vaccines at least annually, with a potential variant change to be

selected in May 2023 (149). Bivalent vaccines may be implemented

in vaccine-naïve populations as well as being administered as

boosters, based on EMA Emergency Task Force guidance (150).

Specific areas that still require global decision-making for future

variant-adapted vaccines include the rationale for taking a

monovalent versus a bivalent approach, and the rationale for

requiring an updated vaccine, as well as the specific variant that

should be included.
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Next-generation vaccines

Ultimately, the value in developing a variant-adapted vaccine

will always be mitigated by the time taken to detect the variant and

develop and approve the vaccine (151), as well as the challenges to

improving durability of protection during the frequent evolution of

SARS-CoV-2. Several approaches to the development of novel

vaccines that elicit a broader immune response and increased

durability of protection against current and future variants are

being researched (151–156), including candidates with enhanced

prefusion spike proteins to improve magnitude and breadth of

immune response (156), and candidates that target other non-spike

antigens (153, 155). T-cell-enhanced vaccines composed of T-cell

antigens encoding non-spike proteins that are conserved across

variants are being evaluated and may have potential to expand

protection against severe disease (157). Novel adjuvants designed to

trigger specific components of innate immunity are being explored

(158), and intranasal vaccines to elicit an enhanced immune

response at the nasal mucosa are also in development (159).

Pan-sarbecovirus vaccines that provide broad and durable

protection against all members of the sarbecovirus subgenus (i.e.

SARS-CoV-2, SARS-CoV-1, and various non-human coronaviruses)

are particularly desirable, and several approaches to this are under

investigation (153, 155). Several mosaic nanoparticle vaccines,

composed of numerous copies of the RBD or prefusion spike

protein from SARS-CoV-2 and related viruses, such as Middle East

Respiratory Syndrome coronavirus or coronaviruses circulating in

bats, are in early development. A mosaic nanoparticle vaccine

containing the RBD from SARS-CoV-2 and seven animal

sarbecoviruses was shown to elicit broad immunity in preclinical

studies (160). Several unanswered questions remain around the

clinical development of pan-sarbecovirus vaccines, including the

type of immunogenicity data that will be required in addition to

vaccine efficacy and the correlates of immunity that can be used

(particularly for cell-mediated immunogenicity studies). It remains to

be seen whether such approaches will result in improved breadth and

duration of protection compared with current bivalent COVID-

19 vaccines.
Conclusions

Since the emergence of BA.1 in late 2021, new Omicron sub-

lineages have continued to arise, superseding the previous Omicron

sub-lineage approximately every 3 months. Later sub-lineages have

had enhanced immuno-evasive properties and higher reproductive

rates. Omicron sub-lineages continue to cause a substantial

healthcare burden due to increased transmissibility, leading to a

high prevalence of disease, and relative evasion of immunity,

leading to re-infection and reduced VE. Novel vaccine strategies,

such as variant-adapted vaccines or next-generation T-cell-

enhanced approaches, are required to increase overall protection
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and durability of protection against symptomatic and severe

infections caused by current and future Omicron sub-lineages, as

well as other VOCs emerging from previously circulating variants.
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