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Systematic integration of
machine learning algorithms to
develop immune escape-related
signatures to improve clinical
outcomes in lung
adenocarcinoma patients

Ting Wang, Lin Huang, Jie Zhou and Lu Li*

Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
Background: Immune escape has recently emerged as one of the barriers to the

efficacy of immunotherapy in lung adenocarcinoma (LUAD). However, the

clinical significance and function of immune escape markers in LUAD have

largely not been clarified.

Methods: In this study, we constructed a stable and accurate immune escape

score (IERS) by systematically integrating 10 machine learning algorithms. We

further investigated the clinical significance, functional status, TME interactions,

and genomic alterations of different IERS subtypes to explore potential

mechanisms. In addition, we validated the most important variable in the

model through cellular experiments.

Results: The IERS is an independent risk factor for overall survival, superior to

traditional clinical variables and published molecular signatures. IERS-based risk

stratification can be well applied to LUAD patients. In addition, high IERS is

associated with stronger tumor proliferation and immunosuppression. Low IERS

exhibited abundant lymphocyte infiltration and active immune activity. Finally,

high IERS is more sensitive to first-line chemotherapy for LUAD, while low IERS is

more sensitive to immunotherapy.

Conclusion: In conclusion, IERSmay serve as a promising clinical tool to improve

risk stratification and clinical management of individual LUAD patients and may

enhance the understanding of immune escape.

KEYWORDS

immune checkpoint inhibitors, immunothearpy, immune escape, machine learning
(ML), lung adenocarcacinoma
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Introduction

Lung cancer is the most commonly diagnosed malignancy in

the world and is one of the leading causes of cancer-related deaths

(1). Lung cancer is highly heterogeneous, of which lung

adenocarcinoma (LUAD) is the most common subtype,

accounting for approximately 47% of all lung cancer cases (2).

LUAD is highly aggressive and malignant, leading to high

prevalence and mortality rates, with high mortality rates largely

attributable to disease progression and inappropriate treatment (3).

The prognosis of LUAD varies widely among patients depending on

the stages at the time of diagnosis (4). Despite innovations in

surgery, chemotherapy, and targeted therapies for lung cancer

over the past decades, the prognosis of patients with advanced

and some early-stage LUAD remains unsatisfactory (4). Recently,

immune blockade therapies targeting PD-1, PD-L1, and other

immune checkpoints are emerging as a new hope for the

treatment of cancer patients (5). Although immune blockade

therapies have improved the overall prognosis of patients with

LUAD as well as recently reported, only about 15% of patients

benefit from them (6). The identification of patients with early-stage

LUAD and the limited efficacy of immunotherapy has become the

major barrier preventing further improvement in the prognosis

of LUAD.

The immune system and the tumor microenvironment (TME)

are critical regulators of the tumor system and have both supportive

and inhibitory properties in cancer development, progression, and

invasion (7). Revolutionary therapies targeting the immune system

in the TME are the recent focus of several promising therapeutic

approaches for cancer patients (8). The central step in cancer

immunotherapy is the active recognition of the malignant

transformation of cells by the immune system and the

mobilization of effector cells to clear the malignant cells (9). This

step relies not only on the immunogenicity of the tumor cells

themselves but also on non-mutated and mutated antigens on the

surfaces of the tumor cells. However, recent studies have shown that

immune escape occurs during cancer progression, exempting tumor

cells from immune clearance, leading to poor immunotherapy

responses and poor patient prognosis. On the one hand, tumor

cells avoid recognizing cancer-specific antigens by the immune

system through cloning and evolution of their genome profiles

(10) ; on the other hand, tumor ce l l s a l so summon

immunosuppressive cells to suppress immunogenicity and escape

clearance (11). Thus, despite the demonstrated potential of using

the immune system to clear tumors, the clinical reality of TME is

often an environment of immune escape. Recent advances in large-

scale transcriptome sequencing technology and molecular biology

have helped us explore the dynamics of tumors and TME in greater

depth. We can rely on this solid bridge to better understand the

mechanisms of immune escape to improve immunotherapy and

tumor prognosis.

In this study, we attempted to apply immune escape-related

markers based on multiple machine learning algorithms to develop

and validate risk stratification characteristics–immune escape-

related scores (IERS) for a total of 1107 LUAD patients from 4
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datasets in the TCGA and GEO databases. We then evaluated the

association of IERS with biological function, TME, and genomic

mutations. Finally, we evaluated the benefit of IERS in predicting

first-line chemotherapy and immunotherapy in patients with

LUAD. This work may help to enhance the understanding of

immune escape and optimize clinical decision-making and

prognosis in patients with LUAD.
Methods

Collection and processing of
public datasets

The TCGA-LUAD dataset from 492 LUAD patients containing

detailed clinical information and follow-up data was accessed using

UCSC Xena (https://xena.ucsc.edu/). We collected RNA-seq data,

maf data from the Mutect2 platform, copy number variation (CNV)

data after gistic2.0 processing, and Illumina 450 methylation data of

TCGA-LUAD. Three GEO datasets were accessed and collected

from the GEO database: GSE30219, GSE42127, and GSE72094.

after excluding patients with incomplete clinical information and

other pathological types, a final GEO meta-cohort of 615 LUAD

patients was obtained. In addition, two datasets (Imvigor210 and

Nature-SKCM) were collected: containing 298 patients with bladder

cancer treated with anti-PD-L1 and 121 patients with melanoma

treated with anti-PD-1, respectively (12, 13). These two

immunotherapy-related datasets were used to assess the efficacy

of IERS in predicting response to immunotherapy.

The raw RNA-seq datasets from TCGA were converted to

transcript matrices in kilobases per million (TPM) and further

normalized by log2 transformed. The GEO meta-cohort was

obtained from three different platforms: GPL570, GPL6884, and

GPL15048. The transcripts from the three datasets were processed

and merged using the COMBAT function from the “sva” package to

remove batch effects between chips (14). Ultimately, the TCGA-

LUAD cohort was used to filter features and construct models and

the GEO meta-cohort was used to test and validate the final model.

We extracted the set of genes regulating immune escape from the

previous study by Lawson et al. (15).
Pipeline for generating risk signatures
based on machine learning

To generate stable and highly accurate immune escape

correlation scores (IERS), we used the following steps: (a)

univariate Cox regression analysis to identify immune escape

genes with independent prognostic efficacy; (b) we integrated 10

machine learning algorithms including stepwise Cox, CoxBoost,

Cox partial least squares regression (plsRcox), generalized

augmented regression model (GBM), Stochastic Survival Forest

(RSF), Elastic Network (Enet), Lasso, Ridge, Supervised Principal

Component (SuperPC), and Survival Support Vector Machine

(survival-SVM). One algorithm was used to filter the variables,
frontiersin.org

https://xena.ucsc.edu/
https://doi.org/10.3389/fimmu.2023.1131768
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1131768
and another was used to construct the model, and the final fit of 101

algorithm combinations was evaluated and prevented from

overfitting by leave-one-out cross-validation (16). (c) Validation

of the predictive effect of the final generated models in the Meta-

GEO cohort. The best model was determined by calculating the C-

index of all models in different cohorts, with a higher C-index

indicating a more stable model (17).
Functional enrichment and immune
infiltration analysis

Functional enrichment of genes was achieved through the

Metascape website (https://metascape.org/gp), and GSEA software

(version 4.1.0) was used to assess the differences in KEGG pathways

between subgroups. The ssGSEA algorithm in package “gsva” is

used to assess the relative activity of the pathway of interest, and a

detailed list of pathway genes was provided in Table S1. We used

“cibersort” to assess the relative infiltration abundance of 22

immune cell types by matching transcripts (18). The tumor purity

and immune score of individual samples were assessed by the

Estimate algorithm (19). Finally, we collected Homologous

recombination defects (HRD) scores, indel neoantigens, and SNV

neoantigens from the TCGA-LUAD cohort from previous

studies (20).
Analysis of maf data

We used “maftools” to process and analyze the raw maf data

(21). We first identified the driver mutation factors (mutation

frequency >45) and examined differences in driver mutations

between high and low IERS subgroups. Subsequently, we

calculated the nonsynonymous mutational load and estimated its

correlation with IERS. Finally, we extracted and summarized

significant mutation signatures for different subgroups from the

maf data through the “Sigminer” package and annotated each

mutation signature by comparison with the COSMIC database

(22). Furthermore, CNV data were visualized by ggplot2.
Prediction of treatment response

We used the R package “pRRophetic” based on the 2016 version

of the GDSC database to predict the sensitivity of individual

patients to chemotherapy drugs, and calculated IC50 values by

ridge regression, with lower IC50 values indicating higher

sensitivity (23). In addition, differential genes for top150 between

high and low IERS subgroups were submitted to the Cmap database

(https://clue.io/) to predict possible small molecule compounds. For

the immunotherapy response, we first calculated the

Immunophenoscore (IPS) of the samples based on a previous

algorithm, with higher IPS suggesting stronger immune activity

and stronger immunotherapy response (24). The TIDE algorithm

(http://tide.dfci.harvard.edu) was then used to predict the difference

in response rates between the high and low IERS subgroups to
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immunotherapy, and the accuracy was assessed by recipient

operating characteristic (ROC) curves (25–28). Finally, IERS was

generated and assessed for accuracy in the two previously

mentioned immunotherapy cohorts.
Statistical analysis

All statistical analyses, data processing, and graphing were

performed in R 4.1.3 software. Continuous variables between the

two groups were tested by t-test or Wilcoxon test, depending on the

case, and categorical variables were tested by chi-square test.

Correlations of continuous variables were assessed by the

spearman correlation coefficient. Cox regression, Kaplan-Meier

analysis, and nomogram generation were performed using the

“rms” package and the “survival” package. and time-dependent

ROC curves were constructed using the “pROC” and “timeROC”

packages, respectively. If not mentioned otherwise, statistical tests

are two-sided and P<0.05 is considered statistically significant.
Cellular experiments in vitro

The normal human bronchial epithelial cell line 16HBE and the

human lung adenocarcinoma cell line A549 was bought from

Shanghai EK Bioscience Co. All cells were grown in DMEM

media with 10% FBS in a 37°C cell incubator with 5% CO2. We

then used qRT-PCR to assay normal and tumor cell lines to assess

FADD level. The real-time PCR experiment (Vazyme, China) was

performed by ChamQ Universal SYBR qPCR Master Mix. We used

GAPDH as a control, then the amplified PCR products were

measured and standardized. The primer sequences were: FADD,

forword 5 ’GAGAAG GAGAACGCAACA-3 ’ ; Reverse 5 ’-

GACGCTTCGGAGG TAGAT-3’. The LipofectamineTM 2000

Transfection Reagent (Invitrogen, USA) was used for the

transfection of siRNA in this work. Cell Counting Kit-8 kit

(Bioss, China) was used to measure the proliferation rate of

normal and tumor cell line. We selected three chambers in

different groups at 0, 12, 24, 48, and 72 hours respectively. Then,

10 mL of the Cell Counting Kit-8 reagent was added, and the wells

were incubated at 37°C for two hours. identification of 450 nm

absorbance values. Transwell kit (Merck Millipore, USA) was used

to detect the invasive ability of different cell lines. We conducted

experiments according to the manufacturer’s instructions and then

performed cell counts by ImageJ software.
Results

Characterization of immune escape
in TCGA-LUAD

We first analyzed the expression, genomic alterations,

methylation, and prognostic efficacy of immune escape genes in

the TCGA-LUAD cohort . Figure 1A summarizes the

transcriptomic features of 37 immune escape genes with
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independent prognosis. Except for CEP55, immune escape genes

were highly expressed in tumor samples. Immune escape genes

showed few single nucleotide variants (SNV) in TCGA-LUAD,

with a high frequency of CNV events, which may play a major

regulatory role. TNFRSF1A, TAP1, TRAF2, and PSMB8 were
Frontiers in Immunology 04
significantly negatively correlated with methylation levels,

suggesting that methylation is their main modality of regulation.

Except for HCFC2 and WWP2, immune escape genes were risk

factors. The major mutation mode of these genes was nonsense

mutation, and ACTB was the most frequently mutated gene (7%)
A

B

D

C

FIGURE 1

The genomic profiles of immune escape genes in TCGA-LUAD (A) Multi-omics transcriptome profiles of immune escape genes in TCGA-LUAD.
From left to right: analysis of variance, genomic alterations, methylation correlation, univariate Cox regression. (B) Summary of single nucleotide
mutations of immune escape genes in TCGA-LUAD. (C) Summary of copy number variations of immune escape genes in TCGA-LUAD. (D)
Correlation network of immune escape genes. :*P<0.05, **P<0.01, ***P<0.001.
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(Figure 1B). CNV was the major genomic alteration mode of 37

immune escape genes, SMG7, EIF43H and ACTB were the most

frequently amplified genes, and KLF16 and PRKCSH were the

most frequent deletion genes (Figure 1C). Figure 1D demonstrates

their correlation network with a high positive correlation between

risk factors, while HCFC2 and WWP are negatively correlated

with other genes.
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Integrative construction of robust risk
stratification signatures

Based on 37 prognostic immune escape genes, we performed

a composite machine learning pipeline to generate robust

immune escape-related scores (IERS). We fitted 101 machine

learning combinations in the TCGA-LUAD cohort and validated
A B

D

E

F

C

FIGURE 2

Systematic integration of machine learning algorithms to construct IERS (A) C index was calculated after cross-validation for a total of 101 algorithm
combinations in both TCGA and GEO cohorts. (B) Comparing the accuracy of IERS with 10 published molecular signatures. (C) KM survival curves
for the high-IERS and low-IERS groups in the TCGA cohort. (D) KM survival curves for the high-IERS and low-IERS groups in the meta-GEO cohort.
(E) 1-, 3-, and 5-year ROC curves for IERS in the TCGA cohort. (F) 1-, 3-, and 5-year ROC curves for IERS in the meta-GEO cohort. ****P<0.0001.
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them in the meta-geo cohort. Based on the average C index we

found that the algorithm combination of RSF+GBM generates the

best model with a leading edge (Figure 2A). Interestingly, the

GBM algorithm alone also gives good results (Figure 2A). In

addition, we retrieved 10 public mRNA signatures of LUAD that

are associated with various biological processes (autophagy,

ferroptosis, metabolism, etc.). We calculated the C index of the

public signatures and found that our model has a leading

advantage over the previous model (Figure 2B). Patients at high

and low risk were divided based on the median of IERS, and the

results showed significantly better survival in patients with low

IERS in the TCGA and GEO cohorts (Figures 2C, D). the ROC

curves showed superior efficacy of IERS in the TCGA cohort (1

year: 0.829, 3 years: 0.828, 5 years: 0.832) (Figure 2E). In contrast,

IERS underperformed in the GEO cohort (1 year: 0.594, 3 years:

0.606, 5 years: 0.627) (Figure 2F).
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Generation of individual IERS
risk stratification

Univariate Cox regression showed that IERS was an

independent risk factor (Figure 3A). After correction for other

clinical variables, IERS remained a significant risk factor

(Figure 3B). We compared the efficacy of IERS with other clinical

variables, with IERS showing a leading edge in the TCGA cohort

and IERS slightly worse than Stage but better than other variables in

the GEO cohort (Figure 3C). timeROC curves showed that IERS

had similar performance to Stage in the total cohort of 1107 patients

(Figure 3D). To better risk stratify and apply IERS to individual

patients, we survived Nomogram (Figure 3E). Calibration curves

showed good predictive efficacy of nomogram at 1, 3 and 5 years

(Figure 3F). timeROC curves showed better predictive efficacy of

the nomogram model than other clinical variables (Figure 3G).
A B

D E

F G
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C

FIGURE 3

Evaluation of the IERS model (A) Univariate Cox regression analysis of OS in TCGA and meta-GEO cohorts; (B) Multivariate Cox regression analysis of
OS in TCGA and meta-GEO cohorts. (C) Comparison of the performance of IERS and other clinical indicators. (D) timeROC curves for the IERS and
clinical characteristics. (E) Construction of a nomogram based on the IERS. (F) Calibration curves for the nomogram. (G) timeROC curves for the
nomogram and other clinical characteristics. (H) 1-, 3-, and 5-year DCA curves for the nomogram and other clinical characteristics. ***P<0.001.
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Finally, we evaluated the clinical benefit of the nomogram by DCA

curves, and the results showed that the nomogram model had the

best benefit at 1, 3, and 5 years (Figure 3H).
Evaluation of IERS at single-cell resolution

We collected the single-cell dataset gse131907 and processed it

with the “seurat” package to assess the distribution of IERS in TME
Frontiers in Immunology 07
(29). Based on the original annotation, a total of 8 major cell

populations were identified (Figure 4A). We found that IERS was

mainly distributed in the immune cell population as well as in some

malignant cell populations (Figure 4B). In addition, the 25 immune

escape genes that constitute the final model were also expressed

mainly in the malignant and immune cell populations (Figure 4C).

We then used the “cellchat” package to assess cellular

communication between the high IERS and low IERS cell

populations (30). We found that myeloid cells and malignant cells
A B

D E

C

F G

FIGURE 4

Evaluation of IERS at single-cell resolution (A) Eight identified cell clusters are shown based on Umap descending. (B) M Distribution of IERS in
different cell clusters. (C) Expression of IERS model genes in different cell clusters. (D) Overall cellular communication intensity in high IERS cells.
(E) Overall cellular communication intensity in low IERS cells. (F) Specific communication pathways between high IERS cells. (G) Specific
communication pathways between low IERS cells.
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were more active in the high IERS group (Figure 4D). While in the

low IERS group the stronger communication activity was myeloid

cells and endothelial cells (Figure 4E). Malignant cells in the high

IERS group mainly communicated through the VEGF and EGF

pathways, and myeloid cells communicated through the TNF and

MIF pathways (Figure 4F). In the low IERS group, endothelial cells

received signals through CXCL and VEGF pathways, and myeloid

cells mainly interacted through CXCL pathway, and the signal

intensity was higher than that in the high IERS group

(Figure 4G). Taken together, these results suggest that high IERS

can distinguish between an escaped immune system and an

immunosuppressed TME.
Resolution of the biological function
of IERS

We first identified genes that were highly expressed in the high

and low IERS groups by a threshold of FC>2, adjust p value<0.05.

Functional enrichment showed that the genes upregulated in the

high IERS group were mainly associated with DNAmetabolism, cell

cycle, and cell proliferation (Figure 5A). And the genes upregulated

in the low IERS group were mainly associated with antigen

presentation and some regulatory pathways (Figure 5B). GSEA

analysis showed that cell cycle, DNA replication, and homologous

recombination pathways were upregulated in the high IERS group

(Figure 5C). In contrast, asthma and hematopoietic cell line-related

pathways were upregulated in the low IERS group (Figure 5D). In
Frontiers in Immunology 08
summary, we infer that tumor cell division and proliferation were

active in the high IERS group, while immunoreactivity was stronger

in the low IERS group.
Classification of the tumor
microenvironment by IERS

We first summarized the association of IERS with tumor purity,

immune cell abundance, and immune checkpoint expression to

initially characterize TME in different IERS patients (Figure 6A).

The results showed that high IERS was associated with high tumor

purity, high activated CD4 memory cells, M0 and M1 macrophage

abundance, high PD-L1, CXCL10, and GZMB expression. In

contrast, low IERS was associated with higher immune scores,

high monocyte, plasma cell, mast cell, and dendritic cell

abundance, and high CTLA-4 expression. Further, we analyzed

the differences in the distribution of the different tumor

immunization steps in the high and low IERS groups. The results

showed that the initial step was more abundant in the low IERS

group, while step II and step 4-CD4 cell recruit were increased in

the high IERS group (Figure 6B). It seems that the high IERS group

is TME with CD4T cells as the main cells. Further, we evaluated the

distribution of immune-related pathways among the different

groups and the results showed that hypoxia and MHC class I

pathways were more active in the high IERS group, while CCR,

checkpoint, EMT, and some other immune-related pathways were

more active in the low IERS group (Figure 6C). Finally, we found a
A B

DC

FIGURE 5

Functional analysis for IERS (A) Bar plot showed the biological pathways of upregulated gene enrichment in the high IERS group. (B) Bar plot showed
the biological pathways of upregulated gene enrichment in the low IERS group. (C) GSEA analysis revealed the top five enriched KEGG pathways in
the high IERS group. (D) GSEA analysis revealed the top five enriched KEGG pathways in the low IERS group.
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positive correlation between IERS and HRD score (Figure 6D) and a

significant negative correlation with indel neoantigens and SNV

neoantigens (Figures 6E, F). In summary, patients with high IERS

may face immunosuppressive TME. Whereas low IERS are

immunologically active TME as well as having more neoantigens

and may be more beneficial to immunotherapy.
Frontiers in Immunology 09
Dissecting genomic alterations
between subgroups

The tumor mutational load (TMB) reflects the number of

cancer mutations, some of which can be processed into

neoantigens and processed by antigen-presenting cells and
A B

D E F

C

FIGURE 6

Dissecting the heterogeneity of TME among IERS subgroups (A) Heat map showed the IERS landscape, including the Estimate score, immune cell
infiltration abundances, and immune checkpoint expression. (B) Cumulative distribution plots show differences in immune processes between
different IERS subgroups. (C) The box plot showed the difference between different IERS subgroups for the interesting pathway calculated by the
ssGSEA algorithm. The correlation between IERS and (E) HRD score, (D) Indel neoantigens, and (F) SNV neoantigens. ns P<0.05, *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001
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presented to T cells to activate the immune response (31, 32).

However, neoantigens are not accurately identified when immune

escape occurs, affecting the effectiveness of immunotherapy (31,

32). To explore this phenomenon, we then analyzed the TMB

between the high and low IERS groups. The results showed that
Frontiers in Immunology 10
the high IERS group had a higher number of nonsynonymous

mutations (Figure 7A). In addition, 11 driver mutators including

TP53 were significantly upregulated in the high IERS group

(Figure 7B). Oncoplots show detailed mutational profiles of

driver mutators in high and low IERS groups (Figure 7C). We
A

B
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F

G H

C

FIGURE 7

Genomic variation landscape of IERS (A) Box plots and scatter plots showed the correlation between IERS and nonsynonymous mutations. (B) Forest
plot showed statistically significant differences in driver mutated genes between the high IERS and low IERS groups. (C) Oncoplot of high-frequency
mutated genes between the high- and low-IERS groups. (D) Five significant mutation signatures were identified in the high IERS group. (E) Four
significant mutation signatures were identified in the high IERS group. (F) The bar plot demonstrated the CNV events on different chromosome arms
of the high- and low-IERS groups. Box plots and scatter plots showed the correlation of IERS and (G) amplification counts and (H) deletions counts.
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001
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then characterized the mutation signatures of different IERS

subgroups. In contrast to the low IERS group, the characteristic

mutational signatures of the high IERS are SBS1 and SBS5, and

COSMIC annotation showed that they are associated with clock-

like features that regulate the cell cycle (Figure 7D). In contrast,

the specific signature of the low IERS group was SBS6, which was

associated with the repair of defective DNA mismatch. CNV

events are known to drive tumorigenesis and are associated with

immune escape (33, 34). We then found that the high IERS group

had significantly more CNV events in most chromosome arms

(Figure 7F). Similarly, we found that the overall number of CNV

amplifications and deletions was significantly and positively

correlated with IERS and was upregulated in the high IERS

group. (Figures 7G, H).
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Effect of IERS on first-line chemotherapy

We evaluated the sensitivity of five first-line lung cancer

chemotherapeutic drugs (Cisplatin, Docetaxel, Gefitinib,

Paclitaxel, and Vinorelbine) in different IERS groups. We found

that patients with high IERS in the TCGA cohort were more

sensitive to all five chemotherapeutic agents (Figure 8A), and this

result was confirmed in the GEO cohort (Figure 8B). Therefore, we

hypothesized that patients with high IERS are more suitable for

chemotherapy. To explore more possible chemotherapeutic agents,

we identified IERS-related small molecule compounds through the

Cmap database (Figure 8C). A total of 75 small molecules were

identified, the most frequent of which is HDAC inhibitor, which

may serve as a novel drug to target immune escape in LUAD.
A B

C

FIGURE 8

Sensitivity to chemotherapy in different IERS subgroups (A) Box plots showed the predicted IC50 values for five first-line drugs of LUAD in high- and
low-IERS groups in the TCGA cohort. (B) Box plots showed the predicted IC50 values for five first-line drugs of LUAD in high- and low-IERS groups
in the meta-GEO cohort. (C) Screening potential small molecule compounds for high-risk LUAD patients based on IERS.
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IERS can predict immunotherapy response

We first calculated the IPS, and the results showed that more

individuals with high IPS were distributed among patients with low
Frontiers in Immunology 12
IERS in both TCGA and GEO cohorts (Figures 9A, B). We then

predicted the response of patients in the TCGA cohort and GEO

cohort to immunotherapy by the TIDE algorithm. The results

showed that the response in both cohorts was significantly higher
A

B D

E

F

G I

H J

K

L

C

FIGURE 9

Potential of IERS to predict immunotherapy The boxplot showed the distribution of IPS between different IERS subgroups in the (A) TCGA and (B)
meta-GEO cohorts. TIDE algorithm predicts response to immunotherapy of different IERS subgroups in (C) TCGA and (D) meta-GEO cohort. ROC
curves assess the predictive accuracy of different immune-related metrics for immunotherapy benefits in the (E) TCGA and (F) meta-GEO cohorts.
KM survival curves for patients in the high- and low-IERS groups in (G) Imvigor210 and (H) Nature-SKCM cohort. Box plots and scatter plots showed
the correlation between IERS and neoantigens in (I) Imvigor210 and (J) Nature-SKCM cohort. Box plots and scatter plots showed the correlation
between IERS and TMB in (K) Imvigor210 and (L) Nature-SKCM cohort. ns P<0.05, *P<0.05, **P<0.01, ****P<0.0001.
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in the low IERS group to immunotherapy (Figures 9C, D).

Moreover, the high IERS group had higher TIDE scores in both

cohorts compared to the low IERS group (Figures S1A, B),

suggesting more T-cell exhaustion events in patients in the high

IERS group. The accuracy of IERS and other immunotherapy

indicators in predicting response rates to immunotherapy was

assessed by ROC curves, and the results showed that IERS was

the best predictor of immunotherapy in both cohorts (Figures 9E,

F). We also constructed and validated our IERS model in two

external immunotherapy cohorts. The results showed significantly

worse survival in patients with high IERS in the Imvigor210 and

Nature-SKCM cohorts (Figures 9G, H). Finally, we evaluated the

relationship of IERS with neoantigens and TMB recorded in these

two cohorts. The results showed a significant negative association of

IERS with neoantigens and TMB in the Imvigor210 cohort

(Figures 9I, K), which may have led to a better survival status of

patients with low IERS. However, we did not find a significant

correlation between IERS and neoantigens, and TMB in the Nature-

SKCM cohort (Figures 9J, L).
IERS in a pan-cancer perspective

We finally constructed IERS in the TCGA-pancancer cohort to

assess the potential for extrapolation of the final model. The results

were satisfactory, with univariate Cox regression showing that IERS

can be a reliable predictor of overall survival (OS), Disease Specific

Survival (DSS), and Progression Free Interval (PFI) in most solid

tumors and can be used as an independent risk factor (Figure 10A).

In addition, we evaluated the distribution of IERS among different

organs and tissues. The results showed that IERS was higher in most

of the tumor tissues and may represent the immune escape state at
Frontiers in Immunology 13
the time of most tumorigenesis (Figure 10B). Interestingly, IERS

expression was slightly higher in normal tissues of pancreatic and

gastric cancers (Figure 10B).
Validation of key IERS model indicator by
cellular experiments

The final model was screened by the random forest algorithm to

incorporate 25 variables, of which FADD was the most important

variable in the model (Figure 11A). We then explored the effect of

FADD on the malignancy of lung adenocarcinoma through in vitro

experiments. We first found that the mRNA expression level of

FADD was increased in LUAD cell lines compared to normal

bronchial epithelial cell lines (Figure 11B). We then found the

reduced proliferative activity of cells after knockdown of FADD in

A549 cell line by CCK8 kit (Figure 11C). After knockdown of

FADD in A549, invasive cells in transwell cells were reduced

(Figure 11D). By counting the invading cells, we found that the

degree of invasion of A549 cells was significantly reduced after

knockdown of FADD (Figure 11E).
Discussion

Treatment options for lung cancer are surprisingly evolving,

and some LUAD patients can already benefit from novel

immunotherapies and improve their prognosis (5). Existing

clinical management of lung cancer mainly relies on the

traditional AJCC tumor stage, however, traditional stages are

increasingly not adapted to the needs of the new world. The

introduction of immunotherapy means that patients need better
A B

FIGURE 10

IERS in a Pan-Cancer Perspective (A) Distribution and univariate Cox regression analysis of IERS in different solid tumors. (B) Distribution of IERS in
different organs and tissues.
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personalized management to aid clinical decision-making (35).

Immune escape has been identified as one of the major causes of

immunotherapy efficacy, and here we investigated the relationship

between immune escape profiles and prognosis and treatment

benefit in patients with LUAD.

In this study, we systematically analyzed the transcriptional

profile of TCGA-LUAD to characterize and identify prognostic

immune escape-related genes in LUAD. The immune escape genes

were mainly regulated by CNV but not SNV. TNFRSF1A, TAP1,

TRAF2, and PSMB8 were also regulated by methylation. Most of

the immune escape genes are risk factors for OS. Based on these 37

prognostic immune escape genes, we developed an integrated

pipeline of machine learning to construct an accurate and robust

IERS. a total of 101 algorithm combinations passed the pipeline,

and we finally confirmed the best combination of RSF+GBM by

TCGA and GEO datasets. Our comparison with 10 other published

features confirms that our final GBM model has superior

performance. A comprehensive meta-analysis of prognosis

confirmed IERS as an independent risk factor for OS. Although

we observed poor efficacy of IERS in the GEO cohort by ROC

curves, this may be due to differences in data standardization and

chip platforms. After integrating the TCGA and GEO datasets, we

constructed the Nomogram to be used for individual risk

stratification in clinical practice. The predictive performance of

the Nomogram over the AJCC stage was confirmed by calibration

curves, timeROC curves, and DCA curves. In summary, our IERS

model has great potential for clinical application.

Precision prediction of lung adenocarcinoma is a hot research

area, and previous studies have reported a large number of relevant

genetic markers for predicting clinical outcomes in LUAD patients

(36–39). Our IERS model has shown a leading edge against 10

published markers. In addition, we evaluated and confirmed the
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generalizability of the IERS model in a pan-cancer and

immunotherapy cohort compared to other published models.

Alteration and activation of the cancer genome led to changes in

protein function ultimately causing phenotypic changes (40),

therefore we explored the biological functions and TME

differences in patients with different IERS status. We observed

that higher IERS was associated with a more active cell cycle,

DNA metabolism, and cell proliferation. In addition, cell cycle,

DNA replication, and homologous recombination pathways were

significantly upregulated in the high IERS group. However, we

confirmed that asthma, antigen presentation, and hematopoietic

cell lineage-related pathways were active in the low IERS group.

Therefore, it is reasonable to speculate that the worse OS in high

IERS patients is mainly due to the accumulation of immune escape

abnormalities resulting in malignant tumor proliferation. To

further confirm this hypothesis, we examined the TME

components of the high and low IERS subgroups. Convincingly,

we found higher tumor purity in high IERS tumor samples and

higher immune scores in low IERS tumor samples. Notably, we

found that the increased immune cells in the high IERS group were

mainly M0macrophages as well as M2macrophages. This may have

led to a suppressed immune microenvironment in the high IERS

group, ultimately causing poorer tumor progression and survival

(41). In contrast, monocytes, plasma cells, mast cells, and dendritic

cells infiltrated more in the low IERS group. Studies suggest that DC

cells and monocytes play an important role in antitumor immunity

and may be promising targets for immunotherapy (42, 43). In

addition, most antitumor-related immune pathways were active in

the low IERS group, such as T-cell co-stimulation, CCR, and check

point. We also found that patients with high IERS had higher HRD

scores, which may enhance immune escape (33, 34). Finally, we

found that low IERS was associated with higher neoantigens.
A B
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FIGURE 11

Validation the malignancy of FADD by cellular experiments (A) Random forest shows that FADD is the most important variable. (B) Differential mRNA
expression levels of FADD in 16HBE and A549 cell lines by qPCR. (C) Cell proliferation of A549 cells transfected with FADD siRNA or siNC. (D)
Transwell assay of invasive ability of A549 cells transfected with FADD siRNA or siNC. (E) Cell counting of A549 transfected with FADD siRNA or siNC
in transwell cells. * P < 0.05, ** P < 0.01.
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Therefore, it is reasonable to infer that LUAD patients with low

IERS have an active TIME of anti-tumor immunity and therefore

have a better prognosis and may be more sensi t ive

to immunotherapy.

Our analysis of maf data confirms that IERS can distinguish well

between genomic patterns of variation in individual patients. We

observed significantly higher TMB in the high IERS group and that

most driver mutant genes clustered in high IERS. It is commonly

thought that higher TMB may generate more neoantigens, but

immune escape in high IERS may hinder neoantigen capture and

recognition. Notably, TP53 mutations are increased in patients with

high IERS. Studies have shown that TP53 is a popular mutation site

in lung cancer and is associated with the malignant progression of

LUAD (44, 45). This explains the worse prognosis of patients with

high IERS. For the mutational signature, the low IERS group had

more SBS6, and previous studies concluded that SBS6 is associated

with DNA mismatch repair, and we infer here that SBS may be the

set of mutational base features that lead to a better prognosis in

LUAD. Interestingly, we found significantly more CNV events in

high IERS, and previous studies suggesting homologous

recombination as a dominant factor for CNV are consistent with

our study (46, 47). In addition, CNV has been suggested to be one of

the drivers of immune escape, which may also contribute to

immune escape in high IERS (33, 34). In conclusion, we infer

that patients with low IERS are more suitable for immunotherapy

compared to high IERS.

We confirmed that patients with high IERS are more sensitive

to chemotherapy by obtaining drug sensitivity data from the GDSC

database. Specifically, we detected that patients with high IERS were

more sensitive to Cisplatin, Docetaxel, Gefitinib, Paclitaxel, and

Vinorelbine in the TCGA and GEO databases. In addition, we

screened for possible drug targets and identified corresponding

small molecule compounds for high-risk LUAD patients with high

IERS. We identified 75 small molecule compounds, the most

common of which is HDAC inhibitor, which may serve as a

novel drug to target immune escape in LUAD.

Finally, we predicted that patients with low IERS are more

sensitive to immunotherapy from multiple perspectives. First,

LUAD patients with low IERS had higher IPS, suggesting that low

IERS patients may be more responsive to immunotherapy. In

addition, the TIDE algorithm also confirmed that patients with

low IERS had higher response rates to immune checkpoint

inhibitors (e.g., anti-PD-1, anti-PD-L1, and anti-CTLA-4).

Moreover, IERS predicted immunotherapy response rates more

accurately than conventional predictors. These findings were also

confirmed in an external validation cohort. More convincingly, we

demonstrated in the immunotherapy cohort IMvigor210 cohort

and Nature-SKCM that IERS is an unfavorable prognostic factor for

OS. We found a negative correlation between IERS and neoantigens

and TMB, which may explain the better outcome of patients with

low IERS for immunotherapy.

The final IERS model can be applied in clinical practice based

on a simple PCR assay, however, this study still contains some
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limitations. First, the final IERS model in this study still contains too

many indicators (25), which is not favorable for easy clinical

application and cost savings. In addition, the dynamics of the

genome is a large field, and we focused on only a portion of the

driver immune escape genes, which may overlook some potential

associations. Finally, the mechanism by which immune escape

affects biological function, as well as phenotype, is unclear, but we

combined the results of functional enrichment analysis to make

reasonable speculations, which is an inspiration for future

mechanistic studies.

In conclusion, based on systematic machine algorithms and

large-scale bioinformatics data, we developed and validated a stable

and effective immune escape signature for evaluating the prognosis

of LUAD patients and response to novel treatment approaches. This

IERS model is a promising clinical tool for risk stratification and

personalized protocols for patients with LUAD.
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